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Introduction: Multiple sclerosis (MS) is a persistent neurological condition

impacting the central nervous system (CNS). The precise cause of multiple

sclerosis is still uncertain; however, it is thought to arise from a blend of genetic

and environmental factors. MS diagnosis includes assessing medical history,

conducting neurological exams, performing magnetic resonance imaging (MRI)

scans, and analyzing cerebrospinal fluid. While there is currently no cure for MS,

numerous treatments exist to address symptoms, decelerate disease progression,

and enhance the quality of life for individuals with MS.

Methods: This paper introduces a novel machine learning (ML) algorithm utilizing

decision trees to address a key objective: creating a predictive tool for assessing

the likelihood of MS development. It achieves this by combining prevalent

demographic risk factors, specifically gender, with crucial immunogenetic risk

markers, such as the alleles responsible for human leukocyte antigen (HLA) class

I molecules and the killer immunoglobulin-like receptors (KIR) genes responsible

for natural killer lymphocyte receptors.

Results: The study included 619 healthy controls and 299 patients affected

by MS, all of whom originated from Sardinia. The gender feature has been

disregarded due to its substantial bias in influencing the classification outcomes.

By solely considering immunogenetic risk markers, the algorithm demonstrates

an ability to accurately identify 73.24% of MS patients and 66.07% of individuals

without the disease.

Discussion: Given its notable performance, this system has the potential to

support clinicians in monitoring the relatives of MS patients and identifying

individuals who are at an increased risk of developing the disease.

KEYWORDS

decision trees, human leukocyte antigen, immunogenetic risk markers, likelihood of
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1. Introduction

Multiple sclerosis (MS) is an autoimmune-mediated disorder
that affects the central nervous system (CNS) and is the
most common cause of neurological disability in young adults
(Compston and Coles, 2008; Ghasemi et al., 2017). The main
feature of this condition is the appearance of areas of demyelination
in the cerebral white and gray matter. In addition, a series of
other processes such as infiltration of inflammatory cells in the
parenchyma, oligodendrocytes damage and axonal loss have been
reported (Lucchinetti et al., 2011; Dendrou et al., 2015; Reich
et al., 2018). This can result in autonomic and sensorimotor
defects, visual disturbances, ataxia, fatigue, cognitive disorders, and
emotional problems (Hafler, 2004; Compston and Coles, 2008).
Although the disease often has no symptoms in its early stages,
it inevitably leads to disability if left untreated (Rolak, 2003;
Brownlee et al., 2017). Depending on the site of the neurologic
lesions, clinical symptoms can vary greatly (Nylander and Hafler,
2012). Two main forms of MS have been distinguished based
on clinical characteristics, disease course and etiology: primary
progressive multiple sclerosis (PPMS) and relapsing-remitting
multiple sclerosis (RRMS) (Klineova and Lublin, 2018).

According to the World Health Organization (WHO), over 2.8
million people worldwide were diagnosed with MS (World Health
Organization [WHO], 2023) and the prevalence is expected to
increase over time (Browne et al., 2014; Dobson and Giovannoni,
2019). Interestingly, MS prevalence rates vary by latitudinal
gradient around the world, increasing up to 10-fold between the
equator and 60◦ north and south parallel (Simpson et al., 2019;
Sabel et al., 2021). In detail, North Europe and North America
have a high prevalence (> 30/100,000), southern parts of the
United States and Central America have a medium prevalence (5–
30/100,000), and Asia and South America have a low prevalence
(5/100,000) (Koch-Henriksen and Sørensen, 2010; Tullman, 2013).
Nevertheless, Sardinia, the second largest island of Mediterranean
Sea, stands out as an exception to this gradient, with one of
the highest MS rates in the world (361/100,000 inhabitants)
(Frau et al., 2021).

Given its relevant prevalence, MS represents a significant health
and socioeconomic burden on society at both the individual and
national levels (Battaglia et al., 2022). Due to its wide range of
manifestations, debilitating nature and onset during the most
productive and active years of patients’ lives, MS has profound
effects on their physical, psychological, social and economic
wellbeing (Amato et al., 2002; Ghasemi et al., 2017).

