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Edge devices equipped with computer vision must deal with vast amounts of

sensory data with limited computing resources. Hence, researchers have been

exploring di�erent energy-e�cient solutions such as near-sensor, in-sensor, and

in-pixel processing, bringing the computation closer to the sensor. In particular,

in-pixel processing embeds the computation capabilities inside the pixel array

and achieves high energy e�ciency by generating low-level features instead

of the raw data stream from CMOS image sensors. Many di�erent in-pixel

processing techniques and approaches have been demonstrated on conventional

frame-based CMOS imagers; however, the processing-in-pixel approach for

neuromorphic vision sensors has not been explored so far. In this work, for the first

time, we propose an asynchronous non-von-Neumann analog processing-in-

pixel paradigm to perform convolution operations by integrating in-situ multi-bit

multi-channel convolution inside the pixel array performing analog multiply and

accumulate (MAC) operations that consume significantly less energy than their

digital MAC alternative. To make this approach viable, we incorporate the circuit’s

non-ideality, leakage, and process variations into a novel hardware-algorithm co-

design framework that leverages extensive HSpice simulations of our proposed

circuit using the GF22nm FD-SOI technology node. We verified our framework on

state-of-the-art neuromorphic vision sensor datasets and show that our solution

consumes ∼ 2× lower backend-processor energy while maintaining almost

similar front-end (sensor) energy on the IBM DVS128-Gesture dataset than the

state-of-the-art while maintaining a high test accuracy of 88.36%.

KEYWORDS

neuromorphic, processing-in-pixel-in-memory, convolution, address event

representation, hardware-algorithm co-design, DVS gesture

1. Introduction

Today’s widespread video acquisition and interpretation applications [e.g., autonomous

driving (Beltrán et al., 2020), surveillance (Xie et al., 2021), object detection (Jiao et al.,

2022), object tracking (Wu et al., 2021), and anomaly detection (Mansour et al., 2021)]

are fueled by CMOS image sensors (CIS) and deep learning algorithms. However, these

computer vision systems suffer from energy inefficiency and throughput bottlenecks (Chai,

2020) that stem from the transmission of a high volume of data between the sensors at the

edge and processors in the cloud. For example, smart glasses (e.g., Meta AR/VR glasses,
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Google classes, etc.) drain the battery within 2–3 h when used for

intensive computer vision tasks (LiKamWa et al., 2014). Although

significant technological and system-level advancements exist in

both CMOS imagers (Maheepala et al., 2020) and deep neural

networks (Goel et al., 2020), the underlying energy inefficiency

arises due to the physical separation of sensory and processing

hardware. Hence, developing novel energy-efficient hardware for

resource-constrained computer vision applications has attracted

significant attention in the research community.

Many researchers implement the first few computation tasks

of machine vision applications close to the sensor to reduce the

energy consumption of massive data transfer (Zhou and Chai,

2020). These approaches can be categorized into three types (1)

near-sensor processing, (2) in-sensor processing, and (3) in-pixel

processing. The near-sensor processing approach places a digital

signal processor or machine learning accelerator close to the sensor

chip. In Pinkham et al. (2021), a dedicated near-sensor processor

led to a 64.6% drop in inference energy for MobileNetV3. In

Eki et al. (2021), a 3D stacked system consisting of a CNN

inference processor and a back-side illuminated CMOS image

sensor demonstrated an energy efficiency of 4.97 TOPS/W. Near-

sensor computing can improve energy efficiency by reducing the

data transfer cost between the sensor chip and the cloud/edge

processor; however, the data traffic between the sensor and near-

sensor processor still consumes significant amounts of energy.

In contrast, the in-sensor approach utilizes an analog or digital

signal processor at the periphery of the sensor chip. For instance,

RedEye (LiKamWa et al., 2016) uses analog convolution processing

before the sensor’s analog-to-digital conversion (ADC) blocks to

obtain a 5.5× reduction in sensor energy. Moreover, a mixed-

mode in-sensor tiny convolution neural network (CNN) (Hsu

et al., 2022) yielded a significant reduction in bandwidth and, in

particular, reduced power consumption associated with the ADC.

To fully remove the ADC energy overhead, Chen et al. (2019)

processed the raw analog data from the CMOS image sensor

using an on-chip completely analog binary neural network (BNN)

that leverages switched capacitors. Using energy-efficient analog

computing was also explored in Ma et al. (2019), which proposes

a novel current-mode analog low-precision BNN. Furthermore,

SleepSpotter (Lefebvre et al., 2021) implemented energy-efficient

current-domain on-chip MAC operations. Nevertheless, this

solution still requires the potentially-compressed raw analog data

to be streamed through column-parallel bitlines from the sensor

nodes to the peripheral processing networks. In general, these

in-sensor approaches significantly reduce the energy overhead of

analog-to-digital converters; however, they still suffer from the data

transfer bottleneck between the sensor and peripheral logic.

On the other hand, the in-pixel processing approach integrates

computation capabilities inside the pixel array to enable early

processing and minimize the subsequent data transmission. For

instance, a low-voltage in-pixel convolution operation has been

proposed in Hsu et al. (2020) that utilizes a current-based digital-

to-analog converter (DAC) to implement weights and pulse-width-

modulated (PWM) pixels. Moreover, a single instruction multiple

data (SIMD) pixel processor array (PPA) (Bose et al., 2020) can

perform parallel convolution operations within the pixel array by

storing the weights of the convolution filters in registers within

the in-pixel processing elements. In addition, the direct utilization

of the photodetector current to compute the binary convolution

can yield 11.49 TOPS/W energy efficiency (Xu et al., 2020).

Furthermore, Xu et al. (2021) performs classification tasks on

the MNIST dataset by generating the in-pixel MAC results of

the first BNN layer and exhibits 17.3 TOPS/W energy efficiency.

