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Introduction: Dynamic susceptibility-weighted contrast-enhanced (DSC)

perfusion studies in magnetic resonance imaging (MRI) provide valuable data

for studying vascular cerebral pathophysiology in di�erent rodent models of

brain diseases (stroke, tumor grading, and neurodegenerative models). The

extraction of these hemodynamic parameters via DSC-MRI is based on tracer

kinetic modeling, which can be solved using deconvolution-based methods,

among others. Most of the post-processing software used in preclinical studies

is home-built and custom-designed. Its use being, in most cases, limited to the

institution responsible for the development. In this study, we designed a tool that

performs the hemodynamic quantification process quickly and in a reliable way

for research purposes.

Methods: The DSC-MRI quantification tool, developed as a Python project,

performs the basic mathematical steps to generate the parametric maps: cerebral

blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT),

signal recovery (SR), and percentage signal recovery (PSR). For the validation

process, a data set composed of MRI rat brain scans was evaluated: i) healthy

animals, ii) temporal blood–brain barrier (BBB) dysfunction, iii) cerebral chronic

hypoperfusion (CCH), iv) ischemic stroke, and v) glioblastoma multiforme (GBM)

models. The resulting perfusion parameters were then compared with data

retrieved from the literature.

Results: A total of 30 animals were evaluated with our DSC-MRI quantification

tool. In all the models, the hemodynamic parameters reported from the literature

are reproduced and they are in the same range as our results. The Bland–

Altman plot used to describe the agreement between our perfusion quantitative

analyses and literature data regarding healthy rats, stroke, and GBM models,

determined that the agreement for CBV and MTT is higher than for CBF.
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Conclusion: An open-source, Python-based DSC post-processing software

package that performs key quantitative perfusion parameters has been developed.

Regarding the di�erent animal models used, the results obtained are consistent

and in good agreement with the physiological patterns and values reported in the

literature. Our development has been built in a modular framework to allow code

customization or the addition of alternative algorithms not yet implemented.
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1. Introduction

Dynamic susceptibility-weighted contrast-enhanced (DSC)

perfusion studies in magnetic resonance imaging (MRI) provide

valuable data for studying vascular cerebral pathophysiology. It is

possible to acquire functional information about perfusion-related

parameters such as cerebral blood flow (CBF), mean transit time

(MTT), and cerebral blood volume (CBV) (Keston et al., 2003;

Østergaard, 2004). The accurate quantification of these parameters

has several clinical applications, including the identification and

evaluation of ischemic stroke prior to treatment (Calamante et al.,

2002; Callewaert et al., 2021), the description of lesions associated

with multiple sclerosis (Haselhorst et al., 2000; D’haeseleer et al.,

2015), the diagnosis of tumors (Stadlbauer et al., 2015; Choi et al.,

2016), or as trackers of Alzheimer’s disease progression (Lacalle-

Aurioles et al., 2014; Warpechowski et al., 2023).

This imaging technique is based on monitoring MRI

signal strength variations after the injection of a bolus

of a paramagnetic contrast agent, such as gadolinium salt-

diethylenetriaminepentaacetic acid (Gd DTPA). On T2∗-weighted

images, the circulation of the bolus results in a decrease in signal

intensity due to small variations in the local magnetic field,

displaying, as a result, the time course of this tracer through the

tissue. In clinical practice, there are different available software to

process these images, contrary to preclinical studies. Nowadays,

rodent models of human brain disorders represent more than 80%

of the animals in research. In this sense, in vivo perfusion byMRI in

rodents is applied to monitor disease progressions, such as stroke,

tumor size, neurodegeneration, and evaluation of therapeutic

response in longitudinal studies, as well as to develop new animal

models of different pathologies (Boisserand et al., 2017; Park et al.,

2020; Qi et al., 2021). Therefore, it would be appealing to have a

tool capable of performing the whole hemodynamic quantification

process in a fast and reliable way for research purposes.

On the technical side, the extraction of these hemodynamic

parameters via DSC-MRI is based on tracer kinetic modeling,

which can be solved using deconvolution-based methods, among

others. Most of the post-processing software used in preclinical

studies are home-built and custom-designed, its use being, in most

cases, limited to the institution responsible for the development.

While there do exist some commercial software tools, they are

expensive and specifically designed for clinical use (Gordaliza et al.,

2015; López-Larrubia, 2018; Hartmann et al., 2020; Tsai et al.,

2021). These tools often only provide relative values (no absolute

tissue hemodynamic parameters), do not compute all of the main

perfusion parameters (CBF, CBV, and MTT), and overlook direct

parameters such as signal recovery (SR) and percentage signal

recovery (PSR), which may add valuable diagnostic information

without requiring additional measurements (Huhndorf et al.,

2016). These restrictions do not allow direct comparison with other

software, highlighting the need for an open-source implementation

of a DSC-MRI perfusion software application for use in preclinical

studies. Furthermore, making it free and open-access could help

toward the standardization of DSC-MRI methodology, a pressing

issue limiting this method’s potential (Boxerman et al., 2020).

In this study, we present the implementation of an open-source

DSC quantification tool, named Perfusion-NOBEL, developed as

a Python project. Our semi-automatic approach requires no pre-

processing aside from the manual delineation of masks, it provides

absolute perfusion maps (CBF, CBV, MTT, including SR, and PSR),

and it was validated on a large and diverse data set composed of 30

MRI rat brain scans of differentmodels of brain diseases. These data

set included i) healthy animals, ii) temporal blood–brain barrier

(BBB) dysfunction animals, iii) cerebral chronic hypoperfusion

(CCH) model, iv) ischemic stroke model, and v) glioblastoma

multiforme (GBM) model. In addition, the resulting hemodynamic

parameters were then compared with the literature data. Our tool

has been built in a modular framework to allow code customization

and the addition of alternative algorithms not yet implemented.