Unfortunately, no effective cure for the disease has been
discovered to date, due to an incomplete understanding of the
pathogenic mechanisms and underlying causes (Auletta et al., 2012;
Reich et al., 2018). The likelihood for an individual to develop
MS is strongly influenced by her or his ethnic background and
family history of disease, suggesting that genetic susceptibility
is a key determinant of risk. Over the last decade, genome-
wide association studies (GWAs) have identified more than 230
loci associated with MS susceptibility (The International Multiple
Sclerosis Genetics Consortium, and The Wellcome Trust Case
Control Consortium 2, 2011; Mitrovič et al., 2018; International
Multiple Sclerosis Genetics Consortium, 2019a,b). However, only
a few of these loci, such as IL2RA (rs2182410), CD58 (rs2300747),
TNFRSF1A (rs1800693), EVI5 (rs6689470), RGS1 (rs7535818), have

consistently shown associations in all GWAS studies (Andlauer
et al., 2016). These single nucleotide polymorphisms (SNPs) often
impact regulatory regions or key susceptibility genes involved in
the innate immune response, inflammation, cell death regulation,
or synaptic function. Indeed, the main signal genome-wide maps
on the major histocompatibility complex (MHC) region with
the strongest association with the class II region of the human
leukocyte antigen (HLA) gene cluster and explains up to 10.5%
of the genetic variance underlying risk (Gourraud et al., 2012;
Miljković and Spasojević, 2013; Veroni and Aloisi, 2021).

It is well established that the polymorphic alleles of the HLA
complex have a significant effect on the risk of developing MS.
For example, HLA-DRB1∗15 alleles, especially HLA-DRB1∗15:01,
are highly associated with MS. On the plus side, HLA-DRB1∗03
and HLA-DRB1∗04 are also highly associated with MS (Brynedal
et al., 2007; Hollenbach and Oksenberg, 2015). These genes encode
proteins that bind and present antigenic peptides, which are
displayed on the surface of cells for recognition by T cells (Huppa
and Davis, 2003; van den Elsen, 2011; Kelly and Trowsdale, 2019).
Consequently, these molecules play an important role in both
defense against pathogens and autoimmunity (Todd et al., 1988;
Nepom and Erlich, 1991; Prentice et al., 2015; Seliger et al., 2017).

Besides their role in antigen presentation, Class I HLA ligands
are also recognized by killer immunoglobulin-like receptors (KIRs)
expressed on natural killer (NK) and CD4+ and CD8+ T cells
(Pende et al., 2019; Duygu et al., 2021). The main function of these
receptors is to reduce the lymphocyte activation and attenuate the
innate killing capacity of NK cells (Hanson et al., 2022). NK cells
express 15 unique KIR receptors that have different interactions
with specific subtypes of HLA Class I molecules (Dubreuil et al.,
2021). The interaction KIR/HLA results in either activation or
inhibitory signals (Biassoni and Malnati, 2018). Given that KIR may
also be expressed by CD4 T-cells, it is conceivable that KIR diversity
can influence specific antibody production and thus also explain
some HLA class II associations in MS.

Several studies have demonstrated that various KIR haplotypes
may be protective against MS. In fact, different KIR profiles, are
involved both immunoregulatory dysfunction and inflammatory
processes underlying MS pathogenic mechanisms (Lorentzen et al.,
2009; Fusco et al., 2010; García-León et al., 2011).

In a previous work, some of the authors of this paper
demonstrated that the analysis based on the entropy of the HLA
and KIR immunogenetic systems could be used to determine an
individual’s risk to develop MS (Melis et al., 2019). The entropy-
based risk test combines standard statistical methods to evaluate
immunogenetic parameters, associated with MS, with the analysis
of the entropy for measuring the global disorder status. The
definition of entropy introduced by Shannon was used to study the
complex genetic systems, such as HLA and KIR and their impact
on immune response mechanisms; the formula to compute the
entropy involves probabilities and, since there is no theoretical
model to derive those values, the frequencies parameters appearing
were obtained experimentally from the control group. First, the
aforementioned method implies the calculation of two entropies for
each person, one for the HLA haplotypes, that is calculated for each
of the 16 possible HLA haplotypes and the other for the KIR genes,
that is calculated only for 6 couples of inhibitory KIR genes. Then,
to allow the comparison between controls and patients, two ratios
RHLA and RKIR are calculated between the entropy of patients and
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the mean entropy of controls, for HLA haplotypes and KIR genes,
respectively. Finally, the index used to assess the risk of each subject
in the study is the total entropy ratio Rtot , that is calculated as the
mean between HLA’s entropy ratio (RHLA) and KIR’s entropy ratio
(RKIR). Based on the total entropy ratio Rtot of patients and controls,
it was possible to distinguish three entropy intervals corresponding
to three degrees of risk R of developing MS (low, medium, high).
When analyzing the HLA and KIR systems combined, the total
entropy ratio was significantly higher, with a p-value of 0.002, in
patients affected by RRMS compared to controls.

