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Introduction: Pharmacogenetics currently supports clinical decision-making on 
the basis of a limited number of variants in a few genes and may benefit paediatric 
prescribing where there is a need for more precise dosing. Integrating genomic 
information such as methylation into pharmacogenetic models holds the potential 
to improve their accuracy and consequently prescribing decisions. Cytochrome 
P450 2D6 (CYP2D6) is a highly polymorphic gene conventionally associated with 
the metabolism of commonly used drugs and endogenous substrates. We thus 
sought to predict epigenetic loci from single nucleotide polymorphisms (SNPs) 
related to CYP2D6 in children from the GUSTO cohort.

Methods: Buffy coat DNA methylation was quantified using the Illumina Infinium 
Methylation EPIC beadchip. CpG sites associated with CYP2D6 were used 
as outcome variables in Linear Regression, Elastic Net and XGBoost models. 
We compared feature selection of SNPs from GWAS mQTLs, GTEx eQTLs and 
SNPs within 2  MB of the CYP2D6 gene and the impact of adding demographic 
data. The samples were split into training (75%) sets and test (25%) sets for 
validation. In Elastic Net model and XGBoost models, optimal hyperparameter 
search was done using 10-fold cross validation. Root Mean Square Error and 
R-squared values were obtained to investigate each models’ performance. When 
GWAS was performed to determine SNPs associated with CpG sites, a total of 
15 SNPs were identified where several SNPs appeared to influence multiple CpG 
sites.

Results: Overall, Elastic Net models of genetic features appeared to perform 
marginally better than heritability estimates and substantially better than Linear 
Regression and XGBoost models. The addition of nongenetic features appeared 
to improve performance for some but not all feature sets and probes. The best 
feature set and Machine Learning (ML) approach differed substantially between 
CpG sites and a number of top variables were identified for each model.

OPEN ACCESS

EDITED BY

Yifan Zhao,  
Cranfield University, United Kingdom

REVIEWED BY

Ya-Feng Wen,  
Gilead, United States  
Yaya Kassogue,  
Université des Sciences, des Techniques et des 
Technologies de Bamako, Mali

*CORRESPONDENCE

Geoffrey Chern-Yee Tan  
 geoffrey.tan@imh.com.sg

RECEIVED 22 June 2023
ACCEPTED 18 October 2023
PUBLISHED 21 February 2024

CITATION

Fong WJ, Tan HM, Garg R, Teh AL, Pan H, 
Gupta V, Krishna B, Chen ZH, Purwanto NY, 
Yap F, Tan KH, Chan KYJ, Chan S-Y, Goh N, 
Rane N, Tan ESE, Jiang Y, Han M, Meaney M, 
Wang D, Keppo J and Tan GC-Y (2024) 
Comparing feature selection and machine 
learning approaches for predicting CYP2D6 
methylation from genetic variation.
Front. Neuroinform. 17:1244336.
doi: 10.3389/fninf.2023.1244336

COPYRIGHT

© 2024 Fong, Tan, Garg, Teh, Pan, Gupta, 
Krishna, Chen, Purwanto, Yap, Tan, Chan, Chan, 
Goh, Rane, Tan, Jiang, Han, Meaney, Wang, 
Keppo and Tan. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

TYPE Original Research
PUBLISHED 21 February 2024
DOI 10.3389/fninf.2023.1244336

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2023.1244336﻿&domain=pdf&date_stamp=2024-02-21
https://www.frontiersin.org/articles/10.3389/fninf.2023.1244336/full
https://www.frontiersin.org/articles/10.3389/fninf.2023.1244336/full
https://www.frontiersin.org/articles/10.3389/fninf.2023.1244336/full
https://www.frontiersin.org/articles/10.3389/fninf.2023.1244336/full
mailto:geoffrey.tan@imh.com.sg
https://doi.org/10.3389/fninf.2023.1244336
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2023.1244336


Fong et al. 10.3389/fninf.2023.1244336

Frontiers in Neuroinformatics 02 frontiersin.org

Discussion: The development of SNP-based prediction models for CYP2D6 CpG 
methylation in Singaporean children of varying ethnicities in this study has clinical 
application. With further validation, they may add to the set of tools available to 
improve precision medicine and pharmacogenetics-based dosing.
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Introduction

Pharmacogenetics based on variants in a few genes has been 
shown to improve outcomes and cost-effectiveness in drug prescribing 
(Oates and Lopez, 2018). These established variants are unlikely to 
fully account for the genetic contributions to individual drug 
responses. Applying machine learning approaches to genomics data 
such as epigenetics has the potential to improve the accuracy of 
predictions and in turn to improve clinical decision-making 
(Rauschert et al., 2020). This may have value in paediatric drug dosing, 
where there is less room for error and therapeutic mishaps may have 
greater consequences (de Beaumais and Jacqz-Aigrain, 2018; 
Tansuwannarat et al., 2022).

Cytochrome P450 (CYPs) enzymes are a family of proteins 
involved in metabolism. Cytochrome P450 2D6 (CYP2D6) is a 
subfamily of CYP enzymes that metabolises approximately 25% of 
commonly used drugs (Shen et  al., 2007). CYP2D6 is highly 
polymorphic, resulting from different genetic variations such as 
single-nucleotide polymorphisms (SNPs) and structural variants 
(Beoris et  al., 2016). This variability results in significant 
interindividual variability in drug reactions and drug efficacy. As such, 
CYP2D6 alleles have been found to substantially influence enzyme 
activity, with CYP2D6 metabolizer status broadly categorised into 
poor metabolizers, intermediate metabolizers, extensive (normal) 
metabolizers and ultra-rapid metabolizers. CYP2D6 allele frequency 
is also known to vary among ethnic groups, with Asians and Pacific 
Islanders having a higher frequency of reduced function allele 
CYP2D6*10 (Bradford, 2002) leading to slower metabolism.

Epigenetics refers to genomic modifications that can influence 
gene expression and cellular phenotypes without changing the DNA 
sequence. DNA methylation, which involves the binding of a methyl 
group to a cytosine at a CpG dinucleotide, is the most well 
characterised epigenetic modification in humans and can lead to the 
inactivation or repression of gene expression (Kacevska et al., 2012). 
Due to recent advances in high-throughput microarray-based 
technologies (Dedeurwaerder et  al., 2011; Pidsley et  al., 2016), 
genome-wide methylation profiling has become a common approach 
to complement genome-wide association studies (GWAS).

Growing evidence suggests that genetic variation plays a role in 
the establishment of DNA methylation marks as well (Villicaña and 
Bell, 2021). DNA methylation profiles have a genetic basis, as indicated 
by heritability studies (McRae et al., 2014; Gaunt et al., 2016; van 
Dongen et al., 2016; Nustad et al., 2018) and associations with nearby 
SNPs revealed through GWAS (Gamazon et al., 2013). Methylation 
quantitative trait loci (mQTLs) have been identified in various human 
populations and cell types (Gibbs et al., 2010; Bell et al., 2011; Fraser 
et al., 2012), and these have been found to overlap with expression 
quantitative trait loci (eQTLs; Wagner et al., 2014). In addition to gene 
variants conferring metaboliser status, there are several SNPs that 

influence expression of CYP2D6 through mechanisms such as DNA 
methylation (Lonsdale et al., 2013). Several studies have demonstrated 
that CYP2D6 has highly variable methylation, which regulates 
expression and is influenced by SNP variation (Bonder et al., 2014; 
Habano et al., 2015; He et al., 2015; Park et al., 2015).

Despite extensive research demonstrating links between genetic 
variation and epigenetics, there are few models that have integrated 
genetic variation with individual characteristics to predict methylation 
and gene expression. Machine learning (ML) technology has been applied 
in genetics and genomics (Libbrecht and Noble, 2015), particularly for 
genetic prediction, due to the scaling-up of datasets and computing 
power. Methods that can work well in high dimensions and identify 
interactions between loci (Cordell, 2009), without assuming additivity, are 
appealing. ML algorithms have increased predictive abilities for complex 
disease risk by handling multi-dimensional data (Ho et al., 2019), which 
is a challenge for traditional statistical methods. This makes SNP-based 
ML prediction models attractive for precision medicine. In ML, feature 
selection is crucial to avoid overfitting, where ML model works better on 
trained data but not newer ‘test’ data (MacEachern and Forkert, 2021), 
hindering generalisation, and reduces computation time when working 
with high-dimensional datasets (Chandrashekar and Sahin, 2014). In 
ML-based genomic prediction, feature selection improves generalisation 
and reduces dimensionality by narrowing down the number of SNPs and 
selecting the ones that have much larger effects than others. The main 
motivations for feature selection were to produce an inexpensive way to 
identify a disease phenotype based on measured genotypes of a fewer 
number of SNPs (Libbrecht and Noble, 2015) and reduce computational 
complexity for ML. Including millions of SNPs as features could result in 
overfitting and increase computational time, while excluding too many 
SNPs could discard important information. Thus, we  aim to select 
informative SNPs based on biological understanding.