2. Materials and methods

2.1. Theoretical basis and mathematical
description

Quantitative analysis of tissue perfusion and blood volume

was performed using established tracer kinetic models, which have

been extensively reviewed in the literature (Ostergaard et al., 1996;

Wu et al., 2003). In brief, the mathematical approach to this

process starts from the linear relation between the T2∗ relaxation

time variation [transverse relaxation rate change (R∗2(t))], signal

intensity change, and the concentration of the contrast agent. These

relations go as follows:

S (t) = S0e
−TE·R∗2 (t)

1R∗2(t) = k · Cm(t)

}

H⇒ Cm (t) = −
k

TE
ln

(

S (t)

S0

)

(1)

Cm(t) is the concentration of contrast agent measured in the

tissue, TE is the echo time, S(t) is the signal intensity at a given

Frontiers inNeuroinformatics 02 frontiersin.org

https://doi.org/10.3389/fninf.2023.1202156
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Fernández-Rodicio et al. 10.3389/fninf.2023.1202156

time, S0 is the signal intensity before the contrast agent injection,

and k is a proportionality constant which, to a first approximation,

does not depend on the size and geometry of the vessel, or in the

density of the capillary bed.

The tissue response to the arrival of the contrast agent is very

sensitive to many factors such as the bolus arrival time and the

vascular system, causing the delay and dispersion of the bolus

injected. In order to obtain an accurate quantification taking into

account these effects, an arterial input function (AIF) is used,

measuring the concentration of contrast agent arriving at the vessel.

The use of arteries as reference vessels is widely documented in the

literature, but it is also possible to use veins [venous output function

(VOF)]. The AIF is semi-manually obtained from the DSC-MRI

images by delineating and masking the desired region.

In terms of system analysis, the measured concentration curve,

Cm(t), the output (response of the tissue to the injection of contrast

agent), is related to the ideal concentration curve with no delay or

dispersion, k(t), the input, through the convolution of the former

with the AIF, the impulse response function, as shown in the

following equation:

Cm (t) = k (t) ∗CAIF (t) (2)

The ∗ represents the convolution and it can be interpreted as the

CAIF(t) modifying the shape of the ideal concentration curve k(t), to

give the measured concentration curve Cm(t). Through the inverse

operation, known as deconvolution, it is possible to obtain k(t),

needed for the following analysis, given that both Cm(t) and CAIF(t)

are known. This ideal concentration curve, k(t), it can be also

referred as flow-scaled residue function (Fieselmann et al., 2011).

An optional step before the deconvolution process can be taken

by fitting the curveCAIF(t) to a gamma variate function (Calamante

et al., 2000):

CAIF (t) =

{

0, t ≤ 0

C0 (t − t0)
r e−

t−t0
b , t > 0

(3)

where t0 is the bolus arrival time (BAT) and determines the arrival

of the bolus to any given region. This step helps to reduce noise and

avoid other effects such as the recirculation of the contrast agent.

The deconvolution step can be computed using different

methods. Truncated single value decomposition (TSVD) and

Tikhonov regularization are two of these methods, both being

appropriate for the resolution of ill-posed problems like this one

(Calamante et al., 2000; Fieselmann et al., 2011). In our program,

we have implemented both methods of resolution. Then, the

quantitative perfusion parameters, CBF, CBV, and MTT, can be

obtained from the concentration curves resulting.

CBF and CBV are computed using deconvolution (Fieselmann

et al., 2011):

CBF

[

ml

100g ·min

]

=

(

100ml

100 g · brain

)(

1

ρVoi

)(

KT

KA

)(

1− HA

1−HT

)

max
[

k(t)
]

=
kH

ρVoi
max

[

k(t)
]

(4)

CBV

[

ml

100g

]

=

(

100ml

100g · brain

)(

1

ρVoi

)(

KT

KA

)(

1−HA

1−HT

)∫ ∞

0
dt k(t)

=
kH

ρVoi

∫ ∞

0
dt k (t) (5)

kH being a constant that groups together all the parameters

needed to obtain absolute measurements of the perfusion

parameters. (KT
KA

) (= 0.1369) is the tissue-to-artery concentration

scale factor ratio, HA (= 0.45) is the assumed hematocrit in large

arterial vessels, HT (= 0.25) is the assumed hematocrit in the

capillary bed in the tissue, and ρVoi
(

= 1.04 g/ml
)

is the apparent

brain density. It should be noted that, CBV can be obtained via an

alternative non-deconvolution method, relating the contrast agent

in the tissue, Cm(t), with the contrast agent in the AIF, CAIF(t)

(Calamante et al., 1999, 2000; Konstas et al., 2009; Fieselmann et al.,

2011),

CBV

[

ml

100g

]

=
kH

ρVoi

(

∫∞

0 dt Cm(t)
∫∞

0 dt CAIF(t)

)

(6)

Finally, the MTT values are related to the CBF and CBV through

the central volume theorem,

MTT [s] =
CBV

CBF
(7)

This equation holds true for the volume of interest, and it can be

applied independently of the method used to calculate the CBV.