Taking into consideration the complexity of MS, the present
study sought to devise a novel algorithm employing machine
learning (ML) techniques based on individual HLA and KIR
profiles of MS patients and healthy subjects. The primary goal
of this new algorithm was to establish a predictive tool capable
of discerning the likelihood of developing the disease, while also
predicting the onset of the two clinical forms, RRMS or PPMS. The
method combines the most common demographic risk factors, i.e.,
the gender, with the most important immunogenetic risk markers
previously established (Melis et al., 2019). In particular, the alleles
coding for the HLA class I and II molecules (HLA-A, -B, -C, -DRB1)
and the KIR genes encoding the receptors of NK lymphocytes
have been included in the input features of the ML model. The
rationale behind limiting the analysis to only the HLA and KIR loci
is twofold. Firstly, this approach allows us to directly compare the
efficacy of the new ML predictive model with the entropy analysis
employed in a previous study (Melis et al., 2019). Secondly, the
decision to include the KIR genes in the analysis is supported by
recent publications suggesting that NK cell-mediated immunity
may actively regulate MS evolution through different combinations
of KIR/HLA haplotypes (Kaur et al., 2013; Bettencourt et al., 2014;
Shahsavar et al., 2016; Karimizadeh et al., 2020).

The proposed predictive model makes use of decision trees
(DTs) (Mitchell, 1997; Breiman, 1998) which are a simple
supervised ML classification method. DTs offer a simple and
intuitive way to represent and interpret gathered data. The unique
feature of their decision-making process has made them quite
popular in a wide range of medical fields (Lyell et al., 2021).
Moreover, differently from many ML techniques based on black
box models, difficult to be interpreted, DTs are able to provide,
as a result of the classification, comprehensible rules behind the
decisions taken, usable by medical staff for prognosis purposes.
For the sake of comparison, a classical Naïve Bayes (NB) model
(Mitchell, 1997) has been implemented, as it is a common
benchmark in classification problems.

2. Materials and methods

2.1. Patients and control recruitment

A cohort of 299 MS patients who were referred to the Sardinian
Regional Government Centre for Diagnosis and Treatment of MS
was enrolled. The cohort was stratified into 218 patients with RRMS
and 81 patients with PPMS. All patients were unrelated and met the
following inclusion criteria: diagnosed with MS according to the
revised McDonald criteria (Thompson et al., 2018); clinical course
of RR or PP MS (Lublin and Reingold, 1996); older than 18 years of
age. Patients presenting clinically isolated syndrome or any other

CNS diseases were not considered eligible for enrollment. Random
recruitment was restricted to patients who gave written informed
consent for their participation in the study as well as for DNA
analysis.

The following data were collected for each patient: year of onset
of MS; disease duration at the last follow-up; level of disability
at the last follow-up according to the expanded disability status
scale (EDSS) (Kurtzke, 1983); progression index (PI), which was
calculated as the ratio EDSS/disease duration (Cendrowski, 1986).
Moreover, a group of 619 unrelated healthy controls from the
Sardinian Voluntary Bone Marrow Donor Registry, all aged at
least 50 years at the time of enrollment, was recruited. This was
done to minimize the probability of including subjects at risk of
developing MS in the control group, given that most individuals
are diagnosed with MS between the ages of 20 and 50 years
(Vaughn et al., 2019).

All the 619 healthy controls and the 299 patients affected by
MS originated from Sardinia at least two generations. This is to
avoid bias due to the peculiar genetic background of the Sardinian
population (Contu et al., 1992).