Elastic Net have been shown to work well with real-world genetic 
data (John et al., 2022). It can automatically select significant variables, 
which efficiently resolves the problem caused by collinearity among 
the predictor SNP variables that can be  problematic in standard 
regression analyses (Draper and Smith, 1998). The Elastic Net penalty 
balances between ℓ2 ridge-regression penalty and ℓ1 lasso penalty, and 
the choice of the regularisation parameter (λ) is critical to selecting 
important variables with accurate estimation. Tuning parameters α 
and λ are usually chosen based on cross-validations to minimise 
mean-squared prediction error. Elastic Net algorithms are a modified 
form of linear regression that reduce overfitting for linear relationships.

XGBoost algorithm, which has been shown to outperform 
traditional ML algorithms such as linear regression and K Nearest 
Neighbour in predicting gene expression values (Li et al., 2019) and 
improving breast cancer risk prediction accuracy based solely on 
genetic variants (Behravan et al., 2020).

Gradient boosting fits new models consecutively to provide an 
accurate estimate of the response variable (Natekin and Knoll, 2013) 

https://doi.org/10.3389/fninf.2023.1244336
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Fong et al. 10.3389/fninf.2023.1244336

Frontiers in Neuroinformatics 03 frontiersin.org

and uses a gradient descent algorithm to minimise the loss when 
adding new models. At each particular iteration, a new weak, base-
learner model is trained with respect to the error of the whole 
ensemble learnt. XGBoost is a version of gradient boosted trees that 
has been optimised to perform well in distributed computing 
environments (Ho et al., 2019), making it highly efficient.

As such, in this study, we focus on examining the best set of SNP 
features suitable for use in the prediction of CYP2D6-associated CpG 
methylation levels using CYP2D6 SNP genotypes after various feature 
selection methods. We also compare the performance of two ML 
algorithms, Elastic Net (Zou and Hastie, 2005) and eXtreme Gradient 
Boosting (XGBoost; Chen and Guestrin, 2016) and investigate their 
performance and prediction accuracy with regard to the different SNP 
feature sets to identify the optimal method for SNP feature selection.

Materials and methods

Growing up in Singapore towards healthy 
outcomes (GUSTO) cohort

Samples used in this project were taken from GUSTO (Soh et al., 
2014), a mother-offspring prospective cohort study in Singapore.

Between 2009 and 2010, the GUSTO study recruited pregnant 
women who attended their first trimester antenatal dating ultrasound 

scan clinic at National University Hospital (NUH) and KK Women’s 
and Children’s Hospital (KKH). A total of 1,247 mothers were 
recruited such that 55.9% were Chinese, 26.1% Malay and 18.0% 
Indian, with homogeneous parental ethnic background. A total of 
1,176 babies were born in the cohort. Demographic variable 
information such as ethnicity, mother’s age, education and income 
were collected at Pregnancy week 11 timepoint. The current study 
included 414 pregnant mothers. The ethnic distribution of the 
children, based on the parents, was 57.2% Chinese, 26.1% Malays and 
13.5% Indians. Out of the 414 children reported in the study, 194 were 
female (46.9%) while 210 were males (50.7%). The average age of 
mothers at recruitment was 30.9 years (SD = 5.22). The distribution of 
participants’ highest education levels varied, with 23 participants 
having completed primary education (5.6%), 101 participants having 
completed secondary education (24.4%), 104 participants having 
attained General Certificate of Education (25.1%), 38 participants 
having attained a National Technical Certificate (9.2%) and 133 
participants having completed tertiary education (32.1%; Table 1). 
Additional demographic information can be found in Supplementary 1.

Child genotype data

Infant DNA obtained from umbilical cord tissue at the Delivery 
time point as part of the study cohort visit, was genotyped using 

TABLE 1 Number of SNPs obtained for each of the feature sets, before and after filtering for MAF  >  10%.

Feature set

No. of SNPs 
obtained before 

excluding 
MAF  <  10%

Final no. of SNPs 
obtained after 

excluding 
MAF  <  10%

1 GWAS – mQTLs from 

75% of GUSTO samples

1.1. Before B-H 

correction

1.1.1. cg04692870-Probe 1 173 129

1.1.2. cg07016288-Probe 2 234 164

1.1.3. cg09322432-Probe 3 251 190

1.1.4. cg10840135-Probe 4 220 149

1.1.5. cg15597984-Probe 5 219 170

1.1.6. cg17498424-Probe 6 227 164

1.1.7. cg20046859-Probe 7 206 153

1.1.8. cg22650942-Probe 8 199 119

1.1.9. Combining SNPs for above eight CpG probes 

(duplicates removed)

1,364 983

1.2. After B-H 

correction

1.2.1. cg04692870-Probe 1 2 2

1.2.2. cg07016288-Probe 2 1 0

1.2.3. cg09322432-Probe 3 13 11

1.2.4. cg10840135-Probe 4 2 2

1.2.5. cg15597984-Probe 5 7 7

1.2.6. cg17498424-Probe 6 0 0

1.2.7. cg20046859-Probe 7 1 1

1.2.8. cg22650942-Probe 8 0 0

1.2.9. Combining SNPs for above eight CpG probes 

(duplicates removed)

18 15

2 GTEx database 710 548

3 41.5 Mb – 43.6 Mb range 3,149 2,406
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Illumina OmniExpress plus Exome array, which was performed by 
Expression Analysis, Inc. This particular array offers more 
comprehensive representation of genetic variations within Asian 
populations compared to other commonly used arrays (Jiang et al., 
2013). Data were processed using GenomeStudio Genotyping Module 
version 1.0 developed by Illumina, Inc. The GenCall software makes 
genotyping calls such that genotypes with a GenCall score lower than 
0.15, are not assigned genotypes. Samples that did not meet the criteria 
of a genotyping call rate of at least 97%, self-reported ethnicity, sex, or 
had an inconsistent offspring-parent relationship were excluded.

Each ethnic group was subject to genotype imputation 
separately (scripts are available at the link in Supplementary 2). 
Briefly, SNPs with minor allele frequency (MAF) < 5%, call 
rate < 95% or failed Hardy–Weinberg Equilibrium at value of 
p < 10−6 were excluded from each ethnicity, using PLINK version 
1.90 (Chang et  al., 2015). The data was then aligned to the 
GRCh37 build and processed further using a published pipeline2. 
After further processing, the data was subjected to haplotype 
phasing using the SHAPEIT2 software with duoHMM method 
(O’Connell et al., 2014), which takes family structure into account 
for increased accuracy. The phased haplotypes were then imputed 
using the PBWT algorithm (Durbin, 2014) and the Sanger 
Imputation Service (McCarthy et  al., 2016), with the 1,000 
Genomes Phase 3 (1,000 Genomes Project Consortium 2015) 
used as the reference panel. A total of 4,869,008 SNPs that passed 
stringent quality control (MAF > 5% and imputation INFO>0.80) 
in at least one ethnic group were analysed.

Child methylation data

DNA methylation profiling on 414 child buffy coat samples 
obtained at the study visit (Year 6 time point) when the infants 
turned 6 years old, was performed using Infinium 
MethylationEPIC BeadChip (850 K; ‘EPIC 850 K’). DNA 
methylation IDAT files were read using the minfi R package 
(Aryee et al., 2014). Probes that did not meet standard protocol 
and quality control procedures were removed. The removal 
criteria included having less than three beads for any sample or 
a signal detection value of p (based on the signal compared to 
background for each bead intensity) greater than 0.01 for any 
sample. Probes from sex chromosomes were also removed. 
Within-sample normalisation was performed using Noob 
pre-processing (Triche et al., 2013).