Due to being supported by a reliable mathematical model,

CBF, CBV, and MTT are considered the three main perfusion

parameters. However, there are other parameters that also provide

important information outside those three main quantities. SR

and PSR are two of those and they play important roles in

the clinical diagnosis of GBM. These variables provide insightful

information even when no underpinning mathematical model is

present. Contrary to previous hemodynamic parameters, whose

calculation requires time-consuming post-processing of the DSC-

MRI images, obtaining SR and PSR is much faster and more

straightforward. Following (Huhndorf et al., 2016) they can be

calculated as,






SR [a.u.] = 100×
Spost−Spre

Spre

PSR [a.u.] = 100×
Spost−Smin

Spre−Smin

(8)

These two parameters only depend on the signal intensities at

different times of the bolus passage through the tissue. Spost is the

signal intensity at a time after the bolus arrival, usually 60 s after,

Spre is the signal intensity at baseline, before the bolus arrival to

the tissue, and Smin is the minimum in signal, corresponding to the

peak of the bolus. Restoring baseline signal intensity corresponds

to a value of 100% on the PSR and SR maps.

2.2. Software implementation

This study presents an open DSC quantification tool for

preclinical studies (Perfusion-Nobel). The implementation was
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FIGURE 1

Diagram of the main steps implemented in our software to extract the perfusion-weighted images.

carried out with Python (V 3.8.1), and the following libraries were

used: NumPy (V 1.24.1) (Harris et al., 2020), SciPy (V 1.10.0)

(Virtanen et al., 2020), Re (V Python 3.9) (Van Rossum, 2020),

Matplotlib (V 3.6.2) (Hunter, 2007), Pillow (V 9.4) (Murray et al.,

2023), OpenCV (V 4.7.0.68) (Bradski, 2000), Pydicom (V 2.3.1)

(Mason, 2011), and IPython (V 8.8.0) (Perez, 2007).

Modular construction has been used to implement the DSC

quantification method. As a result, it is possible to easily replace

existing stages or add new ones to the quantification workflow

(for instance, new pre-processing algorithms or additional fitting

models). The following is the processing workflow from the images

acquired in the MR system (Figure 1):

i) The inputs requested by the software are: DSC-MRI in

DICOM format, the brain mask, the AIF-VOF (PNG or NPY

format) mask, and the frame number corresponding to the

minimum signal intensity. The masking process should be

done beforehand, either semi-manually by drawing the ROIs

or using any automatic segmentation tool.

ii) DSC-MRI images are automatically pre-processed,

reducing the noise by applying a 2D Gaussian Low Pass

Filter (X and Y directions with a 5-pixel diameter and a

standard deviation of 0.5 pixels). Then, the PSR and SR maps

are computed, shown on screen, and automatically saved

(TIFF format). Moreover, the mean image signal intensity

curve (S(t)) and mean contrast concentration curve (Cm(t))

are presented.

iii) Next, the AIF or VOF plot is shown, calculated as the

mean contrast concentration curve in the AIF or VOFmasked

region. In brain perfusion, the mean cerebral or anterior

carotid arteries are frequently utilized as reference vessels,

corresponding to the highest signal intensity regions in T2∗-

weighted imaging. This function will be the global reference

vessel for each pixel in the image.

iv) If we continue the analysis, it will display again the

concentration curve corresponding to the reference vessel.

Then, two values must be selected: (1) the arrival time of the

contrast agent to the tissue and (2) the time after the first

pass of the contrast agent through the tissue. These values

are needed for the gamma variate function fitting to the

concentration curve, and it will be shown on the screen. This

process can be repeated for an accurate adjustment.

v) Finally, the deconvolution process will start, and the

perfusion maps CBF, CBV, and MTT will be calculated,

shown, and automatically saved (TIFF format). The

deconvolution step can be done using TSVD or

Tikhonov methods.

2.3. Validation against a data set

All experimental animal procedures were conducted

under procedure numbers: 15011/2021/002, 15011/2021/003,

15011/2023/002, and 15011/2021/001 approved by the Animal

Care Committee, according to European Union Rules and the

Spanish regulation (2010/63/EU and RD53/2013). Animals were

kept in a controlled environment at 22 ± 1◦C and 60 ± 5%

humidity, with 12:12 h light: darkness cycles, and were fed ad

libitum with standard diet pellets and tap water. All surgical

procedures and MRI studies were conducted under sevoflurane
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(Abbott Laboratories, IL, USA) anesthesia (3–4%) using a carrier

70:30 gas mixture of N2O:O2.

Thirty Sprague-Dawley rats with a weight between 250 and

350 g were used to test the developed program in animal models

of different pathologies. Five groups of experiments are shown in

Figure 2.

2.4. Healthy animals

We used healthy Sprague-Dawley (SD) rats with no surgery or

treatment as the control healthy group (n= 6).

2.5. BBB disfunction model

Healthy rats (n= 4) were anesthetized, and X gr/Kg ofmannitol

[25% mannitol dissolved in isotonic 0.9% sodium chloride solution

(B. Braun Medical SA, Barcelona, Spain)] was then intravenously

injected (i.v.) in the lateral tail vein. MRI-DSC measurements were

made starting 10min after the mannitol injection (Duong et al.,

2000).

2.6. Cerebral chronic hypoperfusion model

A group of rats (n = 4) were induced cerebral chronic

hypoperfusion (CCH) by two-vessel occlusion (2VO), also known

as permanent bilateral common carotid artery occlusion, as

previously described by Cao et al., 2018. The animals were

anesthetized, and the right common carotid artery was isolated

and ligated with a 4-0, not absorbent suture through a ventral

median incision in the cervical area. After 1 week, the left common

carotid artery was ligated following the same protocol. MRI-DSC

measurements were made 3 weeks after the surgery.

2.7. Glioblastoma multiforme model

GBM was induced in a group of rats (n = 7) by the

implementation of the F98 cell line (Bulin et al., 2022). After

anesthesia, animals were then mounted onto a stereotaxic frame.