2.2. HLA alleles and KIR genotyping

Genomic DNA was extracted from peripheral blood
mononuclear cells according to manufacturer’s instructions
(QIAGEN, 2023).

All 918 samples from patients and controls were genotyped at
high resolution for the alleles at HLA-A, -B, -C, and -DRB1 loci
using next-generation sequencing (NGS) AlloSeq Tx17 (CareDx)
method based on Hybrid Capture Technology and performed on
the Illumina platform. The data was analyzed using the AlloSeq
Assign R© software (v.1.0.2).

The presence of 11 KIR genes (KIR2DL1, KIR2DL2, KIR2DL3,
KIR2DL5, KIR3DL1, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5, and
KIR3DS1) in patients and controls was determined by typing
genomic DNA through PCR with primers specific to each locus,
following a previously reported method (Uhrberg et al., 1997;
Gagne et al., 2002).

The HLA alleles and KIR of controls and patients are listed in
Table 1.

TABLE 1 Immunogenetic and genetic parameters of the cohort used to
build the models and number of values.

Parameters Number of
values

Gender Female, male 2

HLA-A* 01, 02, 03, 11, 23, 24, 25, 26, 29, 30, 31, 32,
33, 36, 66, 68, 69, 74

18

HLA-B* 03, 07, 08, 13, 14, 15, 18, 27, 35, 37, 38, 39,
40, 41, 44, 45, 47, 49, 50, 51, 52, 53, 55, 56,

57, 58, 73, 78

28

HLA-C* 01, 02, 03, 04, 05, 06, 07, 08, 12, 14, 15, 16,
17

13

HLA-
DRB1*

01, 03, 04, 07, 08, 09, 10, 11, 12, 13, 14, 15,
16

13

KIR 2DL1, 2DL2, 2DL3, 2DL5, 3DL1, 2DS1,
2DS2, 2DS3, 2DS4, 2DS5, 3DS1

11
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Note that some controls and patients show the same HLA
parameters and the same KIR genes. In particular, this happens for:

• three couples patient/control
• one subset of three patients and one control
• one subset of two patients and four controls,

all with HLA-A∗30, HLA-B∗18, HLA-C∗05, HLA-DRB1∗03 in
common, associated with MS susceptibility.

3. Classification models

3.1. Naïve Bayes and decision trees

In this work, a binary classification has been performed
between healthy people (class controls = 0) and patients (class
patients = 1) in order to evaluate the risk of developing MS.
In this context, DT models, which belong to the supervised ML
classification methods, have been applied.

Decision trees (DTs) are one of the oldest ML techniques
referring to a hierarchical model of decisions and their
consequences. The tree partitions a data set that contains examples
belonging to different classes, two or more, associated to a label
or a target value, which specifies the exact class. Each example is
composed of a number of different and independent attributes,
also called features. The rationale of DTs classifier is expressed
by recursively partitioning of the feature space. Among all of ML
techniques available to address the classification problems, such as
for example neural networks (NNs) and support vector machines
(SVMs), the main reasons that led us to the choice of DTs for this
specific application are:

(1) DTs can handle both categorical and numerical input data;
(2) DTs are self-explanatory and, when compacted, they are

also easy to interpret (Rokach and Maimon, 2015). This
property is fundamental for the purpose of the work
because it can be possible for medical professionals to
comprehend the set of rules behind each decision;

(3) DTs can deal with datasets that may contain errors and
missing values;

(4) DTs allow us to directly evaluate the contribution of each
feature, which is essential to interpret the decision made.

In particular, the proposed prediction models follow the
implementation adopted in the Matlab toolbox for statistics and
machine learning (The MathWorks Inc, 2019).

A Naïve Bayesian (NB) classifier can be implemented as a
benchmark for comparison to DTs model. Despite its simple

structure, the NB algorithm generally provides very competitive
results. Based on Bayes’ theorem (Mitchell, 1997), it assumes
that each feature is independent and does not interact with
each other, such that each feature independently and equally
contributes to the probability of a sample to belong to a specific
class.

More details on DT and NB models are reported in a
Supplementary File.