For each CpG site, the percentage of methylation was computed 
by dividing the intensity of the methylated probe by the overall 
intensity of the CpG site. This produced a value between 0 and 1. 
Methylation beta values were first converted to M-values before 
applying COMBAT to remove batch effects (Johnson et al., 2007). 
Subsequently, the batch-corrected methylation values were 
transformed back to beta values. Finally, probes that exhibited 
cross-hybridisation (Chen et  al., 2013; Price et  al., 2013) and 
probes with a methylation range (maximum-minimum, excluding 
outliers) of less than 5%, were excluded from the analysis. In total, 
440,567 CpGs passed the QC criteria. Genome coordinates (hg19 
build) and gene annotations of these CpGs were extracted from the 
Infinium MethylationEPIC BeadChip manifest file V1.0 B4 
(Illumina, 2017).

Selection of CYP2D6 CpG sites

Genetic prediction models were trained to predict child 
CYP2D6 CpG status (methylation beta value). The detailed 
annotation table, including the chromosomal position can be 
found in Supplementary Table 3. Eight CpG sites were identified to 
be annotated under CYP2D6, which we have labelled as Probe 
1–8 for clarity: cg04692870-Probe 1, cg07016288-Probe 2, 
cg09322432-Probe 3, cg10840135-Probe 4, cg15597984-Probe 5, 
cg17498424-Probe 6, cg20046859-Probe 7, cg22650942-Probe 8.

Feature selection – SNPs

To identify informative SNP features for predicting CYP2D6 
methylation status, we employed three methods. First, we used GWAS 
to identify SNPs associated with CYP2D6 methylation status as traits. 
Next, we  used CYP2D6 eQTLs from GTEx which provided 
independent and relevant information on methylation. Lastly, we used 
a range of SNPs within 2 Mb of the CYP2D6 gene (Dimas et al., 2009) 
to examine if including more SNPs with varying information could 
improve ML performance.

The respective genetic information for each set of SNPs was 
filtered from GUSTO genotype data using PLINK 1.9 – recode and – 
extract function. SNPs with less than 10% minor allele frequency 
(MAF) were removed as per various GWAS studies methods (Florez 
et al., 2007; Tabangin et al., 2009) for quality control. 10% MAF was 
chosen due to power limitations in genetic association studies, as rare 
variants require large sample sizes to be studied.

Feature set 1 – mQTLs from 75% of GUSTO 
samples

To test our hypothesis that highly statistically associated SNPs 
with DNA methylation (mQTLs) as features improves prediction 
models, we conducted GWAS on the eight CYP2D6-associated CpG 
sites. mQTLs could act as important cis-regulatory polymorphisms 
connecting genetic variation to methylation variation and have been 
linked to regulatory functions and disorders (Lin et al., 2020). mQTL 
identification involves association tests between genome-wide genetic 
variation and DNA methylation levels at specific CpG sites (Villicaña 
and Bell, 2021). Methylation can serve as the phenotype of interest 
for GWAS.

We obtained mQTLs from 75% of the available samples of each 
CpG site. Conducting GWAS on all samples with methylation data 
could lead to biased model performance due to data leakage. Applying 
GWAS to 75% of the samples ensures mQTLs of the 25% test 
validation set were not selected as features.

Feature set 1.1 – derived from genome-wide 
association study to identify CYP2D6 mQTLs

GWAS analysis was conducted separately for each of the eight 
CpG sites. For example, to obtain mQTLs for cg04692870-Probe 1, 
GWAS was performed on 75% of the available samples (300 out of 
401) using PLINK 1.9. We performed LD pruning using the variant 
pruning tool (-indep 500 5 2) in PLINK 1.9, resulting in 247,574 
remaining SNPs. Principal component analysis (PCA) was also 
conducted in PLINK 1.9, and the top five principal components (PCs) 
were chosen as covariates for GWAS based on the scree plot of 
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eigenvalues. Basic linear regression style GWAS was then run on the 
child genotype data of the 300 samples using the --linear function in 
PLINK 1.9, and the value of p was calculated for any significant SNP 
rsIDs correlated with cg04692870-Probe 1.

We applied two statistical thresholds to obtain feature sets for 
analysis. A larger set of SNPs (Feature set 1.1 – Before B-H correction) 
were selected with a filter of SNPs from chromosome 22 with an 
uncorrected value of p<0.05. We decided to include features selected 
with uncorrected thresholds in our analysis as other studies have 
demonstrated superior performance at lower thresholds in polygenic 
risk scores (PRS) as well as machine learning models (Fergus et al., 
2018; Privé et al., 2019). This was repeated for each of the eight CpG 
sites (Feature sets 1.1.1 to 1.1.8 for CpG Probes 1–8 respectively). 
Additionally, all SNPs found significant to their respective CpG sites 
were combined across all CpG sites, with duplicated SNPs removed 
(Combined Feature set 1.1.9).

Feature set 1.2 – after B-H correction
Further GWAS analysis includes correction for multiple testing. 

The significance threshold used for SNP–trait associations was the 
Benjamini–Hochberg (B-H) false discovery rate (FDR) of value of 
p < 0.05 which was chosen to minimise the expected proportion of 
false positives (Benjamini and Hochberg, 1995). Only significant 
SNPs on chromosome 22 were considered. This was repeated for 
each of the eight CpG sites (Feature sets 1.2.1 to 1.2.8 for CpG 
Probes 1–8 respectively). All SNPs found significant to their 
respective CpG sites after B-H correction were also combined 
across all relevant CpG sites, with duplicated SNPs removed 
(Combined Feature set 1.2.9).

Feature set 2 – genotype-tissue expression 
database

The Genotype-Tissue Expression (GTEx) database was utilised to 
obtain CYP2D6-associated SNPs independent of methylation data. 
The GTEx database is an established resource to study the relationship 
between genetic variants and gene expression in multiple human 
tissues, with samples collected from 54 non-diseased tissue sites across 
nearly 1,000 individuals. Single-tissue eQTLs for CYP2D6 in all tissues 
were obtained from the GTEx database, filtered for duplicates and 
those present in the GUSTO child genotype data using PLINK 1.9. 
This allowed access to additional samples that support independent 
discoveries, and for unbiased eQTLs to be used as features for ML.

Feature set 3–41.5 to 43.6  Mb range from GTEx 
database

To capture potential SNPs that may affect CYP2D6 expression and 
methylation, a wider range on chromosome 22 was explored, given 
that some SNPs could be located far upstream or downstream of the 
gene (Schadt et  al., 2008; Yang et  al., 2010; Wang et  al., 2014). 
Significant single-tissue eQTLs for CYP2D6 from the GTEx database 
were used as a reference to obtain the smallest (rs116099340 at 
position 41,133,140) and largest (rs151076151 at position 43,107,039) 
position of the first reference sequence base. The genomic coordinates 
of these SNPs were obtained from the UCSC Genome Browser 
(GRCh37/hg19) and used to obtain a list of SNPs in this range 
(41.5 Mb to 43.6 Mb) from the GUSTO genotype data using 
PLINK 1.9.

Refer to Table 1 for the list of the Feature sets.

Statistical analysis

Splitting the train and test data
In an initial dataset, all samples were randomly split into two 

datasets, comprising 75% for training and 25% for the creation of a 
standard test set (101 samples). This 25% standard test set served as a 
benchmark for subsequent dataset divisions. For each CpG probe ID 
(Probes 1–8), samples with the same sample ID as those present 
within the 25% standard test set will be exclusively assigned to the test 
set, and the rest of the samples formed the train dataset. This was then 
used for all analysis.

Heritability estimates
We calculated a heritability estimate for each CpGs with 

significant SNPs after B-H correction, using a pseudo-PRS. PRS was 
calculated according to the following equation: 
PRS(CpG) = sum(weight_i * SNP_i). Weight_i is the beta value 
from GWAS study, SNP_i is the SNP dosage (0,1,2 addictively 
encoded on minor allele; Zhu and Zhou, 2020). We then calculated 
the R2 on the association between [PRS(CpG) ~ CpG]. The R2 is the 
coefficient determination of genetic factors that contribute to the 
explanation of CpG changes, and this was calculated for the train 
set and test set.