A midline incision was performed, and a burr hole was punctured

using a 16-gauge needle. The burr hole coordinates were, using the

bregma as a reference point, 1mm anterior and 3mm lateral to the

right. Then 1 × 105 cells suspended in a volume of 5 µl of non-

supplemented DMEM were injected into the brain with a 26-gauge

needle at a depth of 6mm from the surface of the skull (injection

rate of 0.2 ul/min). MRI-DSCmeasurements were evaluated 10 and

20 days after the surgery.

2.8. Ischemic stroke animal model

Regarding the stroke group (n = 9), transient focal ischemia

was induced in rats by transient middle cerebral artery occlusion

(MCAo) following surgical procedures previously described in

Vieites-Prado et al. (2016). In brief, using 6-0 silk sutures, the

right external carotid artery as well as the pterygopalatine artery

of the internal carotid was ligated. A silicon rubber-coated size

4–0 monofilament (diameter 0.19mm, length 23mm; diameter

with coating 0.37 ± 0.02mm; coating length 3–4mm) (Doccol

Corporation, Sharon, MA) was inserted into the stump of the right

common carotid artery and advanced into the internal carotid

artery to 20mm from the bifurcation to occlude the origin of the

MCA. A laser Doppler flow probe (tip diameter 1mm) attached to a

PeriFlux 5000 Laser Doppler Flowmeter (Perimed AB, Stockholm,

Sweden) was placed over the thinned skull in the MCA territory

(4mm lateral to bregma) to obtain a continuous measure of relative

cerebral blood flow during the experiment Diffusion-weighted

imaging (DWI), magnetic resonance angiography (MRA), and

MRI-DSC measurements were made starting 20–30min after the

onset of MCA occlusion. The suture was removed 75min after

the occlusion.

2.9. DSC-MRI

All studies were conducted on a Bruker BioSpec 9.4 T MR

scanner (horizontal bore magnet with 12 cm wide Bruker BioSpin)

equipped with actively shielded gradients (440 mT m−1). Animals

were imaged with a combination of a linear birdcage resonator

(7 cm in diameter) for signal transmission and a 2 × 2 surface

coil array for signal detection, positioned over the head of the

animal, which was fixed with a teeth bar, earplugs, and adhesive

tape. Animals were physiologically monitored throughout the

MR imaging experiments. Transmission and reception coils were

actively decoupled from each other.

DSC-MR images were acquired using ultra-fast gradient-echo

methods (EPI-T2∗) with the following parameters: 6.2ms of echo

time (ET), 1 s of repetition time (RT), number of repetitions (NRs)

= 180, 1 average, 50 kHz spectral bandwidth (SW), flip angle

(FA) of 90◦, and 5 slices of 1.5mm. Field of view (FOV) of 2.2

× 2.2 cm2, and a matrix size of 128 × 128, giving an in-plane

resolution of 172 µm/pixel, implemented without fat suppression.

The contrast agent was quickly administrated as a bolus 20 s

after starting acquisition [intravenous (i.v.) bolus injection of

gadolinium contrast agent (0.3 mmol/kg)]. The total DSC scan

acquisition time was 3 min.

Brain volumetry study was also evaluated from T2-wi using a

rapid acquisition with relaxation enhancement (RARE) sequence

(axial and coronal orientations): with an ET = 11ms, RT = 2.5 s,

Rare Factor (RF) = 8, FA = 180◦, NA = 3, SW = 37KHz, 14 slices

of 1mm, 25.6 × 25.6 mm2 FOV, and a matrix size of 256 × 256

(isotropic in-plane resolution of 100 µm2/pixel).

To evaluate the status of MCAo in a non-invasive manner

during occlusion in the stroke animal model, time-of-flight

magnetic resonance angiography (TOF-MRA) was performed. The

TOF-MRA scan was performed with a 3D FLASH sequence with

TE= 2.5ms, TR= 15ms, FA= 20◦, NA= 2, SW= 98KHz, 1 slice

of 14mm, FOV= 30.72× 30.72× 14mm3, and amatrix size of 256

× 256× 58 (resolution of 120× 120× 241 µm3/pixel). Moreover,

apparent diffusion coefficient (ADC) maps were obtained from

diffusion-weighted image (DWI) using a spin echo-planar imaging
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FIGURE 2

Flowchart of data set screening.

sequence (DTI-EPI): ET = 26.91ms; RT = 4 s; SW = 200KHz;

seven b-values of 0, 300, 600, 900, 1,200, 1,600, and 2,000 s/mm2;

FA = 90◦; NA = 4; 14 consecutive slices of 1mm; FOV = 24 × 16

mm2, and a matrix size of 96× 64 (isotropic in-plane resolution of

250 µm2/pixel).

2.10. Data analysis and statistics

We used region of interest (ROI) analysis to quantify the

absolute maps CBV, CBF, MTT, and SR, PSR obtained in our

new program. Next, through ImageJ software (Rasband W,

NIH, Bethesda, MD, USA), we placed a circular ROI over each

hemisphere cortex at the plane and a whole-brain ROI. For the

ischemic stroke animal model, ROIs were situated in the core,

penumbra region of the ipsilateral (IL) hemisphere, and cortex of

the contralateral (CL) hemisphere. In the last group, the peripheral

tumor area (tumor rim) and core ROIs were placed. Adjacent slices

were measured to permit discrimination between intra- and inter-

subject variance. To test whether the two slices can be considered

samples of the same mean, a paired t-test was performed with the

values from the two slices (p < 0.05). We generated Bland–Altman

(BA) plots to compare our results (CBV, CBF, and MTT) with the

literature data, where the horizontal axis represents the mean value

[(our data + literature data)/2], and the vertical axis represents

the difference; this method was used to compare two different

measurement techniques (Giavarina, 2015). Data are presented as

the mean± 1.96∗SD.