Occasionally, to obtain a model with more accurate and reliable
decisions than those of single models, ensemble learning can be
adopted. Ensemble learning is a method that combines multiple
models to produce a single model with improved results (Rokach
and Maimon, 2015). A majority voting ensemble (MVE) combines
the predictions from multiple models. In the case of classification,
the MVE label is the label with the majority of votes. There are
two approaches: hard voting and soft voting. Hard voting involves
predicting the class label with the most votes. Soft voting sums the
predicted scores for each class label and predicts the class label with
the largest score.

3.2. Cross validation

Generally speaking, test performance gives an idea of how well a
model will perform on unseen data. However, in case of limited data
set, they can greatly vary depending on which observations were
used in the training and testing sets. One way to avoid this problem
is to create several models using a different training and testing set
each time, then evaluating the performance as the average of all
of the test performance. This general method is known as cross-
validation and a specific form of it is known as leave-one-out (LOO)
cross-validation. LOO adopts the following approach to evaluate a
model: the dataset is split into a training set and a test set, using
all but one observation as part of the training set. The model,
built using only data from the training set, is used to predict the
response value of the one observation left out and to calculate the
performance. The process is repeated k times, where k is the total
number of observations in the dataset. Then, the test performance
is calculated as the average of all the k results.

Both in decision tree and Naïve Bayes classifiers, the optimal
threshold for the posterior probability is normally obtained by
the cross-validation procedure in correspondence to the optimal
operating point of the receiving operating characteristic (ROC)
curve (Fawcett, 2006).

4. Encoding of HLA

Data pre-processing and encoding are mandatory in order
to improve efficiency. As reported in Table 1, some considered

TABLE 2 Representation of the haplotype example without encoding (encoding 1).

Feature
index

1 2 3 4 5 6 7 8

Feature
name

HLA-A1* HLA-A2* HLA-B1* HLA-B2* HLA-C1* HLA-C2* HLA-DRB11* HLA-DRB12*

Value 01 68 08 35 04 07 03 04
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attributes are qualitative, i.e., gender (male, female) and genotype
data like human leukocyte antigens–HLA (HLA-A∗01, HLA-A∗02
alleles, etc.). As the DT model can handle categorical variables,
there is no need to use any encoding for gender, while for the
genotype data, several encodings have been tested to feed the
prediction model. Conversely, the 11 KIRs (2DL1, 2DL2, etc.) are
encoded in binary form with 1 and 0 indicating the presence or
absence of each KIR, respectively.

In Table 1, the HLAs are arranged in ascending order and their
variants are only those present in the dataset. In humans, the HLA
is a complex of genes residing on chromosome 6; considering that a
human genome contains pairs of chromosomes, there are 2 copies
of each HLA.

In this work, five different types of HLA data encoding,
explained in the following, have been tested. For the sake of clarity,
the different data encodings are reported (see Tables 2–6) referring
to the haplotype example: HLA-A∗01, HLA-A∗68, HLA-B∗08, HLA-
B∗35, HLA-C∗04, HLA-C∗07, HLA-DRB1∗03, HLA-DRB1∗04.

In the following, the five data coding are reported. Note that,
the superscripts 1 and 2 refer to the HLA allele variants in the
two chromosomes.

(1) Without encoding: the information about the HLAs is
maintained as it is. Thus, the dataset contains 8 categorical
features (see Table 2). The value of the attribute is represented
by a letter and a number, e.g., HLA-A1∗01, or HLA-A2∗68,
which means that the class of the HLA is A, and the alleles
are, respectively, 01 and 68. In this way, the single HLA feature
can take several values; thus, HLAs assume higher importance
with respect to KIRs that are binary variables. Since the HLA
alleles in the chromosomes are arranged in ascending order,
the information on the first one contains some information
about the second one. For example, if the feature value HLA-
B1∗08 is present, the values of the feature HLA-B2∗ cannot be
lower than 08, i.e., features HLA-B2∗03 or HLA-B2∗07 cannot
appear. This consideration is valid also for the following
encoding 2.