In addition, a processing-in-pixel-in-memory paradigm for CIS

reported an 11× energy-delay product (EDP) improvement on the

Visual Wake Words (VWW) dataset (Datta et al., 2022c). Follow-

up works by the same authors have demonstrated 5.26× and

3.14× reduction in energy consumption on hyperspectral image

recognition (Datta et al., 2022e) and multi-object tracking in the

wild (Datta et al., 2022d), respectively. In summary, due to the

embedded pixel-level processing elements, the in-pixel processing

approach can outperform energy and throughput compared to

in-sensor and near-sensor processing solutions.

Most of the research works on different energy-efficient CIS

approaches (near-sensor, in-sensor, and in-pixel processing)

are focused on conventional frame-based imagers. However,

many researchers are now exploring the use of event-driven

neuromorphic cameras or dynamic vision sensors (DVS)

(Lichtsteiner et al., 2008; Leñero-Bardallo et al., 2011) for different

neural network applications, including autonomous driving (Chen

et al., 2020), steering angle prediction (Maqueda et al., 2018),

optical flow estimation (Zhu et al., 2018), pose re-localization

(Nguyen et al., 2019), and lane marker extraction (Cheng et al.,

2020), due to their energy, latency, and throughput advantages

over traditional CMOS imagers. The DVS pixel generates event

spikes based on the change in light intensity instead of sensing the

absolute pixel-level illumination in conventional CMOS imagers.

Thus, DVS pixels filter out the redundant information from a

visual scene and produce sparse asynchronous events. These sparse

events are communicated off-chip using the address event link

protocol (Lin and Boahen, 2009). By avoiding the analog-to-

digital conversion of the absolute pixel intensity and frame-based

sensing method, DVS exhibits higher energy efficiency, lower

latency, and higher throughput than frame-based alternatives.

Moreover, the dynamic range of the DVS pixel is higher than the

conventional CMOS imagers; hence, the DVS camera can adapt to

the illumination level of the scene due to its logarithmic receptor.

These advantages motivate a paradigm shift toward neuromorphic

vision sensors for vision-based applications.

These DVS cameras are often coupled with spiking convolution

neural networks (CNN) that natively accept asynchronous input

events. Traditionally, time is decomposed into windows, and the

number of spikes that occur in each time window is accumulated

independently for each pixel creating multi-bit inputs to a spiking

CNN. The first spiking CNN layer thus consists of digital MAC

operations (not accumulations because the input is multi-bit

instead of binary), unlike the subsequent spiking CNN layers that

consist of more energy-efficient accumulations that operate on

spikes (Datta and Beerel, 2022; Datta et al., 2022b). To improve

the energy efficiency of such a DVS system, this paper explores

in-pixel processing by performing MAC operations in the analog

domain within the pixel array. In particular, we have developed

a novel energy-efficient neuromorphic processing-in-pixel-in-

memory (P2M) computing paradigm in which we implement the

first spiking CNN layer using embedded transistors that model

the multi-bit multi-channel weights and enable massively parallel
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in-pixel spatio-temporal MAC operations. Because the DVS event

spikes are asynchronous in nature, we perform the multiply

operation by accumulating the associated weight each time a pixel

event occurs. We threshold the accumulated value at the end

of each time window to produce a binary output activation and

reset the accumulator in preparation for the next time window.

To support multiple input filters operating on individual pixels,

we parallelize this operation and simultaneously operate on all

channels (and all pixels). This charge-based in-pixel analog MAC

operation exhibits higher energy efficiency than its digital off-chip

counterpart. Moreover, the sparse binary output activations are

communicated utilizing a modified address-event representation

(AER) protocol, preserving the energy benefit of the workload

sparsity. In addition, we have developed a hardware-algorithm co-

design framework incorporating the circuit’s non-linearity, process

variation, leakage, and area consideration based on the GF22nm

FD-SOI technology node. Finally, we have demonstrated the

feasibility of our hardware-algorithm framework utilizing state-of-

the-art neuromorphic event-driven datasets (e.g., IBM DVS128-

Gesture, NMNIST) and evaluated our approach’s performance and

energy improvement. We incur a ∼5% accuracy drop in these

datasets because our charge-based P2M approach does not capture

the conventional notion of membrane potential for the first CNN

layer. This lack of membrane potential is due to the limited time

a passive analog capacitor can effectively store charge without

significant leakage. However, this problem can be mitigated using

non-volatile memories (Jaiswal and Jacob, 2021) that we plan to

explore in our future work.

The key contributions of our work are as follows:

1. We propose a novel neuromorphic-processing-in-pixel-in-

memory (Neuromorphic-P2M) paradigm for neuromorphic

image sensors, wherein multi-bit pixel-embedded weights

enable massively parallel spatio-temporal convolution on input

events inside the pixel array.

2. Moreover, we propose non-von-Neumann charge-based energy-

efficient in-pixel asynchronous analog multiplication and

accumulation (MAC) units and incorporate the non-idealities

and process variations of the analog convolution blocks into our

algorithmic framework.

3. Finally, we develop a hardware-algorithm co-design framework

considering hardware constraints (non-linearity, process

variations, leakage, area consideration), benchmark the

accuracy, and yield a ∼ 2× improvement in backend-processor

energy consumption on the IBM DVS128-Gesture dataset with

a∼ 5% drop in test accuracy.

The remainder of the paper is organized as follows.

Section 2 describes the circuit implementation, operation,

and manufacturability of our proposed Neuromorphic-P2M

approach. Section 3 explains our hardware-algorithm co-design

approach and hardware constraints on the first layer of the neural

network model. Section 4 demonstrates our experimental results

on two event-driven DVS datasets and evaluates the accuracy and

performance metrics. Finally, Section 5 presents the concluding

remarks.