ANCOVA and linear regression
We analysed for influences of demographic characteristics such as 

socioeconomic status on CpG methylation data, and this was to 
determine important demographic variables that may be contributing 
to methylation in the eight CpG sites. ANCOVAs were conducted 
using JASP version 0.16.4.0 software (JASP Team, 2022) to investigate 
statistically significant differences in methylation levels at CYP2D6 
CpG probe sites based on different demographic variables. The 
demographic variables include mothers’ income, household income, 
type of accommodation, child’s ethnicity, mothers’ highest education, 
and child’s sex, while mother’s age during recruitment was entered as 
a covariate. Using each CYP2D6 CpG probe site as the dependent 
variable, the F statistic and value of p for each demographic variable 
were reported by JASP.

Linear regression models were also used to examine the 
association of the SNPs’ genotype with each of the eight CpG loci 
status using JASP. Information on covariates was available for children 
and their mothers across all eight CpG sites; where relevant, these 
variables were adjusted for in the statistical models. These variables 
included the top five PCs of the genotype data, mothers’ age during 
recruitment, mothers’ income, household income, type of 
accommodation, child’s ethnicity, mothers’ highest education, and 
child’s sex.

In the 75% train set, coefficients of each of the SNPs’ genotypes 
and all covariates in a linear regression were obtained from JASP. The 
coefficients were then entered into a linear equation in R to predict the 
CYP2D6 CpG methylation values in the 25% test set. Root Mean 
Square Error (RMSE) and R-Squared (R2) values were then calculated 
based on the predicted and actual methylation values in the 25% test 
set. Regression performance metrics for the training set were reported 
by JASP. This standard test set was used similarly for the other 
CpG probes.

This statistical analysis was done only for Combined Feature set 
1.2.9 – GWAS of 75% samples after B-H Correction, with all significant 
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SNPs combined (Table 2) due to the small subset of SNPs present in 
this feature set. It was not feasible to conduct regression analysis in 
JASP with the larger number of SNPs from the other sets of features.

Collinearity between SNPs
LD analysis was performed using Haploview v. 4.1 program 

(Barrett et  al., 2005). The squared correlation (R2) between allelic 
values at two loci were computed. A higher R2 shows higher 
collinearity between two SNPs. This was done for SNPs obtained from 
Combined Feature set 1.2.9 – GWAS of 75% samples after B-H 
Correction, with all significant SNPs combined, to ascertain the use 
of linear models in statistical analysis for small feature sets.

Machine learning models and optimisation
To develop ML models of CpG status using cis-acting genetic 

variation, CYP2D6 eQTLs and mQTLs feature sets were used as 
features in Elastic Net and XGBoost models to predict the status of 
each of the eight CpG sites. Mode imputation was done to replace 
missing genetic data in samples.

To prevent encountering errors when executing ML algorithms, 
we conducted preprocessing on both the training and testing datasets. 
Train and test dataset splitting was done with a standard test set as per 
aforementioned. To ensure all genotype data of each SNP feature were 
in the train set, the number of unique genotype categories within each 
SNP column were compared and columns where the test set exhibited 
a greater number of unique categories than train set were identified. 
A randomly selected row with the unique genotype category in the test 
set was then transferred to the train set. Next, to ensure that the train 
set consistently contains a minimum of two samples for every category 
within each SNP column, for columns featuring a category with only 
one sample, we appended that specific category to a new row within 
the column. For the remaining columns, we introduced a randomly 
selected genotype from the existing column data. Lastly, we identified 

columns containing only two unique values in the test set. For such 
columns, we introduced a new row, added the missing class found in 
the train set and filled the remaining columns with random values 
from their respective distributions. This ensured that all columns in 
the test set consistently contained at least three unique values, similar 
to the train set, for the conversion of these datasets to sparse 
matrices downstream.

Training data was used to obtain an unbiased estimate of the 
hyperparameters for the best performance of the models via cross-
validation, and the test set is used to obtain an unbiased final model 
performance metric for validation. The average RMSE and R2 for the 
train and test set were reported to find the models’ performances in 
prediction using the specific sets of features.

Elastic net
In our Elastic Net model, we used glmnet from R package and 

caret to fit a grid of models to select optimal α and λ parameters jointly 
through 10-fold cross-validation on the training data. This was 
repeated five times, using a different set of folds for each cross-
validation. The optimal parameters were chosen based on minimising 
the mean squared error between the predicted and actual values. The 
resulting model was trained on the training set, and its performance 
was validated on the test set across the eight CpG probes using RMSE 
and R2. The average RMSE and R2, across all predicted CpG sites were 
reported for each set of features.

XGBoost
Elastic Net algorithms are a modified form of linear regression 

that reduce overfitting if CpG methylation data is linear. To account 
for non-linear effects, we used the XGBoost algorithm, Our XGBoost 
model employed one-hot encoding to convert categorical genetic data 
into a sparse matrix before fitting it into the model using the R package 
xgboost. Hyperparameters were tuned through 10-fold 

TABLE 2 Demographics table.

Descriptive statistics Effect of demographics on methylation

N (%) Statistic cg09322432-Probe 3 cg15597984-Probe 5

Child’s Ethnicity ANCOVA, F (value of p) 3.791 (0.024) 5.48 (0.005)

Chinese 237 (57.2) Mean methylation (SD) 0.902 (0.021) 0.743 (0.031)

Malay 108 (26.1) 0.895 (0.027) 0.737 (0.037)

Indian 56 (13.5) 0.895 (0.018) 0.726 (0.028)

Missing 13 (3.1)

Mean (SD) Significant CpG site cg17498424-Probe 6

Age in years at recruitment 30.9 (5.22) Linear Regression, B (value of p) −6.210 × 10−4(0.010)

N (%) Significant CpG site cg07016288-Probe 2

Monthly income of 

mothers SGD ANCOVA, F (value of p) 2.981 (0.019)

<$1,000 131 (31.6) Mean methylation (SD) 0.848 (0.032)

$1,000–1,999 98 (23.7) 0.845 (0.032)

$2,000–3,999 100 (24.2) 0.843 (0.033)

$4,000–5,999 26 (6.28) 0.856 (0.031)

≥$6,000 7 (1.69) 0.817 (0.030)

Not answered 52 (12.6)
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cross-validation with 100 rounds of boosting and early stopping after 
100 rounds without improvement in the cross-validation loss. The 
optimal hyperparameters (max_depth, eta, subsample and colsample_
bytree) and best index were obtained based on the minimum test 
RMSE, which were used to train the model on the training set and 
predict the CpG loci status on the test set. The performance of the 
model was evaluated using RMSE and R2, and the average values for 
each set of features were reported.

Integration of non-genetic and principal 
component factors in machine learning models

In addition to using only genetic variants as features, we included 
non-genetic demographic features to model interactions of genetic 
variation with demographic factors at CpG loci in children. These 
features comprised demographics of children with both genotype and 
methylation data, such as mothers’ age during recruitment, income, 
household type, ethnicity, education, child’s sex, and the top five 
principal components (PCs) of the genotype data. The non-genetic 
factors had varying amounts of missing data, and mode imputation 
was used to replace missing genetic and categorical non-genetic data, 
while mean imputation dealt with missing mothers’ age data. Elastic 
Net and XGBoost models were run as previously mentioned. For each 
set of genetic features, with non-genetic and PC features included, the 
average RMSE and R2 across all predicted CpGs were reported.

Feature importance
Since multiple variables, including non-genetic factors, were 

employed in predicting CpG methylation, it would be valuable to 
demonstrate the significance of the top  10 predictors in the best 
performing model in each CpG probe. This was done by calculating 
SHapley Additive exPlanations (SHAP) score of each feature in their 
respective models. Feature importance was ranked, and top 10 features 
of the best performing models of each CpG probe were obtained.

R codes used can be  found at the repository link provided in 
Supplementary 2.

Results

Feature selection

We applied feature selection according to the three methods as 
proposed in order to obtain different sets of SNP features that can 
be  compared for their performance as features in ML. In total, 
we obtained 17 sets of features, each consisting of a different number 
of SNPs deemed to provide important information in ML.

After MAF filtering, we identified 983 mQTLs (Combined Feature 
set 1.1.9) from a GWAS of the training set comprising 75% of samples 
at an uncorrected threshold of p < 0.05 and 15 mQTLs (Combined 
Feature set 1.2.9) at a corrected threshold. We also utilised 548 eQTLs 
(Feature set 2) influencing expression of CYP2D6 across the body 
from GTEx and 2,406 (Feature set 3) from a 2 MB range around the 
gene. As there were no significant SNPs for cg07016288-Probe 2, 
cg17498424-Probe 6, and cg22650942-Probe 8, they were excluded 
from analysis to allow comparison in performance between after B-H 
feature sets (Feature Sets 1.2) and other feature sets.