(2) One-hot (1H) encoding 1: in one-hot encoding, a feature with
d possible values is transformed into d binary features. In
this case, there is one feature for each allele variant (equal to
1 or 0 for presence or absence) and the HLA allele variants
in the two chromosomes supply two different features. The
names of the features are represented by a letter and a number.
Referring to the proposed haplotype example, HLA-A1∗01
assumes the value 1, as well as HLA-A2∗68, whereas the other
features HLA-A1∗ and HLA-A2∗ have the value 0. And so
also for the other HLAs. This leads to a total number of
features equal to 131 in the available dataset and, for each
instance, only 8 features assume a value equal to 1, whereas
the other 123 are zeros.

(3) One-hot encoding 2: every attribute value related to each one
of the 4 HLAs (A, B, C, DRB1) is encoded with one-hot
encoding, thus each HLA allele supplies one feature. This leads
to a number of features equal to 72 in the available dataset
(see Table 1). With this encoding, for each instance, at most
8 features assume a value equal to 1.

(4) Combination without encoding: in this encoding, the HLA
alleles related to the same gene are combined to form one T
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TABLE 4 Representation of the haplotype example for one-hot encoding 2 (encoding 3).

Feature
index

1 . . . 17. . . 25. . . 42. . . 47. . . 54. . . 68. . . 69. . . 72

Feature
name

HLA- A*01 . . . HLA-
A*68. . .

HLA-
B*08. . .

HLA-
B*35. . .

HLA-
C*04. . .

HLA-
C*07. . .

HLA-
DRB1*03. . .

HLA-
DRB1*04. . .

HLA-
DRB1*09

Value 1 0 10 10 10 10 10 10 10 0

TABLE 5 Representation of the haplotype example for the combination
without encoding (encoding 4).

Feature
index

1 2 3 4

Feature
name

HLA-A* HLA-B* HLA-C* HLA-
DRB1*

Value (01, 68) (08, 35) (04, 07) (03, 04)

single feature; the attribute value is represented by a letter and
two numbers, i.e., HLA-C∗(04, 07), which means that the HLA
belongs to the type C and the numbers are related to the allele
variants in the two chromosomes. This leads to 4 features, one
for each HLA type, i.e., HLA-A, HLA-B, HLA-C, and HLA-
DRB1 and a number of possible values equal to 419. In this
way, the single HLA feature can take several values; thus, like
in the first encoding, HLAs assume higher importance with
respect to KIRs that are binary variables.

(5) Combination 1H encoding: the previous combination of HLAs
is encoded with one-hot encoding, which means that the 419
values are transformed into 419 features that can only have two
possible attribute values, 0 or 1.

Tables 7, 8 show the number of features and some examples of
possible values for data representations without and with encoding,
respectively. For more details about attribute values refer toTable 1.

Generally speaking, different encodings produce different trees
and assign different weights to their features. In particular, when
there are features with a large number of values on which the tree
can split, as for HLAs in encoding 1 and 4, the tree can grow in both
directions. Moreover, these features will be given more importance
than the binary features (KIR). Typically, these encodings produce
the best results but are difficult to understand. On the contrary,
when there are a few options for splitting, the decision trees result
very sparse. The situation gets worse when features have a small
number of values. One-hot encoding (encoding 2, 3, 5) falls in
this category with just two values. In this case, the trees generally
tend to grow in one direction, the one with zeroes in the variables.
Moreover, using these last encodings, the reliability of the Gini’s
index for the choice of the root node is very weak, since all the single
conditions have low probability, and the impurity gain is very low.

5. Performance indexes

In the following section, performance of the proposed classifiers
were tested on the database described in Section “2.1. Patients
and control recruitment” by using the following performance
indexes: TPR (true positive rate, also known as sensitivity or
recall), which measures the ability of the model to correctly
identify patients (people affected by MS); TNR (true negative
rate, also known as specificity) which measures the ability of
the model to correctly identify controls (healthy people); BA
(balanced accuracy), suitable for imbalanced datasets since it
is low if the model only predicts accurately for the majority
class in the dataset, which is the arithmetic mean of sensitivity
and specificity. Moreover, positive predictive value (PPV) and
negative predictive value (NPV) allow to clinically say how likely
a patient has or has not a specific disease. PPV and NPV
have a strict dependence on prevalence (Prev), most commonly
described as the percentage of people with the disease in a specified
population. Generally speaking, as the prevalence increases, the
PPV also increases but the NPV decreases. Similarly, as the
prevalence decreases the PPV decreases while the NPV increases.
More details on these performance indexes are reported in a
Supplementary File.