2. P2M circuit implementation

This section presents the critical hardware innovations and

implementation of our proposed neuromorphic-P2M approach.

Figure 1 illustrates the representative chip stack and computing

flow for the first convolution layer utilizing our proposed

neuromorphic-P2M architecture. The top die consists of DVS

pixels and generates ON (OFF) events based on the increase

(decrease) in input light contrast level. A DVS pixel consists of

a logarithmic receptor, source-follower buffer, capacitive-feedback

difference amplifier, and two comparators (Lichtsteiner et al., 2008;

Leñero-Bardallo et al., 2011; Son et al., 2017). The generated

events (ON and OFF) per pixel are communicated to the bottom

die via pixel-level hybrid Cu-to-Cu interconnects. The bottom

die contains the weights and energy-efficient charge-based analog

convolution blocks. Each DVS pixel’s output channel (ON-channel

and OFF-channel) is connected to a transistor in the bottom die

that implements a multi-bit weight (e.g., w1,ON, w1,OFF, etc.) to

perform the multiplication (e.g., I1,ON × w1,ON, I1,OFF × w1,OFF,

etc.) operation. The positive and negative weights are implemented

by utilizing the pMOS and nMOS transistors, respectively. Each

kernel (corresponding to the filter of the spiking CNN model)

accumulates its weighted multiplication of input events on an

analog memory (capacitor) asynchronously when an ON or OFF

event occurs in the input DVS pixel. As the input spikes are binary,

the accumulation voltage either steps up (positive weight) or down

(negative weight) by an amount, depending on the weight values.

The accumulation continues for a fixed time period (simulation

time length for each event stream of our neural network model),

and after that, the summed voltage is compared with the threshold

(using a comparator or skewed inverter) to generate the output

activation signal (e.g., OACT) of each kernel for the next layer.

A similar computing flow is used across the different kernels

throughout the sensor array.

The operations of our proposed neuromorphic-P2M can be

divided into three phases. These are:-

1. Reset Phase: During the reset phase, the accumulation capacitor

of each kernel is precharged to 0.5VDD so that the accumulation

voltage can step up or down within the supply rail depending on

positive or negative weights, respectively.

2. Convolution Phase: In the convolution phase, the multi-bit

weight-embedded pixels and the accumulation capacitor of

each kernel perform multiplication and accumulation (MAC)

operations in the analog domain for a fixed period of time. After

that, the final accumulated voltage of each kernel is compared

with a threshold voltage to (potentially) generate the output

activation spike for the next layer.

3. Read Phase: Finally, during the read phase, the output

activations of different kernels are sequentially read utilizing

the asynchronous Address-Event Representation (AER) read

scheme.

More details on each step, including their hardware

implementations, will be explained below.
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FIGURE 1

The representative 3D chip stack and computing flow diagram of our proposed neuromorphic-P2M architecture.

2.1. Multi-bit weight embedded pixels

As illustrated in Figure 2, positive and negative weights of

the first spiking CNN layer have been implemented by utilizing

pMOS and nMOS transistors connected with supply voltages VDD

and ground, respectively. For a positive (negative) weight, the

voltage across the kernel’s capacitor (CK) charges (discharges) from

0.5VDD to VDD (ground) as a function of weight values and the

number of input DVS events. The weight values can be tuned by

varying the driving strength (WL ratio) of the weight transistors

(MW). A high-VT pMOS in positive weight implementation

(nMOS in negative weight implementation) (MEN) is activated

during the convolution phase to enable the multiplication and

accumulation operations on the kernel’s capacitor (CK) and

remains off during the reset phase. The weight transistor (MW)

is chosen to have a high-VT to limit the charging (for positive

weight) or discharging (for negative weight) current to avoid

capacitor saturation. Moreover, each DVS pixel includes a delayed

self-reset circuit (consisting of a current-starved inverter chain

and AND gate) to prevent voltage saturation on the capacitor

(CK) by limiting the event pulse duration. A switch transistor

(MSW) controlled by the DVS event spike is used to isolate

the kernel’s capacitor (CK) from the weight transistor (MW)

to reduce the leakage. The switching transistor (MSW) will be

activated only when there are input DVS spikes, hence, ensuring

the asynchronous MAC operation on the kernel’s capacitor (CK).

Furthermore, to reduce the leakage, a kernel-dependent (as leakage

is a function of transistor’s geometry, hence, leakage amount is

dependent on the kernel’s weights) the current source (INULL)

is connected with the accumulation capacitor (CK) that flows

in the opposite direction of the leakage current to nullify the

leaky behavior of the capacitor. The number of weight transistors

associated with a kernel depends on the size of the kernel (e.g.,

for a kernel size of 3 × 3, there will be a total of 18 weight

transistors considering the ON and OFF-channel). Each kernel’s

weight transistors are connected to one accumulation capacitor

(CK).

Note that the weights cannot be re-programmed after

manufacturing. However, it is common to use pre-trained weights

for the first few layers as low-level feature extractors in modern

neural network models (Jogin et al., 2018). Hence, the fixed

weights of our proposed architecture do not limit its application

for a wide range of machine-vision tasks. Moreover, we can also

replace the transistor by utilizing a non-volatile memory device

[e.g., Resistive Random Access Memory (RRAM), Phase Change

Memory (PCM), Magnetic Random Access Memory (MRAM)] to

add reconfigurability in our neuromorphic-P2M approach.