3. Results

A total of 30 animals were evaluated with our DSC-MRI

quantification tool, and these results were compared in good

agreement with values reported in the literature for rats. Table 1

reports our results, as well as a literature overview of absolute

perfusion values obtained with different procedures, experimental

conditions, rat strains, and post-processing methods.

Our analysis has been developed as a Python script and has

been published under a free software license (GNU GPL). Source

code and binary downloads are available at https://github.com/

MRI-NOBEL/Perfusion-NOBEL. Our tool successfully generated

and displayed, in common animal models in neuroscience, all

the perfusion parametric images: CBF, CBV, MTT, including PSR,

and SR (Figure 3). Moreover, the anatomic details of the rat

brain model used have been represented by means of a T2-wi or

DWI (ADC) during the MCAo in the axial orientation (Figure 3).

Regions of impaired flow under ischemic conditions and tumor

influence areas can be delineated. Two distinct regions can be

detected during the acute phase of stroke: an ischemic core that

is severely and irreversibly damaged, and a penumbra region

defined as ischemic tissue that is functionally impaired and at
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TABLE 1 Literature review: absolute perfusion parameters CBV, CBF, and MTT in healthy rats, rats with a mannitol i.v. injection, rat brain hypoperfusion

model, ischemic stroke rat model, and glioblastoma rat model.

Technique ROI CBV

(ml/100g)

CBF (ml/100
g/min)

MTT

(s)

Reference

Healthy rats

1MRI [(a)RSST1] Whole brain parenchyma
Cortex Striatum

3.29± 0.69
3.13± 0.91
2.92± 0.68

- - Perles-Barbacaru
and Lahrech, 2007

1MRI [(b)pCASL]
1Autoradiograpy
2MRI [(b)pCASL]
2Autoradiograpy

Whole-brain parenchyma “ “ “ - 116± 14
111± 18
108± 12
109± 22

- Larkin et al., 2019

1MRI [(c)CASL] Right motor cortex (saline)
Left motor cortex (saline)
Right motor cortex (soman)
Left motor cortex (soman)

- 150± 40
149± 41
132± 40
126± 36

- Lee et al., 2021

2CT [(d)SRCT] Left frontal cortex
Right frontal cortex
Left parietal cortex
Right parietal cortex
Whole brain

2.44± 0.57
2.44± 0.58
2.09± 0.38
2.10± 0.32
4.18± 1.06

154± 19
147± 17
129± 9
129± 19
215± 47

- Adam et al., 2003

2MRI [(e)btASL] Primary motor cortex
Secondary motor cortex

- - 2.00± 0.04
2.15± 0.06

Rouine et al., 2013

1MRI [(f)DSC] Whole brain parenchyma
Right cortex
Left cortex

10.2± 1.7
7.2± 1.1
6.8± 1.2

104.4± 12.5
87.7± 6.7
91.3± 12.5

5.9± 0.2
4.8± 0.5
4.3± 0.4

This study

Mannitol injection in rats

1MRI [(g)ASL]
MRI [(f)DSC]

Motor cortex CL side
Motor cortex IL side

- 93± 9
109± 10
> IL side

- Tanaka et al., 2011

1MRI [(f)DSC] Whole brain parenchyma
Right cortex
Left cortex

8.8± 2.0
6.1± 1.8
5.7± 1.4

66.6± 12.9
60.4± 14.8
58.9± 13.6

8.7± 0.4
5.8± 0.5
6.4± 0.5

This study

Rat brain hypoperfusion model

1MRI [(h)CASL] Sensory cortex (before)
Sensory cortex (after)

- 214± 38.9
87± 14.9

- Thomas et al., 2006

1MRI [(h)DCE] Hippocampus sham
Hippocampus 2VO

5.1± 0.8
4.5± 0.8

- - Livingston et al.,
2020

MRI [(f)DSC] Whole brain parenchyma
Right cortex
Left cortex

6.4± 2.2
4.2± 0.3
4.0± 1.2

53.5± 15.1
44.9± 11.3
46.2± 14.4

7.8± 0.6
6.0± 0.8
5.3± 0.4

This study

Ischemic stroke rat model (MCAo)

1MRI [(g)ASL] IL side
CL side

- 31± 2.0
153± 4.6

- Boisserand et al.,
2017

1MRI [(g)ASL] IL side
CL side

- 4.3± 5.3
155± 50

- Robertson et al.,
2011

2MRI (Hydrogen Clearance) IL side
CL side

- 24± 6
114± 12

- Cipolla et al., 2017

3MRI [(g)ASL] IL side
CL side

- 49± 4
135± 23

- Reid et al., 2012

1MRI [(f)DSC] IL side
CL side

12.55± 5.31
21.1± 9.4

131.82± 81.4
244.69± 173

5.43± 0.63
6.02± 1.78

Tsai et al., 2021

1MRI [(b)pCSAL] IL motor cortex
CL motor cortex

- 104± 28
170± 21

- Baskerville et al.,
2012

2MRI [(f)DSC] IL side
CL side

2.34± 0.35
8.43± 0.85

- 15.91± 2.38
7.31± 0.79

Zhang et al., 2014

1MRI [(f)DSC] CL side
IL side (penumbra)
IL side (core)

12.0± 5.6
9.3± 4.2
6.2± 3.1

75.1± 21.1
47.8± 13.4
17.2± 9.0

9.6± 2.5
12.2± 3.9
20.4± 6.9

This study

(Continued)
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TABLE 1 (Continued)