There were no significant associations with cg07016288-Probe 2, 
cg17498424-Probe 6, and cg22650942-Probe 8. In general, fewer SNPs 
remained after excluding SNPs with MAF < 10%.

A complete list of SNP rsIDs obtained from all feature sets 
methods can be found in Supplementary 4.

Collinearity between mQTLs

LD plot was done for Combined Feature set 1.2.9 – GWAS of 75% 
samples after B-H Correction, with all significant SNPs combined (15 
SNPs). LD analysis revealed high R2 at some SNP combinations 
(Figure 1), indicating high collinearity among some of the SNPs in 
Combined Feature set 1.2.9. For example, rs73885718 and rs5758165 
have high collinearity (R2 = 0.998), and both of these mQTLs are 
significant in cg09322432-Probe 3.

FIGURE 1

Haploview plot illustrating the linkage disequilibrium of 15 SNPs from Feature set 1.2.9. Numbers indicate the R2 values, and grey squares with different 
intensity indicate 0  <  R2  <  1.

https://doi.org/10.3389/fninf.2023.1244336
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Fong et al. 10.3389/fninf.2023.1244336

Frontiers in Neuroinformatics 08 frontiersin.org

Demographic effects

There was a significant effect of child’s ethnicity on 2 CpG 
sites, cg09322432-Probe 3 [F(2, 320) = 3.791, p = 0.024] and 
cg15597984-Probe 5 [F(2, 323) = 5.48, p = 0.005], after controlling 
for mother’s age at recruitment. In cg09322432-Probe 3, this 
appeared to be  driven by greater methylation in Chinese as 
compared to Malays (95% CI [0.002, 0.012], t(373)  =  2.658, 
p = 0.008) and Indians (95% CI [6.355 × 10−4, 0.014], 
t(373) = 2.155, p = 0.032). In cg15597984-Probe 5, Chinese had 
greater methylation than Indians (95% CI [0.008, 0.027], 
t(373) = 3.540, p = < 0.001), and Malays also had greater 
methylation than Indians (95% CI [7.822 × 10−4, 0.027], 
t(373) = 2.110, p = 0.036). Additionally, children with younger 
mothers had greater methylation on cg17498424-Probe 6 
[B = −0.000621, t(320)  = −2.590, p = 0.01]. There was also a 
significant effect of mother’s monthly income on cg07016288-
Probe 2 [F(4, 323) = 2.981, p = 0.019]. This effect appears to 
be driven by greater methylation in mothers in lower income 
groups, specifically with regard to mothers earning more than 
6,000 SGD as the reference category. Mothers earning less than 
1,000 SGD exhibited greater methylation than mothers earning 
more than 6,000 SGD (95% CI [0.006, 0.055], t(357) = 2.470, 
p = 0.014). Similarly, mothers earning between 1,000 to 1999 SGD 
had greater methylation than mothers earning more than 6,000 
SGD (95% CI [0.004, 0.053], t(357) = 2.260, p = 0.024). Mothers 
who earned between 2000 to 3,999 SGD also had greater 
methylation than mothers earning more than 6,000 SGD (95% CI 
[0.002, 0.051], t(357) = 2.108, p = 0.036). Additionally, mothers 
earning between 4,000 SGD to 5,999 SGD had greater methylation 
than mothers earning more than 6,000 SGD (95% CI [0.013, 
0.066], t(357) = 2.889, p = 0.004) and there was a general decrease 
in methylation with greater income for the other CpG sites. 
However, no demographic variables showed a significant 
contribution to methylation in cg04692870-Probe 1, cg10840135-
Probe 4 and cg20046859-Probe 7. Planned contrasts are detailed 
in Supplementary 1.

Heritability of methylation at each CpG site

Heritability (R2) was calculated to estimate the proportion of 
variance in CpG methylation values accounted for by genetic 
variance. Overall mean heritability across probes was higher in 
the train set (mean R2 = 0.127) than in the test set (mean 
R2 = 0.101). In the test set, cg15597984-Probe 5 had the strongest 
heritability (R2 = 0.240), followed by cg04692870-Probe 1 
(R2 = 0.168), while cg20046859-Probe 7 had the weakest 
heritability (R2 = 0.0000475).

Performance of CpG loci status prediction 
using multiple linear regression

We conducted multiple linear regression to provide baseline 
predictions of CpG methylation for comparison with ML 
approaches. Overall prediction using the linear regression model 
accounted for an R2 of between 0.167 to 0.294 in the train set 
(mean R2 = 0.233), however in the test set R2 values were negative 
except for cg15597984-Probe 5 (R2 = 0.0747). In terms of RMSE, 
the test set performed worse as well with a mean RMSE of 0.0346 
as compared to the train set (mean RMSE = 0.0318).

Machine learning models results

Elastic net model of genetic features: comparison 
with heritability

The Elastic net model of genetic features for individual 
probes (Feature sets 1.2 Individual probes cg04692870-Probe 1, 
cg09322432-Probe 3, cg10840135-Probe 4, cg15597984- 
Probe 5, cg20046859-Probe 7) appeared to be  equivalent or 
slightly better in test set performance (R2 = 0.104) than the 
heritability measure (see Table 3) calculated from the PRS of the 
significant SNPS (Feature sets 1.2 Individual probes 1, 3–5, 7, 
R2 = 0.101).

Elastic net model of genetic features: comparison 
with linear regression

Although the Elastic net model using after B-H combined SNPs 
(Combined Feature set 1.2.9) had comparable performance in the 
train set in terms of RMSE (mean RMSE = 0.0319, R2 = 0.147) as 
compared to Linear Regression (mean RMSE = 0.318, R2 = 0.233), it 
demonstrated superior performance in the test set (RMSE = 0.0298, 
R2 = 0.093) as compared to the Linear Regression model 
(RMSE = 0.0346, R2 = −0.250; see Table 4).

Elastic net model of genetic features: comparison 
between feature sets

Based on the test set mean R2, before B-H GWAS mQTLs for 
Individual Probes (Feature set 1.1.1, 1.1.3–1.1.5, 1.1.7) had the 
best performance (R2 = 0.126) among feature sets. Using SNPs 
from the specific probe GWAS (Feature sets 1.1.1, 1.1.3–1.1.5, 
1.1.7 and 1.1.1, 1.1.3–1.1.5, 1.1.7) was superior to models 
combining SNPs across probe GWASes (Combined Feature sets 
1.1.9 and 1.2.9). In terms of RMSE, the GTEx eQTLs (Feature set 
2) performed best (RMSE = 0.293), followed by after B-H GWAS 
mQTLs for Individual Probes (Feature set 1.2.1, 1.2.3–1.2.5, 1.2.7; 
RMSE = 0.293). RMSE was similar between train and test sets for 
most feature sets.

TABLE 3 Heritability estimates (R2) for CpG methylation values from significant SNPs for each probe and mean heritability for train and test set.

Heritability
cg04692870-

Probe 1
cg09322432-

Probe 3
cg10840135-

Probe 4
cg15597984-

Probe 5
cg20046859-

Probe 7
Mean (SD)

R2 train set 0.0820 0.172 0.109 0.155 0.121 0.127 (0.0362)

R2 test set 0.168 0.0611 0.0337 0.240 0.0000475 0.101(0.100)
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Comparison between Elastic net and XGBoost 
algorithms for genetics only feature sets

Based on the test set mean R2, XGBoost (Table 5) showed 
poorer performance as compared to Elastic net (Table 6) for all 
feature sets. XGBoost showed superior performance in the train 
set for before B-H Correction mQTLs (Feature sets 1.1) but 
poorer performance in the test set as compared to the Elastic net 
models suggesting a greater risk of overfitting in this feature set. 
Based on the test set mean RMSE, performance appeared to 
be comparable between XGBoost and Elastic net, with XGBoost 
demonstrating slightly better results in the before B-H  

mQTLs (Feature sets 1.1), combined after B-H mQTLs 
(Combined Feature set 1.2.9), and the 41.5 MB-43.6 MB SNPs 
(Feature set 3).