To incorporate the circuit’s non-ideality in our algorithmic

model, we have simulated the output characteristics of the positive

and negative weights for the different numbers of input event

spikes using the GF 22nm FD-SOI node. Figure 3 represents the

output voltage change on the accumulation capacitor (1VOUT)

as a function of the normalized weight transistor’s W
L ratios and

different numbers of input event spikes. The figures show that the

accumulated voltage can step up (for positive weights) and down

(for negative weights), and the size of the step is dependent on the

weight transistor’s W
L ratio. However, the step size dependency is

non-linear, and the non-linearity is larger when the weights are

large, and the pre-step voltage is close to the supply rails. This can

be attributed to the fact that the weight transistors (MW) enter the

triode region when their drain-to-source voltage is low, causing

the charging (discharging) current to drop compared to the typical

saturation current. However, the number of input events is sparse

for the DVS dataset, and having large weight values for all the

weights in a kernel is highly unlikely for a neural network model.

Hence, the weight transistors’ non-linear characteristics do not

cause significant accuracy issues in our algorithmic model. Besides,

the circuit’s asymmetry due to utilizing different types of transistors

(pMOS for positive weights and nMOS for negative weights) is also

captured and included in our algorithmic model.
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FIGURE 2

Embedded multi-bit positive and negative weight implementation.

FIGURE 3

Output accumulation voltage change (1VOUT ) from the reset voltage of the kernel capacitor (CK ) as a function of normalized weight (normalized

transistor W

L
ratio) and input event spikes simulated on GF 22nm FD-SOI node for positive and negative weights.

2.2. In-situ multi-pixel multi-channel
convolution operation

In the first spiking CNN layer, we must perform spatio-

temporal MAC operations across multiple channels simultaneously

for each kernel. Figure 4 illustrates our proposed neuromorphic-

P2M architecture. The left sub-figure represents an array of DVS

pixels (each white rectangular box includes multiple DVS pixels

arranged in rows and columns) consisting of multiple channels

distributed spatially. Each DVS pixel is connected with multiple

weight transistors of the analog MAC blocks depending on the

number of channels and stride (e.g., each DVS pixel will be

connected with four sets of analog MAC blocks for a stride of 2).

Each channel performs analogMAC operations asynchronously for

a fixed temporal window (the length of each algorithmic time step).

For instance, assume the kernel size is 3 × 3, and each kernel has

5 different channels that are represented by the white rectangular

boxes in the left sub-figure. The right sub-figure exhibits the

zoomed version of the 3 × 3 kernel with 5 different channels. Each

channel has a dedicated accumulation capacitor (e.g., CKi, where i =

1, 2, ... 5) and a local bitline so that charge can accumulate across all

the different channels at the same time. Depending on the kernel

size, multiple weight transistors (both positive and negative) are

connected to its kernel-dedicated accumulation capacitor using the

local bitline of each channel. In this example, 18 weight transistors

(kernel size = 3 × 3 and for the ON and OFF channels of the
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FIGURE 4

Neuromorphic-P2M array block diagram with peripheral control circuits and multi-channel configuration of our proposed neuromorphic-P2M

architecture.

DVS pixels) are connected with a single kernel capacitor. The per-

channel accumulation capacitor and local bitline shared among

the kernel’s weight transistors enable simultaneously and massively

parallel spatio-temporal MAC operations across different channels.

The multiplication results (fixed amount of charge transfer to

kernel capacitor from VDD or from kernel capacitor to GND

as a function of positive or negative weight depending on the

weight values) accumulate on the kernel capacitor for a fixed

temporal window (length of each algorithmic time step). These

analog MAC operations are asynchronous and parallel across all

the kernels for all the input feature maps (DVS pixels) throughout

the sensor array. Finally, a thresholding circuit compares the

final accumulated voltage on each channel’s capacitor with a

reference voltage to generate the output activation spike. Output

activations from different channels are multiplexed (controlled by

VK1, VK2, etc.) to communicate with the AER read circuits at the

periphery (left sub-figure) through the kernel-level AER logic block

(right sub-figure). The row request (RA) and row acknowledge

(RA) signals are shared along the rows, and the column request

(CR) and column acknowledge (CA) signals are shared along the

columns. After the read operation (described in Section 2.3), the

kernel’s accumulation capacitor is reset to 0.5VDD by the reset

transistor (MRST) shown in Figure 5. Note that the reset operation

implies no propagation of the voltage accumulated on the kernel’s

capacitor from one time step to subsequent time steps. Thus,

the kernel capacitor voltage is unlike the typical representation

of the membrane potential found in the literature (Datta et al.,

2021, 2022a,b), which is conserved across time steps. Taking into

cognizance the above behavior, for the first layer of the network, we

ensure our algorithmic framework includes thresholding and reset

operation across time steps, thus faithfully representing the circuit

behavior in algorithmic simulations.

The frequency of the reset operation is based on the amount

of time the capacitor can hold the charge without significant

FIGURE 5

A random convolution operation with output activation spike

simulated on GF 22nm FD-SOI node.

leakage. To minimize the capacitor leakage, we use high-VT

weight transistors, a switching transistor (MSW) to disconnect

the kernel’s capacitor from the weight transistors, and kernel-

dependent nullifying current source (INULL) (shown in Figure 2).

According to ourHSpice simulations, in the worst-case scenario (all

weights are maximum in the kernel, which is very unlikely in the

neural network model), the voltage on the accumulation capacitor

deviates due to leakage from its ideal value by a mere 22 mV over a

significantly longer duration of time (e.g., 1 ms). Based on the reset

frequency, the length of each algorithmic time step of our neural

network model has been set to 1 ms for the first layer.
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FIGURE 6

AER read scheme of our proposed neuromorphic-P2M architecture.