Technique ROI CBV

(ml/100g)

CBF (ml/100
g/min)

MTT

(s)

Reference

Glioblastoma rat model

2MRI [(f)DSC] Tumor
CL side

5.0± 0.5
2.0± 0.5

10± 4
30± 11

10± 3
4.7± 0.7

García-Palmero
et al., 2013

2MRI [(f)DSC] Tumor 3.6± 1.5
5.0± 2.5
4.5± 0.5
5.6± 2.5

52.5± 12
80± 11
72.8± 15
66.2± 14

3.8± 1
4.5± 0.7
3.8± 1.5
4.9± 2.5

Stokes et al., 2014

4MRI [(i)CASL] Tumor - 64± 12
55± 10

- Gonawala et al.,
2018

4MRI [(b)pCSAL] Tumor Periphery tumor
Healthy tissue Tumor
Periphery tumor
Healthy tissue

- 145.92± 29.82
121.99± 25.24
97.26± 18.94
94.21± 34.58
81.20± 27.96
95.11±15.05

- Clément et al., 2021

2(j)CT Tumor Healthy tissue 5.2± 1.5
3.5± 0.5

125.9± 2.5
124± 3.5

- Qi et al., 2021

1MRI [(f)DSC] CL side
IL side (periphery)
IL side (core)

4.9± 1.6
1.4± 0.7
3.4± 2.1

36.8± 15.3
40.7± 33.4
10.3± 4.6

8.1± 2.1
2.2± 0.9
16.3± 8.4

This study

1MRI [(f)DSC] CL side
IL side (periphery)
IL side (core)

9.4± 2.4
4.1± 3.0
1.2± 0.3

118.8± 47.1
203.5± 18.2
104.1± 19.8

9.6± 2.7
12.2± 3.9
0.67± 0.1

This study

1Sprague-Dawley, 2Wistar, 3Wistar Kyoto, 4Nude rats.
(a)Rapid steady-state T1 (RSST1), (b) pseudo-continuous arterial spin labeling (pCASL), (c) continuous arterial spin labeling (ASL), (d) synchrotron radiation computed tomography (SRCT),
(e)bolus-tracking arterial spin labeling (btASL), (f) dynamic susceptibility contrast (DSC), (g) arterial spin labeling (ASL), (h) dynamic contrast-enhanced (DCE), (i) continuous arterial spin

labeling (CASL), and (j) computed tomography (CT).

risk of infarction but has the potential to be salvaged (Boisserand

et al., 2017). By means of hemodynamic variables, it is possible to

accurately differentiate the core and peripheral tumor areas (Aprile

et al., 2015). However, changes associated with chronic cerebral

hypoperfusion or temporary BBB dysfunction models are only

appreciable due to the quantitative values obtained.

3.1. Quantification of absolute perfusion
parameters

Changes in hemodynamic parameters were compared using

left, right, and whole-brain ROIs between healthy animals and

animals subjected to chronic hypoperfusion or temporal BBB

dysfunction (Figure 4A). For all regions, CBF decreases by ∼49–

35.6% in both models compared to healthy animals. The same is

for the CBV, although the reduction is only 32–13.7%, respectively.

Mean MTT increased in all ROIs by∼40.7%, and SR or PSR shows

a lower capacity to discriminate changes in these models.

Figure 4B illustrates the hemodynamic parameter evolution in

a stroke animal model during MCAo. As can be seen, we found

a CBF reduction of 36.4% and 77.2% in the penumbra and core

regions in accordance with previous studies (Robertson et al., 2011;

Reid et al., 2012; Cipolla et al., 2017), respectively [75.1 ± 21.1

vs. 47.8 ± 13.4 vs. 17.16 ± 9.0 ml/(100g∗min)]. Moreover, CBF

decreases by ∼22.5 and 47.5% in both regions (12.0 ± 5.6 vs. 9.3

± 4.2 vs. 6.3± 3.2 ml/100 g). Due to the absence of vascularization

in these regions, the MTT values show an increase of 26.1 and

111.5% in the penumbra and core (9.6 ± 2.7 vs. 12.1 ± 3.9 vs.

20.3 ± 6.9 s). We found that SR and PSR have also the capacity to

accurately differentiate the core from the other brain regions: CL

(−3.3± 1.1%, 64.3± 11.1%), penumbra region (−2.3± 2.6%, 81.7

± 18.1%), and lesion core (1.1± 3.8%, 113.5± 46.1%).

Parameters of tumor perfusion were validated in a preclinical

GBM model at 10 and 20 days after the surgery known to produce

different levels of vascularization (Figure 4C). We can appreciate

that it is possible to accurately identify core and peripheral tumor

regions at both time points. The CBF values in the tumor core

were reduced at 10 and 20 days to 74.5 and 48.8%, respectively.

At 10 days, animals showed increased CBV and MTT values in

the core compared to the tumor rim (3.4 ± 2.1 vs. 1.3 ± 1.2

ml/100 g, and 16.3 ± 8.5 vs. 2.2 ± 0.9 s). However, at 20 days of

CBV and MTT, a change in behavior is detected (1.2 ± 0.4 vs. 4.1

± 3 ml/100 g, and 0.67 ± 0.1 vs. 1 ± 0.43 s). These results may

reflect the heterogeneous structure of the tumor regions, and the

time evolution probably also contributes to this heterogeneity. As

previously described, SR and PSR maps provided a GBM spatial

distribution and add valuable diagnostic information. At 20 days,

we found SR core 59.1± 6.7% vs. tumor rim 20.4± 3.4%, and PSR

core−249.4± 181.1% vs. tumor rim 253.5± 27.3%.