Comparison between Elastic net models with and 
without non-genetic and PC features

Based on the test set mean R2, the addition of non-genetic and PC 
factors did not consistently improve performance of Elastic net 
models. Performance appeared to improve for before B-H Individual 
Probe mQTLs (Feature set 1.1.1, 1.1.3–1.1.5, 1.1.7, mean R2 from 
0.126 to 0.141; Table 7) and for after B-H Combined Probe mQTLs 

TABLE 5 Mean XGBoost model performance on five predicted CpG methylation levels with different sets of genetic features, predicted on an 
independent testing set.

XGBoost

1. GWAS of 75% of samples

2. GTEx
3. 41.5  Mb-

43.6  Mb

1.1. Before B-H correction 1.2. After B-H correction

1.1.1, 1.1.3–1.1.5, 
1.1.7. Individual 

CpG probes
1.1.9. Combined

1.2.1, 1.2.3–1.2.5, 
1.2.7. Individual 

CpG probes
1.2.9. Combined

Mean RMSE train set (SD) 0.00794 (0.00847) 0.0117 (0.00723) 0.0308 (0.0192) 0.0298 (0.0192) 0.0184 (0.00825) 0.0279 (0.0199)

Mean R2 train set (SD) 0.939 (0.0766) 0.745 (0.261) 0.180 (0.108) 0.246 (0.128) 0.420 (0.322) 0.368 (0.206)

Mean RMSE test set (SD) 0.0308 (0.0201) 0.0302 (0.0178) 0.0295 (0.0164) 0.0296 (0.0174) 0.0302 (0.0194) 0.0291 (0.0176)

Mean R2 test set (SD) 0.0164 (0.138) 0.0211 (0.0689) 0.0470 (0.147) 0.0528 (0.135) 0.0569 (0.0948) 0.100 (0.100)

TABLE 6 Mean Elastic net model performance on five predicted CpG methylation levels with different sets of genetic features, predicted on an 
independent testing set.

Elastic net

1. GWAS of 75% of samples

2. GTEx
3. 41.5  Mb-

43.6  Mb

1.1. Before B-H correction 1.2. After B-H correction

1.1.1, 1.1.3–
1.1.5, 1.1.7. 

Individual CpG 
probes

1.1.9. 
Combined

1.2.1, 1.2.3–
1.2.5, 1.2.7. 

Individual CpG 
probes

1.2.9. 
Combined

Mean RMSE train set (SD) 0.0292 (0.0188) 0.0308 (0.0190) 0.0317 (0.0191) 0.0319 (0.0192) 0.0317 (0.0193) 0.0321 (0.0200)

Mean R2 train set (SD) 0.340 (0.0418) 0.192 (0.0629) 0.1474(0.0398) 0.147 (0.0408) 0.148 (0.0528) 0.124 (0.0571)

Mean RMSE test set (SD) 0.0312 (0.0189) 0.0306 (0.0181) 0.0294 (0.0166) 0.0298 (0.0171) 0.0293 (0.0179) 0.0296 (0.0185)

Mean R2 test set (SD) 0.126 (0.101) 0.0640 (0.0442) 0.104 (0.0960) 0.0930 (0.0820) 0.121 (0.0519) 0.119 (0.0502)

TABLE 4 Performance of combined feature set 1.2.9.

Linear 
Regression

cg04692870-
Probe 1

cg09322432-
Probe 3

cg10840135-
Probe 4

cg15597984-
Probe 5

cg20046859-
Probe 7

Mean (SD)

RMSE train set 0.065 0.021 0.025 0.032 0.017 0.0318 (0.0193)

R2 train set 0.167 0.294 0.217 0.230 0.258 0.233 (0.0473)

RMSE test set 0.069 0.025 0.029 0.028 0.022 0.0346 (0.0196)

R2 test set −0.217 −0.403 −0.224 0.0747 −0.480 −0.250 (0.214)

GWAS of 75% samples after B-H correction, each of the 15 significant SNPs across all probe GWASes, mother’s income, household income, accommodation, mother’s highest education level, 
child’s ethnicity and child’s sex as independent predictors in the prediction of CpG loci methylation beta values for cg04692870-Probe 1, cg09322432-Probe 3, cg10840135-Probe 4, 
cg15597984-Probe 5, and cg20046859-Probe 7, using linear regression. Performance for each CpG site and average performance across five CpG sites used in prediction were reported.
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TABLE 8 Mean XGBoost model performance on five predicted CpG methylation levels with different sets of genetic and non-genetic features, 
predicted on an independent testing set.

XGBoost

1. GWAS of 75% of samples

2. GTEx
3. 41.5  Mb-

43.6  Mb

1.1. Before B-H correction 1.2. After B-H correction

1.1.1, 1.1.3–
1.1.5, 1.1.7. 

Individual CpG 
probes

1.1.9. 
Combined

1.2.1, 1.2.3–
1.2.5, 1.2.7. 

Individual CpG 
probes

1.2.9. 
Combined

Mean RMSE train set (SD) 0.00656 (0.00308) 0.0172 (0.0124) 0.0301 (0.0182) 0.0294 (0.0176) 0.0283 (0.0163) 0.0279 (0.0193)

Mean R2 train set (SD) 0.936 (0.0604) 0.721 (0.154) 0.214 (0.0606) 0.246 (0.0576) 0.288 (0.0492) 0.348 (0.134)

Mean RMSE test set (SD) 0.0318 (0.0214) 0.0311 (0.0178) 0.0304 (0.0186) 0.0304 (0.0187) 0.0299 (0.0188) 0.0295 (0.0177)

Mean R2 test set (SD) −0.0168 (0.145) −0.0507 (0.129) 0.0292 (0.0882) 0.0308 (0.113) 0.0731 (0.0765) 0.0898 (0.0906)

(Combined Feature set 1.2.9, mean R2 from 0.0930 to 0.0989) while it 
was worse or similar for other features and when using RMSE 
for comparison.

Comparison between XGBoost models with and 
without non-genetic and PC factors

Overall, the addition of non-genetic and PC factors appeared to 
be associated with worse or similar performance except for the GTEx 
eQTLs (Feature set 2, mean R2 from 0.0569 to 0.0731; Table 8).

Best performing model by CpG probe
The best performing model for CpG cg09322432-Probe 3 and 

CpG cg15597984-Probe 5 was the Elastic Net model, trained with 
both genetic and non-genetic features obtained from individual 
GWAS before B-H correction (Table 9). For CpG cg20046859-Probe 
7, the Elastic Net model that was trained with only genetic features 
obtained from individual GWAS before B-H correction was the best 
performing model. For CpG cg04692870-Probe 1, the Elastic Net 
model, trained with genetic features from individual GWAS after B-H 
correction, achieved the highest R2 performance, while the XGBoost 
model, trained with the same genetic features post B-H correction, 
demonstrated the best RMSE performance. Lastly, for CpG 
cg10840135-Probe 4, the Elastic Net model trained with GTEx 
features sets obtained the best R2 performance while the XGBoost 
model trained with genetic factors from the 41.5 Mb-43.6 Mb range 
had the best RMSE.

Feature importance of best performing model of 
each CpG

In general, the features with the top 10 SHAP values (Table 10) 
were significantly associated with methylation for their respective 
probes (Supplementary 5), however the most informative features were 
not necessarily the ones with the highest associations. Five out of the 
15 SNPs that were significant after B-H correction could be found 
among features with the 10 highest SHAP values. For CpG 
cg04692870-Probe 1, rs133335 GG had the highest SHAP value for 
both Elastic net and XGBoost models. For the Elastic Net model of 
CpG cg09322432-Probe 3, rs13447289 had the highest SHAP value. 
For the Elastic Net model of CpG cg10840135-Probe 4 all top 10 
features had the same SHAP value and this included rs133344 CC, 
which was significantly associated with methylation of CpG 
cg04692870-Probe 1 but not CpG cg10840135-Probe 4. For the 
XGBoost model of CpG cg10840135-Probe 4, rs5751045 TT and 
rs76550409 GG were the top two features and rs76550409 was also 
significantly associated with CpG cg10840135-Probe 4 after BH 
correction. For the Elastic Net model of CpG cg15597984-Probe 5, 
rs1883995 GG had the highest SHAP value and among the top 10 
features, rs134906 and rs762995 were both significantly associated 
with CpG cg15597984-Probe 5 after B-H correction. Lastly, for the 
Elastic Net model of CpG cg20046859-Probe 7, rs4253623 GG had the 
highest SHAP value. rs133344 was a top  10 feature for both 
cg04692870-Probe 1 and cg10840135-Probe 4 and significant after 
B-H correction in the GWAS study for CpG cg04692870-Probe 1.