Figure 5 illustrates an asynchronous convolution and

output activation spike generation example of our proposed

neuromorphic-P2M using the GF22nm FD-SOI technology node

considering random inputs and weights. For this simulation, a

kernel size of 3× 3 has been considered. The weights, the instant of

the events, and the number of events per DVS pixel are generated

randomly. For the test HSpice simulation, 1 ms simulation time

has been considered according to our algorithmic framework;

hence, all the output events from DVS pixels within this time

period will be multiplied with their weights and accumulated on

the Kernel’s accumulation capacitor before being compared with

a fixed threshold voltage. The top subplot exhibits that the DVS

pixels (e.g., PX11, PX21, etc.) are generating the event spikes at

different time instants. PX13, PX21, PX23, PX32 are connected

with positive weights, whereas the other pixels are connected with

negative weights. It may also be noted that a few pixels (e.g., PX12,

PX22, PX31) do not generate any event during this time frame. This

test simulation also considers these no-event generation scenarios

to mimic the actual dataset sparsity. From the bottom subplot,

it can be observed that the convolution output (VCONV) of our

analog MAC circuit is updating (charging or discharging) for each

input event spike. When the weight is positive (negative), the

accumulation voltage steps up (down) depending on the weight

value. Finally, after the fixed temporal window, the convolution

output has been compared with the threshold voltage. If the

convolution output is higher than the threshold voltage, the

comparator will generate an output activation spike (VACT) for the

next layer for each kernel.

2.3. P2M address-event representation
(AER) read operation

In this sub-section, we propose modifications to the standard

AER scheme in a manner so that it can be compatible with the

presented asynchronous processing in-pixel computations. We are

utilizing the asynchronous AER read-out scheme (Boahen, 2004)

to read the output activations from the first convolution layer

(mapped onto the DVS pixels using our proposed neuromorphic-

P2M paradigm). The representative read scheme is illustrated in

Figure 6. Our P2M architecture can support multiple numbers of

channels (e.g., NC) as required by the spiking CNN model. The

outputs of the channels (thresholded output activation spikes) are

read sequentially throughout the P2M array in an asynchronous

manner. At a time, one channel is being asserted of the P2M array

by activating VKi sequentially, where i = 1, 2, ... NC (shown in

Figure 4). Kernel-level AER logic block shared among different

channels for each spatial feature map generates the row, and

column request signals whenever an output activation spike exists

in the kernel. For AER reading, row-parallel techniques can be used

where it latches all the events generated in a single row and read

them sequentially (Boahen, 2004). The peripheral address encoders

(row and column encoders) of the AER read circuits output the

x and y addresses of the output activation in parallel. Moreover,

while performing the read operation, we can also pipeline the next

reset and convolution phases without waiting for the read phase to

be completed by adding a transistor between the kernel capacitor

and the comparator. The comparator output can be stored on the
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dynamic node for a short period of time, or even we can use a

small holding capacitor to hold the output activation for a sufficient

amount of time considering the read operation. As the output

activations are sparse and AER read can be completed within a

few µs windows, we can also utilize our architecture to perform

the convolution and read phase in parallel. Besides, performing

the in-pixel convolution operation reduces the output activation

map size as a function of the kernel size and number of strides.

In addition, we also do not need to send an extra bit to define the

polarity of the event (ON or OFF-event), similar to the base DVS

systems. As a result, the required number of address bits that need

to be communicated off-chip has been reduced from the base DVS

system. Hence, our P2M architecture maintains the energy benefit

of a sparse system due to utilizing the AER read scheme along with

lower off-chip communication energy cost due to generating fewer

address bits per output activation.

2.4. Process integration and area
consideration

Figure 7 exhibits the representative illustration of a

heterogeneously integrated system featuring our proposed

neuromorphic-P2M paradigm. Our proposed system can be

divided into two key dies, i) a backside illuminated CMOS image

sensor (BI-CIS) consisting of the DVS pixels and biasing circuitry,

and ii) a die containing multi-bit multi-channel weight transistors,

accumulation capacitors, comparators, and AER read circuits.

Figure 4 shows that for each spatial feature (DVS pixels), the

algorithm requires multiple channels that incur higher area due

to multiple weight transistors and one accumulation capacitor

per channel. However, due to the advantages of heterogeneous

integration, our bottom die can be fabricated on an advanced

technology node compared to the top die (BI-CIS). Hence,

multiple channels in the bottom die can be accommodated

and aligned with the top die without any area overhead while

maintaining the neural network model accuracy. It may be noted

that typical DVS pixels are larger due to the inclusion of a capacitive

feedback difference amplifier. The overall system can be fabricated

by a wafer-to-wafer bonding process using pixel-level hybrid

Cu2Cu interconnects (Kagawa et al., 2016; Miura et al., 2019; Seo

et al., 2021). Each DVS pixel has two Cu2Cu interconnects for its

ON and OFF-channel, respectively. Considering the DVS pixel

area of 40 µm × 40 µm (Lichtsteiner et al., 2008) for 128 × 128

sensor array, Cu2Cu hybrid bonding pitch of 1 µm (Kagawa et al.,

2020) and the analog convolution elements (weight transistors,

comparators, accumulation capacitors) area in GF22nm FD-

SOI node, our neuromorphic-P2M architecture can support a

maximum of 128 and 32 channels with a kernel size of 3 × 3 for

stride 2 and 1, respectively. However, 32 channels with stride 2 have

been utilized in our algorithmic framework. Such kernel-parallel

MAC structure allows us to enable in-situ convolution operation

without needing weight transfer from a different physical location;

thus, this method does not lead to any data bandwidth or energy

bottleneck.

FIGURE 7

Representative illustration of a heterogeneously integrated system

featuring neuromorphic-P2M paradigm utilizing Cu2Cu bonding.