3.2. Bland–altman analysis

Figure 5 shows the BA plots for our data and healthy SD

rats, corresponding to the left and right cortex. We observed
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FIGURE 3

Examples of mean cerebral l blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), signal recovery (SR), and percentage signal

recovery (PSR) images generated with our tool for the di�erent animal models. Anatomic MRI of the rat brain model used is detailed with T2-wi or

DWI (ADC) (red arrows indicate the ischemic lesion and presence of glioma).

low mean differences for CBV (2.5 ml/100 g) and MTT (2.7 s)

variables and large differences for CBF [49.9 ml/(100 g∗min)].

Regarding the ischemic stroke model, we compared the lesion

core and CL cortex, for our results and literature data (Figure 6).

The BA plot highlighted low mean values of bias for CBF [2.6

ml/(100 g∗min)], CBV (1.17 ml/100 g), and MTT (9.7 s) for the

core lesion. We found the same for CBV (2.8 ml/100 g) and

MTT (3 s) in the CL cortex, but not for CBF [65.2 ml/(100

g∗min)]. Regional BA analysis of the tumor core and CL cortex

is illustrated in Figure 7. We observed low mean discrepancies

for CBV (−3.45 and 6.63 ml/100 g) and MTT (−4.71 and

0.73 s) variables, and large discrepancies for CBF [30.9 and

32.2 ml/(100 g∗min)] both in the tumor core and in the CL

cortex.

4. Discussion

The absolute quantification of perfusion-weighted parameters

is useful for preclinical research studies of different neurological

diseases. The integrity of the BBB is critical to normal brain

function, and the perfusion variables allow the detection of brain

flow dysregulation areas as the origin of future brain events.

Recently, cerebrovascular dysfunction has emerged as an early
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FIGURE 4

(A) Comparison of mean cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), signal recovery (SR), and percentage

signal recovery (PSR) in selected regions of interest (ROIs) of healthy SD rats, during hypoperfusion model, and mannitol injection. (B) Mean CBF,

CBV, MTT, SR, and PSR in contralateral hemisphere, penumbra, and core ROIs during occlusion in an ischemic stroke animal model. (C) Mean CBF,

CBV, MTT, SR, and PSR in the peripherical and core ROIs for glioblastoma model at 10 and 20 days after the surgery.

manifestation of Alzheimer’s disease with a direct impact on the

evolution and clinical expression of dementia. It has been shown

that mice expressing mutated tau exhibit a selective suppression of

neural activity-induced CBF increases that precedes tau pathology

and cognitive impairment (Warpechowski et al., 2023). Regarding

stroke, these parametric maps help to diagnose and predict the final

cerebral ischemic stroke volume identifying core and penumbra

regions (Demeestere et al., 2020). In addition, it is also a valuable

diagnostic tool for tumor grading that may contribute to a

better understanding of tumor evolution and characterize the

vascularization of the tumor rim and core (Aprile et al., 2015;

Huhndorf et al., 2016).

Regarding preclinical MRI data processing, there is variability

in the programs for computing the perfusion variables that use

different methods for the analysis, both regarding the mathematical

modeling and the protocols of image acquisition. Moreover, most

of them have closed access, limited to the institution responsible

for the software development (Gordaliza et al., 2015; Huhndorf

et al., 2016; López-Larrubia, 2018; Hartmann et al., 2020;

Tsai et al., 2021). This issue is present even in human health,

causing concerns about the accuracy of software quantitative

perfusion parameters. Therefore, the obtained hemodynamics

parameters cannot be easily compared between different

studies, and perfusion-weighted methods remain an active area

of research.

In this study, the DSC quantification tool designed performs

the basic mathematical steps to generate the main hemodynamic

parametric maps CBV, CBF, MTT, including PSR, and SR
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FIGURE 5

Bland–Altman plots for CBV, CBF, and MTT for our results vs. literature data regarding SD healthy rats (Adam et al., 2003; Perles-Barbacaru and

Lahrech, 2007; Rouine et al., 2013; Lee et al., 2021). Dashed lines represent the bias, +95% (upper line) and −95% (lower line) of the limits of

agreements.
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FIGURE 6

Bland–Altman plots for CBV, CBF, and MTT for our results vs. literature data regarding the ischemic stroke animal model (Thomas et al., 2006; Zhang

et al., 2014; Boisserand et al., 2017; Livingston et al., 2020; Tsai et al., 2021). Dashed lines represent the bias, +95% (upper line) and −95% (lower line)

of the limits of agreements.
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FIGURE 7

Bland–Altman plots for CBV, CBF, and MTT for our results vs. literature data regarding the glioblastoma animal model (García-Palmero et al., 2013;

Stokes et al., 2014; Gonawala et al., 2018; Clément et al., 2021). Dashed lines represent the bias, +95% (upper line) and −95% (lower line) of the limits

of agreements.
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solving the indicator dilution model through deconvolution-

based methods, being implemented in both TSVD and Tikhonov

regularization. Furthermore, it contains an additional processing

step, fitting the data to a gamma function in order to remove the

effects of both noise and contrast recirculation. The tool works

as Python script and has been published under a free software

license with a modular architecture to allow own improvements

or new pre-processing algorithms (filters, alignments, or image

corrections). The parametric maps were obtained with an

acceptable signal-to-noise ratio (SNR) to identify the small blood

signal with a spatial resolution of 0.172 × 0.172 × 1.5 mm3/pixel

and can be stored using standard image formats to carry out the

posterior analysis. In general, SR and PSR maps appear noisier.