TABLE 7 Mean elastic net model performance on five predicted CpG methylation levels with different sets of genetic and non-genetic features, 
predicted on an independent testing set.

Elastic net

1. GWAS of 75% of samples

2. GTEx
3. 41.5  Mb-

43.6  Mb

1.1. Before B-H correction 1.2. After B-H correction

1.1.1, 1.1.3–
1.1.5, 1.1.7. 

Individual CpG 
probes

1.1.9. 
Combined

1.2.1, 1.2.3–
1.2.5, 1.2.7. 

Individual CpG 
probes

1.2.9. 
Combined

Mean RMSE train set (SD) 0.0280 (0.0162) 0.0309 (0.0191) 0.0324 (0.0193) 0.0328 (0.0194) 0.0317 (0.0191) 0.0323 (0.0200)

Mean R2 train set (SD) 0.346 (0.0471) 0.193 (0.0683) 0.129 (0.0314) 0.142 (0.0292) 0.150 (0.0568) 0.121 (0.0525)

Mean RMSE test set (SD) 0.0326 (0.0262) 0.0310 (0.0184) 0.0304 (0.0176) 0.0308 (0.0188) 0.0292 (0.0175) 0.0297 (0.0184)

Mean R2 test set (SD) 0.141 (0.0934) 0.0419 (0.0346) 0.0744 (0.0658) 0.0989 (0.0872) 0.121 (0.0493) 0.122 (0.0568)
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TABLE 9 Comparison of the best performing probes.

cg04692870-
Probe 1, best R2

cg04692870-
Probe 1, best 

RMSE

cg09322432-
Probe 3

cg10840135-
Probe 4, best R2

cg10840135-
Probe 4, best 

RMSE

cg15597984-
Probe 5

cg20046859-
Probe 7

Mean of best 
performance/ 

RMSE (SD)

Model and 

feature set

Elastic net Ind GWAS 

after B-H genetics only

XGBoost Ind GWAS 

after B-H genetics only

Elastic net Ind GWAS 

uncorrected genetics + 

environmental

Elastic net GTEx XGBoost 2 MB genetic 

only

Elastic net Ind GWAS 

uncorrected genetics + 

environmental

Elastic net Ind GWAS 

uncorrected genetics 

only

–

No. of Features 2 SNPs (after 10% MAF 

filtering) + CpG probe

2 SNPs (after 10% MAF 

filtering) + CpG probe

190 SNPs (after 10% 

MAF filtering) + 5 

PCs + 8 non-genetic 

factors

548 SNPs (after 10% 

MAF filtering) + CpG 

probe

2,406 SNPs (after 10% 

MAF filtering) + CpG 

probe

170 SNPs (after 10% 

MAF filtering) + 5 

PCs + 8 non-genetic 

factors

153 SNPs (after 10% 

MAF filtering) + CpG 

probe

–

No. trained 300 300 300 302 305 301 304 –

Hyper 

parameters

alpha: 0 lambda: 0 objective: reg:squared 

error eta: 0.003009989 

max_depth: 10 

colsample_ bytree: 

0.5493245 subsample: 

0.8383967 nround: 1000

alpha: 0 lambda: 0 alpha: 0 lambda: 1 objective: reg:squared 

error eta: 0.006558051 

max_depth: 1 

colsample_ bytree: 

0.7361971 subsample: 

0.7592239 nround: 924

alpha: 0 lambda: 0 alpha: 0 lambda: 0 –

RMSE train set 0.0646 0.0639 0.0185 0.0249 0.0221 0.0279 0.0152 –

R2 train set 0.104 0.099 0.390 0.109 0.286 0.340 0.327 –

No. tested 101 102 101 102 100 100 102 –

RMSE test set 0.0582 0.0580 0.0176 0.0237 0.0237 0.0256 0.0161 0.0282 (0.017)

R2 test set 0.206 0.179 0.107 0.187 0.155 0.302 0.119 0.184 (0.078)
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TABLE 10 SHAP values of the top features for the best performing model for each CYP2D6 CpG probe.

CYP2D6 CpG 
probe

Machine learning 
algorithm

Features SHAP valuea Features SHAP valuea

cg04692870-Probe 1

Elastic net

rs133335 GG 0.0526 rs133335 AG 0.0282

rs133344 CC 0.0491 rs133344 CA 0.0229

rs133344 AA 0.0319

XGBoost

rs133335 GG 0.00731 rs133344 CC 0.00107

rs133344 AA 0.00665 rs133344 CA 0.000910

rs133335 AG 0.00182

cg09322432-Probe 3 Elastic net

PC2 0.00993 rs133563 GG 0.00255

PC5 0.00680 rs12628833 TT 0.00255

PC1 0.00595 rs56103417 CC 0.00216

rs13447289 TT 0.00470 rs5761074 GG 0.00213

PC3 0.00295 rs2858226 TT 0.00207

cg10840135-Probe 4

Elastic net

rs5758550 GG 0.000497 rs133331 TT 0.000497

rs133341 TT 0.000497 rs5751197 TT 0.000497

rs133344 CC 0.000497 rs129853 TT 0.000497

rs133333 GG 0.000497 rs133308 GG 0.000497

rs133332 TT 0.000497 rs133304 TT 0.000497

XGBoost

rs5751045 TT 0.00130 rs5996145 TC 0.000703

rs76550409 GG 0.00105 rs5751046 GG 0.000626

rs9611755 TT 0.000926 rs4822262 TT 0.000597

rs76392259 GG 0.000806 rs2267432 TT 0.000545

rs8190368 TT 0.000804 rs2017128 GT 0.000491

cg15597984-Probe 5 Elastic net

rs1883995 GG 0.00676 rs134906 TT 0.00379

PC4 0.00598 rs80442 CC 0.00374

PC1 0.00579 rs4820728 TT 0.00363

rs5995204 TT 0.00453 rs762995 GG 0.00340

PC5 0.00421 rs7288826 TT 0.00336

cg20046859-Probe 7 Elastic net

rs4253623 GG 0.00498 rs9614421 GG 0.00227

rs28667050 TT 0.00491 rs5748979 GG 0.00206

rs2005572 TT 0.00264 rs801581 TT 0.00196

rs34288001 GG 0.00256 rs4630866 TT 0.00178

rs117560457 TT 0.00244 rs12159191 GG 0.00174

aSHAP values for Elastic Net models are the coefficients of the features of each model, while SHAP values for XGBoost models are calculated for each feature by predicting contributions using 
a trained XGBoost model.

Discussion

Here we  compare feature selection and machine learning 
approaches in terms of their relative predictive value for CYP2D6 CpG 
loci status. Overall, Elastic net models of genetic features appeared to 
perform marginally better than heritability estimates and substantially 
better than Linear Regression and XGBoost models. The addition of 
non-genetic features appeared to improve performance for some but 
not all feature sets and probes. The best feature set and ML approach 
differed substantially between CpG sites, and a number of top 
variables were identified for each model.

When GWAS was performed to determine SNPs associated with 
CpG sites, a total of 15 SNPs were identified where several SNPs 

appeared to influence multiple CpG sites. This suggests that these 
SNPs are pleiotropic, meaning that they influence multiple traits. After 
filtering for variants with MAF > 10%, we identified 983 mQTLs from 
a GWAS of the training set comprising 75% of samples at an 
uncorrected threshold of p < 0.05 and 15 mQTLs at a corrected 
threshold. We  also utilised 548 eQTLs influencing expression of 
CYP2D6 across the body from GTEx and 2,406 from a 2 MB range 
around the gene. That only 15 significant SNPs were left suggesting 
that there are informative rare variants that are left out by filtering. 
However, this was necessary in order to prevent errors when running 
the prediction algorithms but may be a potential limitation of our 
approach given the importance of rare variants in CYP2D6. Even 
among the significant SNPs where LD pruning had been conducted, 
there was substantial collinearity, which may explain the relative 
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success of the Elastic net approach especially for cg09322432-Probe 3 
and cg15597984-Probe 5, which have a large number of significant 
mQTLs. Future approaches may infer epigenetics or other expression-
based markers in CYP2D6 based on functional annotation from deep 
learning algorithms such as Enformer (Avsec et  al., 2021) and 
DeepSEA (Zhou et al., 2018), however RNAseq data on CYP2D6 did 
not pass quality checks in our data and it would not have been possible 
to validate those findings from available data. Additionally, many of 
our significant SNPs were located beyond the effective range of these 
algorithms, e.g. rs73885718 more than 1 MB upstream at 22:41386554 
(GRCh37). To support this finding, there have been mQTL studies 
that have shown that the regulation of methylation at a few CpG sites 
is controlled by SNPs distal to the CpG sites (McVicker et al., 2013; 
Gaunt et al., 2016).