3. P2M-constrained
algorithm-hardware co-design

This section presents our algorithmic framework

implementation guided by our proposed neuromorphic-P2M

architecture. The in-pixel charge-based analog convolution

generates non-ideal non-linear convolution; in addition, process

variation yields a deviation of the convolution result from the ideal

output. Moreover, leakage poses constraints on the maximum

length of each algorithmic time step, and the area limits the

number of channels utilized per each spatial feature map. The

hardware-algorithm co-design framework of our proposed

neuromorphic-P2M approach has been illustrated in Figure 8.

More details on including non-idealities, process variation, leakage,

and area effects in our algorithmic framework are given in the

following subsections.

3.1. Custom convolution for the first layer
modeling circuit non-linearity and process
variation

From an algorithmic perspective, the first layer of a spiking

CNN is a linear convolution layer followed by a non-linear

activation unit. In our neuromorphic-P2M paradigm, we have

implemented the weights utilizing voltage accumulation through

appropriately sized transistors that are inherently non-linear. As

a result, any analog convolution circuit built on transistor devices

will exhibit non-ideal non-linear behavior. Hence, to suppress the

non-linearity, we have tuned our weights (transistor’s geometry) in
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FIGURE 8

Hardware-algorithm co-design framework to enable our proposed neuromorphic-P2M approach.

a non-linear manner in such a way that the output accumulation

voltage steps can increase or decrease linearly for positive and

negative weights, respectively. However, the nonlinearity is also a

function of the drain-to-source voltage of the weight transistors. In

our scheme, we are charging or discharging the kernel’s capacitor

during the computation phase. Depending on the weight values,

the charging and discharging current are functionally dependent

on the drain-to-source voltage. Hence, when the accumulation

voltage on the VOUT node (shown in Figure 2) gets larger (smaller)

for the positive (negative) weights, the transistor enters into the

triode region; hence, the charging or discharging current reduces.

Besides, the same positive and negative weight values cannot

ensure the same change in voltage accumulation due to device

asymmetry (pMOS for positive weight implementation and nMOS

for negative weight implementation). Furthermore, due to process

variation, the transistor’s geometry cannot be fabricated precisely;

hence, the convolution output current can also vary due to process

variation. Considering all these non-linear non-ideal behaviors

and process variations, we extensively simulated our proposed

P2M paradigm for a wide range of input spikes and weights

combinations considering leakage and around 3-sigma variation

using GF22nm FD-SOI technology node. Figure 9 illustrates the

resulting HSpice results with a standard deviation bar, i.e., the

normalized convolution output voltages per pixel corresponding to

a range of weights and input number of spikes have been modeled

using a behavioral curve-fitting function. Note, for the scatter plot,

we have used 100 µs temporal window for the convolution phase

to save the total circuit simulation time as we have to run 1,000

Monte-Carlo simulations for each combination of weights and the

number of input spikes. In our algorithmic framework, a random

Gaussian sample value has been generated between the mean ±

standard deviation for each particular normalized weight times

input event value to capture the effects of the process variation.

For the fixed simulation time for the event stream, in each Kernel,

the accumulation output voltage per pixel is calculated first, then

added to the other pixel’s accumulation voltage inside the kernel

to calculate the final output. The algorithmic framework was then

used to optimize the spiking CNN training for the event-driven

neuromorphic datasets. Besides the above-mentioned non-ideality

and variation effects, thermal noise and temperature variation

may affect the inference performance. The thermal noise of the

circuit can also be modeled as zero-mean Gaussian distribution

(Gow et al., 2007). Hence, this can be incorporated by adding

an appropriate standard deviation with the mean and standard

deviation for the process variation in our framework. Moreover,

temperature variation can increase or decrease the step size on each

kernel’s accumulation capacitor. Large deviation (higher than 3-

sigma of the process variation) from the nominal step size due to

temperature can affect the classification accuracy.

To validate our Hspice simulations generated curve-fitting

function’s prediction accuracy, we have tested 1,000 random cases.

In these test cases, we have used a kernel size of 3 × 3, where
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FIGURE 9

A scatter plot with standard deviation comparing the pixel output

voltage to ideal multiplication value of Weights × Input activation

(Normalized W × I).

the weight values are generated randomly. Moreover, the number

of input event spikes and time instants for the input spikes are

also randomly generated. Note these random tests utilize 100 µ s

of simulation time for the convolution phase to reduce the total

simulation time. As mentioned earlier, utilizing kernel-dependent

nullifying current source, high-VT weight transistors and a switch

to disconnect the kernel’s capacitor exhibits a maximum of 22

mV error in the worst-case scenario. Hence, random HSpice tests

ignoring a long time (1 ms of simulation time length for each event

stream of our neural network model) will not incur any significant

accuracy issues for these 1,000 random tests. Among 1,000 random

tests, only 100 test results (for clear visibility) are shown in

Figure 10. The figure shows the curve-fitted mean and mean±

standard deviation predictions of our proposed analog MAC

operations with HSpice-generated simulation results.We have used

a 3rd order single variable (normalized weight times input event

spikes) polynomial to generate the curve fitting functions (mean,

mean ± standard deviation) considering 0.55% mean RMSE of

our analog MAC to minimize the computation complexity in our

algorithmic framework while maintaining high accuracy. It can

clearly be seen that the predicted mean output follows the Hspice

results closely, and the HSpice outputs fall between the mean±

standard deviation value.

3.2. Circuit-algorithm co-optimization of
spiking CNN backbone subject to P2M
constraints

In our proposed neuromorphic-P2M architecture, we have

utilized a kernel-dedicated capacitor to enable instantaneous and

massively parallel spatio-temporal convolution operation across

different channels. We need a kernel-dedicated capacitor to

preserve the temporal information of input DVS spikes across

different channels simultaneously. Moreover, there is a direct

trade-off between the acceptable leakage and capacitance value (a

large capacitor incurs a large area; however, it results in lower

leakage). Almost 47% of the area in our P2M array is occupied by

the capacitors. Hence, we have reduced the number of channels

in our spiking CNN models compared to the baseline neural

architecture not to incur any area overhead while preserving the

model accuracy. In addition, the leakage also limits the length

of each algorithmic time step in our algorithmic framework.