However, these parameters can be rapidly acquired, and they

do not require complex mathematical post-processing steps and

help to characterize, e.g., tumor vasculature between the core and

periphery over time.

It is important to note that the absolute quantification of

hemodynamic parameters requires the capability of detecting signal

variations in or adjacent to a large vessel, usually the paraclinoid or

middle cerebral arteries. However, due to the low spatial resolution,

image-based determination of AIF in rodents is challenging and

very difficult to achieve. This limitation usually overcome using

different techniques, though it may be useful to perform a

semiquantitative quantification using laboratory arbitrary units

(a.u.) or normalization of the obtained data. There are also more

complex techniques that automatically determine AIF based on,

among other things, the detection of pixels with the greatest

contrast enhancement in various regions of interest, the use of

clustering techniques, or the creation of physical models for the

echo-planar signal intensity from an artery (Ostergaard et al., 1996;

Wu et al., 2003; López-Larrubia, 2018). In this study, we provide

the possibility of semi-automatic AIF or VOF adjustment with real

curve monitoring for an accurate AIF-pixel selection.

To the extent of our knowledge, there is no standard

recommendation software for preclinical perfusion with

a universally accepted rating. Thus, for the validation and

examination of our tool, we used diverse data sets from different

rat models of brain diseases: i) temporal BBB dysregulation

animals, ii) cerebral CCH model, iii) ischemic stroke, and vi)

GBM. In general, our software yielded excellent results in terms of

agreements for the expected brain regional analysis based on the

animal model addressed.

It has been reported that in the cerebral chronic hypoperfusion

model 2VO, 2 weeks after the surgery, the CBF recovers to 55–

65% of the control level (Cao et al., 2018). Our results showed

51% of CBF getting back 3 weeks after the surgery. Regarding the

mannitol group, a previous study described that CBF increased

predominantly in the hemisphere in which mannitol was injected.

In our study, an alternative experimental model was employed,

mannitol was i.v. injected in the tail as a recognized and reliable

procedure to temporal modulate the BBB permeability. We found

that CBF decreases by ∼35.6% related to healthy animals, while

CBV and MTT values remained similar or increased at 10min

after mannitol injection (Duong et al., 2000; Tanaka et al., 2011).

As has been previously described (Robertson et al., 2011; Reid

et al., 2012; Cipolla et al., 2017), ischemic core and penumbra

areas were calculated based on a CBF reduction compared with

the equivalent CL hemisphere ROI (36.4 and 77.2%). From these

regional definitions, the CBV and MTT maps obtained are in

agreement with the expected metabolic values for these regions due

to the limited vascularization. The preclinical tumor model at 10

and 20 days after the surgery allowed us to compare the time level

vascularization. Previous studies determined that 4–9 days after

tumor detection, the capillary permeability significantly increases

in the core (Stadlbauer et al., 2015; Choi et al., 2016; Huhndorf et al.,

2016). This increase in capillary permeability most likely reflects

the beginning of necrosis within the tumor core that will continue

to evolve over time. The regional analysis obtained in our study

reveals that at 10 days, areas of increased CBV are mostly found

at the core (3.4 ± 2.1 vs. 1.3 ± 1.2 ml/100 g). However, we can

appreciate that this behavior is reversed after 20 days (1.2 ± 0.4

vs. 4.1± 3 ml/100 g), which reflects that the nucleus has necrotized

and there is a vascular proliferation at the tumor rim.

The BA plot was also used to describe the agreement between

our perfusion quantitative analyses and literature data regarding

healthy rats, stroke, and GBM models. In general, the agreement

for CBV and MTT is higher than for CBF. Possible explanations

are the high CBF sensitivity errors due to the localization and

delineation of ROIs, and the microvasculature mechanism effects

of the mathematical tracer kinetic models. The higher sensitivity of

DSC-MRI to susceptibility artifacts, an effect known and already

studied (Maral et al., 2020), could also be another reason, being

supported by the higher sensitivity to artifacts observed in the CBV

and MTT maps, compared to the corresponding CBF map.

Finally, Table 1 reports a literature overview of absolute

perfusion values obtained with different procedures, experimental

conditions (including several rat strains), and different post-

processing methods. Although it is difficult to compare, all

hemodynamic parameters reported from the literature are in the

same range as our results. In general, few studies assess CBF, CBV,

and MTT simultaneously, and many studies show high deviations

probably as a result of the regional analysis developed. As it can be

appreciated, arterial spin labeling (ASL) MR perfusion is another

technique commonly used that does not require intravenous

administration of contrast. By using arterial blood water protons

that have been magnetically labeled as endogenous tracers, this

non-invasive and non-ionizing MRI technique assesses tissue

perfusion (blood flow). Different techniques have been described

to achieve ASL perfusion: i) pulsed (PASL), ii) continuous (CASL),

iii) pseudo-continuous (PCASL), and iv) velocity-selective ASL

(VS-ASL). However, the parameter most commonly derived in

these protocols is CBF because CBV and MTT are difficult to

reliably obtain, and this method usually presents low SNR and long

acquisition time.

5. Conclusion

In order to facilitate the use and comparison of perfusion-

weighted imaging in preclinical studies, we provide an open-

source DSC post-processing software package. This software allows

the calculation of several key quantitative perfusion parameters,

such as CBF, CBV, and MTT, including SR and PSR maps

from semi-automatic AIF or VOF adjustment. The open-source
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computational steps allow for possible improvements or pre-

processing algorithms for other situations. The results obtained in

diverse data sets of brain diseasemodels in rats are consistent and in

good agreement with values and behavior reported in the literature.
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