Various demographic variables contribute to individual CpG 
sites in varying degrees. Ethnicity influenced methylation at two 
CpG sites, maternal age had an influence at one site and maternal 
income had an influence at another site. In particular, Chinese 
appeared to have greater methylation in cg09322432-Probe 3 and 
cg15597984-Probe 5, Malays had greater methylation than 
Indians. This is in keeping with literature on CYP2D6 allele 
frequency which is known to vary among ethnic groups 
(Bradford, 2002) which affects gene expression and function. 
Chinese have been shown to have a greater frequency of the 
CYP2D6*10 haplotype (Qian et al., 2013). It may be useful to test 
for the effects of rare diplotypes on CpG sites in future research. 
In cg09322432-Probe 3 and cg15597984-Probe 5 the best 
performing models included non-genetic factors and the PCA 
components, whereas the best performing models for the other 3 
probes were purely SNP-based. This is in keeping with the linear 
regression results that found associations with ethnicity in these 
two probes and provides further support for the approach. Age is 
known to have effects on methylation, and it has been shown 
epigenetics can be used as a biological clock (McEwen et al., 2020; 
McGill, 2020; Lahiri et al., 2022). The effect of maternal age on 
cg17498424-Probe 6, suggests that this could be  a heritable 
epigenetic trait potentially affecting CYP2D6 function influenced 
by maternal ‘biological age’. There may be other environmental 
factors such as smoking during pregnancy that are not captured 
by ancestry but significantly contribute to variation in 
methylation (Galanter et al., 2017). Future work could include 
other environmental factors of GUSTO mothers and children 
such as diet and exposure to environmental pollutants (Keil and 
Lein, 2016).

We identified variation in heritability between CpG sites from 
close to 0 to 0.24 and observed poor performance of a linear regression 
model. Many epigenetics studies make use of global methylation over 
a region and our finding of differences between specific CpG sites in 
the same gene suggests that a finer-grained approach is valuable. It was 
unexpected that heritability performed better in the test set than the 
training set with cg04692870-Probe 1 and cg15597984-Probe 5, which 
will need further replication. That Elastic net was slightly better and 
XGBoost was substantially worse than heritability estimates for the 
same features suggests that linear approaches that resolve collinearity 
may have been more appropriate for this problem.

In the analysis of ML algorithms, Elastic net was superior to 
XGBoost for identical data and feature sets except for cg04692870-
Probe 1 and cg10840135-Probe 4. XGBoost showed superior 

performance in Kaggle competitions (Chen et al., 2015), and it is 
unexpected that XGBoost performs poorer than Elastic net in our 
dataset. A reason XGBoost is not performing as well as expected may 
be due to the number of samples in training data that is significantly 
smaller than the number of features which likely causes overfitting. 
Our dataset also consists of mainly categorical data, which algorithms 
like LightGBM (Ke et al., 2017) or CatBoost (Dorogush et al., 2018) 
are better able to support as compared to XGBoost. Elastic Net 
performing comparably to that of XGBoost may be due to its ability 
to handle features with collinearity. The grouping effect of Elastic Net 
groups variables that are highly correlated together, and either drops 
or retains all of them together (Zou and Hastie, 2005).

Overall, the best performances appeared to be observed from 
a pure ridge regression for features selected by GWAS at lower or 
uncorrected thresholds. When additional data such as 
demographic variables have been found to be  associated by 
conventional statistics, they also improved performance of the 
model. SNPs from a 1 Mb range around CYP2D6 CpG sites, 
which included SNPs that may not be of significance to CYP2D6 
and its methylation, as well as GTEx SNPs appeared to 
be informative for cg10840135-Probe 4. On one hand inclusion 
of redundant SNPs could lead to an increase in noise in the CpG 
methylation prediction model fitting procedure, resulting in less 
accurate estimation of the coefficients and decreased prediction 
accuracy. On the other hand, high thresholds may result in the 
exclusion of informative SNPs that do not survive standard 
statistical thresholds. Individually, these SNPs would not 
be considered to be statistically valid mQTLs. However it is an 
empirical question whether a lower threshold and inclusion of 
‘noisier’ or lower confidence features, which probably include 
several ‘false positives’, improves performance in the test set. 
Privé et al. (2019) demonstrated that by optimising across a wide 
range of significance thresholds the generalisability and 
predictive value of polygenic risk scores (PRS) could 
be substantially improved. The improved performance of models 
including lower thresholds has also been demonstrated in deep 
learning models (Fergus et al., 2018).

We note a number of limitations of the study. This was a relatively 
small dataset; feature selection was performed within the same set 
rather than from an external dataset and there was some evidence of 
overfitting. We mitigated the possibility of data leakage by performing 
GWAS on only the 75% randomly split training set, such that SNPs 
significantly associated with the remaining 25% testing set would not 
be included in the training model. In addition, repeated k-fold cross 
validation (k = 10, repeats = 5) was used during the model training 
phase to mitigate the risk of over-fitting. Nonetheless there were 
differences in performance between the training set and test set that 
were quite evident when XGBoost was applied in the before B-H 
GWAS set (Feature set 1.1). This is significant as normal pre-processing 
methods, such as the method chosen for multiple testing correction 
for GWAS and its threshold (Loh et al., 2022), could make a difference 
in models’ predictive performances, and this could be explored in 
future work. This has implications for the way GWAS studies might 
be used in the future.

Another limitation was that we  were constrained to use 
MAF < 10% filtering which may result in the loss of informative SNPs 
that could potentially contribute greatly to ML models. For example, 
filtering for SNPs for MAF > 10% resulted in the removal of as many 
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as 700 SNPs in the 41.5 Mb – 43.6 Mb range, and these SNPs with rare 
alleles often have larger phenotypic effects in comparison to common 
(MAF > 0.05) disease-associated SNPs (Chattopadhyay and Lu, 2020). 
This could potentially explain the poor performance of some of our 
ML models. One could also consider training an ensemble model, 
such as jointly training Elastic Net and XGBoost models in order to 
prevent overfitting due to the high dimensionality of genetic data 
(through Elastic Net) while simultaneously exploiting the nonlinear 
relationships and interaction effects (through XGBoost; Elgart et al., 
2022). Lastly, there is a need for a completely independent dataset with 
more samples that can be used for validation to evaluate our models. 
Our models should be able to generalise to other datasets to show that 
they are not overfitted to our data.

This can serve as preliminary work for an improved model for the 
prediction of methylation using genetic variants in a clinical setting. 
Due to findings for enrichment of eQTLs at known GWAS risk loci 
(Nicolae et al., 2010) and overlaps between GWAS risk variants and 
genomic loci affecting markers of genome regulation (Zhang et al., 
2015; Chen et al., 2016; Tehranchi et al., 2016), tools such as PrediXcan 
and FUSION (Gusev et al., 2016) were implemented for transcriptome-
wide association study (TWAS). These tools use the established 
associations between SNPs and gene expression to impute expression 
into GWAS samples, which is then used to identify genes relevant to 
phenotype by testing for their association. This method has been 
widely used to investigate the role of gene expression in complex traits 
(Ioannidis et al., 2018; Khawaja et al., 2018; Mancuso et al., 2018; 
Roselli et al., 2018). These tools represent a powerful approach for 
interpretation of GWAS findings. Similarly, to these tools, 
bioinformatics models from this study could allow the development 
of novel tools to test for association between predicted methylation 
levels and a phenotype, enabling one to carry out an epigenome-wide 
association study (EWAS) to identify associations between the trait 
and imputed epigenome at CpGs across the genome. Existing 
databases are largely based on expressions and transcriptions due to 
the amount of research focused on them. It would be powerful if our 
work can add value to them to accomplish EWAS.
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