We have also reduced the time length in our neural network

model to minimize the kernel-dependent leakage error of our

custom first convolution layer. Moreover, to reduce the amount

of data transfer between the P2M architecture and the backend

hardware processing of the remaining spiking CNN layers, we

have avoided the max pooling layer and instead used a stride

of 2 in the P2M convolutional layer. Lastly, we incorporate

the Monte Carlo variations in the proposed non-linear custom

convolutional layer explained above in our algorithmic framework.

In particular, we have estimated the mean and standard deviation

of the output of the custom convolutional layer from extensive

circuit simulations. We then train our spiking CNN with the

addition of the standard deviation as noise to the mean output

of the convolutional layer. This noise addition during training is

crucial to increase the robustness of our spiking CNN models, as

otherwise, our models would incur a drastic drop in test accuracy.

In this work, we have evaluated our P2M paradigm on complex

neuromorphic datasets where each event is at least a few seconds

long. Hence, with a timestep length of 1 ms, we will require

more than thousands of total time steps to train our SNNs with

these neuromorphic datasets. This is impractical (it would require

more than a year to train one SNN model on the DVS Gesture

dataset) in modern GPUs typically used for training SNNs. To

mitigate this problem, we only employed a small timestep length

(1 ms) in our first P2M-implemented layer where the weights

are kept frozen while the remaining layers implemented outside

the sensor are trained with a large timestep length that leads to

a small number of total time steps. The weights in the P2M-

implemented layer are obtained from a baseline SNN where all

the layers have the same large timestep length. Thus, the length

of the timestep impacts the trainability of the SNNs. It also affects

the temporal information injected into the SNN, i.e., as the length

of the timestep reduces, the SNN can extract more fine-grained

temporal features, which can potentially improve the inference

performance at the cost of reduced trainability. We expect to

reduce energy consumption by increasing the time step length as

that would inject a smaller number of spikes into the network (a

constant large incoming synaptic input can emit more spikes if

the number of time steps is increased, i.e., the time step length is

decreased).

4. Experimental results

4.1. Benchmarking dataset and model

This article focuses on the potential use of P2M for event-driven

neuromorphic tasks where the goal is to classify each video sample

captured by the DVS cameras. In particular, we evaluate our P2M

approach on two large-scale popular neuromorphic benchmarking

datasets.
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FIGURE 10

One hundred random HSpice simulation results for 3 × 3 Kernel benchmarking with the fitted equations.

4.1.1. DVS128-gesture
The IBM DVS128-Gesture (Amir et al., 2017) is a

neuromorphic gesture recognition dataset with a temporal

resolution in µs range and a spatial resolution of 128×128. It

consists of 11 gestures (1,000 samples each), such as hand clap, arm

roll, etc., recorded from 29 individuals under three illumination

conditions, and each gesture has an average duration of 6 s. To

the best of our knowledge, it is the most challenging open-source

neuromorphic dataset with the most precise temporal information.

4.1.2. NMNIST
The neuromorphic MNIST (Orchard et al., 2015) dataset is a

converted dataset from MNIST. It consists of 50K training images

and 10K validation images. We preprocess it in the same way as in

N-Caltech 101. We resize all our images to 34×34.

For these datasets, we apply a 9:1 train-valid split. We use the

Spikingjelly package (Fang et al., 2020) to process the data and

integrate them into a fixed time interval of 1 ms based on the

kernel’s capacitor retention time supported by our neuromorphic-

P2M circuit. However, such a small integration time would lead

to a large number of time steps for the neuromorphic datasets

considered in this work whose input samples are at least a few

seconds long. This would significantly exacerbate the training

complexity. To mitigate this concern, we first pre-train a spiking

CNN model with a large integration time in the order of seconds

(i.e., with a small number of time steps) without any P2M circuit

constraints. We then decrease the integration time of the first

spiking convolutional layer for P2M implementation and integrate

the spikes in the second interval such that the network from the

second layer processes the input with only a few time steps. We

fine-tune this network from the second layer while freezing the first

layer since training the first layer significantly increases thememory

complexity due to a large number of time steps. This is because the

gradients of the first layer need to be unrolled across all the time

steps.

We use four convolutional layers, followed by two linear

layers at the end with 512 and 10 neurons, respectively. Each

convolutional layer is followed by a batch normalization layer,

spiking LIF layer, and max pooling layer.

4.2. Classification accuracy

We evaluated the performance of the baseline and P2M custom

spiking CNN models on the two datasets illustrated above in

Table 1. Note that all these models are trained from scratch. As

we can see, the custom convolution model does not incur any

significant drop in accuracy for any of the two datasets. However,

removing the state variable, i.e., the membrane potential in the first

layer, leads to an average∼ 5% drop in test accuracy. This might be

because of the loss in the temporal information of the input spike

integration from the DVS camera. Additional P2M constraints,

such as less number of channels and increased strides in the first

convolutional layer (see Section 3.2), hardly incur any additional

drop in accuracy. Overall, our P2M-constrained models lead to an

average 5.2% drop in test accuracy across the two datasets.

4.3. Analysis of energy consumption

We develop a circuit-algorithm co-simulation framework to

characterize the energy consumption of our baseline and P2M-

implemented spiking CNN models for neuromorphic datasets.

Note that we do not evaluate the latency of our models since that

would depend heavily on the underlying hardware architecture

and data flow of the backend hardware (i.e., the hardware

processing the remaining layers of the CNN, excluding the

first layer that is processed using our P2M paradigm). The

frontend energy (Efrontend) is comprised of sensor energy (Esens)

and communication energy (Ecom), while the backend energy
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TABLE 1 Comparison of the test accuracy of our P2M enabled spiking CNNmodels with the baseline spiking CNN counterparts, where “MP” denotes

membrane potential, “Custom conv.” denotes the incorporation of the non-ideal model to the ML algorithmic framework, and “Reduced dimensionality”

denotes the reduction in the number of channels in the first convolutional layer.

Dataset MP 1st layer Custom conv. Reduced dimensionality Accuracy (%)

DVS128-Gesture X × × 93.40

DVS128-Gesture × × × 88.78

DVS128-Gesture × X × 88.54

DVS128-Gesture × X X 88.36

NMNIST X × × 98.10

NMNIST × × × 93.68

NMNIST × X × 93.44

NMNIST × X X 93.12

TABLE 2 Energy estimation for di�erent hardware components.

Model type Sensing energy (mJ) Comm energy (pJ/bit) MAC energy (pJ) MAdds energy (pJ)

(Esens) (ecomm = esens−to−tx + etx) (emac) (eac)

P2M (ours) 26.588 4.1 1.568 0.03

Baseline 26.032 4.1 1.568 0.03

The energy values are measured for designs in 22 nm CMOS technology. Note, the sensing energy (Esens) of our model includes the convolution energy for P2M as the convolution is performed

as a part of the sensing operation. The communication energy (ecomm) includes both the energy consumption of sending the address bits from the sensor to the transmitter (esens−to−tx) and

wireless transmitter energy (etx). For emac and eac , we convert the corresponding value in 45 nm to that of 22 nm by following standard scaling strategy (Stillmaker and Baas, 2017).

FIGURE 11

Comparison of the energy consumption between baseline and P2M

implementations of spiking CNNs to process neuromorphic images

from (A) DVS128-Gesture, and (B) NMNIST datasets.

(Ebackend) to process the SNN layers (excluding the first layer

for the P2M implementation) is primarily composed of the

accumulation operations incurred by the spiking convolutional

layers (Eac) and the parameter read (Eread) costs. Assuming

T denotes the total number of time steps and s denotes

the sparsity. The energy components can be approximated

as follows:

Efrontend ≈ eevent ∗ Nevent + Ebias
︸ ︷︷ ︸

Esens

+ (esens−to−tx + etx) ∗ Nevent
︸ ︷︷ ︸

Ecom

(1)

Ebackend ≈ eac ∗ Nac ∗ s ∗ T
︸ ︷︷ ︸

Eac

+ eread ∗ Nread
︸ ︷︷ ︸

Eread

(2)

Here, eevent represents per-pixel sensing energy, Nevent denotes

the number of events communicated from the sensor to the

backend, and Ebias is the biasing energy for the DVS pixel array

considering the dataset duration. In addition, esens−to−tx is the

communication energy to send the address bits from the sensor

node to the transmitter, and etx is the wireless transmission

energy to the backend. Note that the first convolutional layer

of the SNN in the baseline implementation requires MAC

operations, and hence, we need to replace eac with the MAC

energy emac and use s=1. For a spiking convolutional layer

that takes an input I ∈ Rhi×wi×ci and weight tensor θ ∈

Rk×k×ci×co to produce output O ∈ Rho×wo×co , the Nac (Datta

et al., 2021, 2022b; Kundu et al., 2021a,b) and Nread can be

computed as

Nac = ho ∗ wo ∗ k
2
∗ ci ∗ co (3)

Nread = k2 ∗ ci ∗ co (4)

The energy values we have used to evaluate Efrontend and

Ebackend are presented in Table 2. While Esens and esense−to−tx

are obtained from our circuit simulations, etx is obtained from

Lin et al. (2021), and eac and eread are obtained from Kang

et al. (2018). Figure 11 shows the comparison of energy costs for

standard vs P2M-implemented spiking CNN models for the DVS
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datasets. In particular, P2M can yield a backend energy reduction

of up to ∼ 2× with the cost of 2% increase in frontend energy

only. This reduction primarily comes from the reduced energy

consumption in the backend since we offload the compute of the

first convolutional layer of the SNN. This layer consumes more

than 50% of the total backend energy since it involves expensive

MAC operations (due to event accumulation before convolution

computation), which consume ∼32× more energy compared

to cheap accumulate operations (Horowitz, 2014) with 32-bit

fixed point representation. Thus, the proposed neuromorphic-P2M

paradigm enables in-situ availability of the weight matrix within

the array of DVS pixels (reducing the energy overhead associated

with the transfer of weight matrix) while also significantly reducing

energy-consumption of MAC operations by utilizing massively

parallel non-von-Neumann analog processing-in-pixel.

5. Conclusion

We have proposed and implemented a novel in-pixel-in-

memory processing paradigm for neuromorphic event-based

sensors in this work. To the best of our knowledge, this

is the first proposal to enable massively parallel, energy-

efficient non-von-Neumann analog processing-in-pixel for

neuromorphic image sensors using novel weight-embedded

pixels. Instead of generating event spikes based on the change

in contrast of scenes, our proposed solutions can directly

send the low-level output features of the convolutional neural

network using a modified address event representation scheme.

By leveraging advanced 3D integration technology, we can

perform in-situ massively parallel charge-based analog spatio-

temporal convolution across the pixel array. Moreover, we have

incorporated the hardware (non-linearity, process variation,

leakage) constraints of our analog computing elements as well as

area consideration (limiting the maximum number of channels

of the first neural network layer) into our algorithmic framework.

Our P2M-enabled spiking CNN model yields an accuracy of

88.36% on the IBM DVS128-Gesture dataset and achieved

∼ 2× backed energy reduction compared to the conventional

system.
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