Another performance index is the area (AUC) under the ROC
curve (Fawcett, 2006).

Moreover, risk R of MS is defined as the difference between the
percent of patients and the percentage of controls with a certain
combination of HLAs.

6. Results

Given the limited size of the dataset (918 instances of patients
and controls), splitting the data in training and test set has certain
limitations. Indeed, when the dataset is small, the method is prone
to high variance. To deal with this issue, 100 test sets of 60 instances
have been created, each one composed by 30 instances of class
“patients” and 30 instances of class “controls.” When creating the
100 test sets, each couple of patients and each couple of controls
have been equally represented. For each test set, a model has been

TABLE 6 Representation of the haplotype example for the combination 1H encoding (encoding 5).

Feature
index

1 . . . 16 . . . 261 . . . 318 . . . 391 . . . 419

Feature
name

HLA-
A*(01,

01)

. . . HLA-
A*(01,

68)

. . . HLA-
B*(08,

35)

. . . HLA-
C*(04,

07)

. . . HLA-
DRB1*(03,

04)

. . . HLA-
DRB1*(13,

15)

Value 0 0 1 0 1 0 1 0 1 0 0
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TABLE 7 Number of features, possible values and examples for data representations without encoding.

Data
represen-
tation

Number of
HLA

features

Number of values Attribute value

HLA-A* HLA-B* HLA-C* HLA-DRB1* Total

1−without
encoding

8 14 18 24 25 12 12 13 13 131 HLA-A*01, HLA-A*11,
HLA-A*02, etc.

4−combination
w/o encoding

4 95 174 79 71 419 HLA-A*(01, 01)
HLA-A*(01, 11),

HLA-A*(02, 32), etc.

TABLE 8 Number of features, possible values and examples for data
representations with one-hot encoding.

Data
represen-
tation

Number of
HLA

features

Total
number of
values per

feature

Attribute
value

2−1H encoding
1

131 2 0, 1

3−1H encoding
2

72 2 0, 1

5−combination
1H encoding

419 2 0, 1

trained on the remaining 858 instances, 269 of class “patients” and
589 of class “controls.” Then, the prediction performance has been
evaluated by averaging the performance of the 100 models.

In order to estimate the generalization performance, LOO
cross-validation is applied. It supplies an estimate of the
generalization performance of a model trained on k − 1 instances
of data which is a slightly pessimistic estimate of the performance
of a model trained on k instances.

Several tests have been performed to optimize the
hyperparameters of the models, such as the number of splits,
the minimum number of samples required to be a leaf node
(minimum leaf size), the impurity index, the number of features to

consider when looking for the best split and the prior probabilities
associated with the classes. The models showing the best BA in
LOO are selected.

Note that, after the first tests, the gender’ feature has been
discarded since strongly biases the classifications (e.g., encoding 1
and 2 classified all the women as “patients”).

Table 9 shows the average performances of the 100 models, on
training, LOO and test set.

As it can be noticed, performance on LOO and test sets are
close, even if, as expected, worse than those obtained in the training
set. This result suggests that, to obtain a final model, it is reasonable
to train a DT on the whole dataset with LOO cross validation. Its
LOO performance, although representing an optimistic estimate of
performance on the test set, will not be too far from it.

6.1. Decision trees results

In order to obtain the final model, a DT is trained with the
whole dataset and LOO cross-validation.

Table 10 shows the performance of the final five trained models
with LOO procedure. Results are reported for the whole data set,
and for men/women subsets. It can be seen that LOO and training
performances are close, confirming the generalization capabilities
of the DT. Moreover, performances for women are worst for all but
encoding 2.

TABLE 9 Average performance on the 100 tests on training, LOO and test set.

1−without
encoding

2−1H encoding 1 3−1H encoding
2

4−combination
w/o encoding

5−combination
1H encoding

BA (%)

Training 66.65 59.44 58.38 81.61 63.61

LOO 57.36 59.42 57.31 58.77 62.03

Test 56.55 59.43 57.02 58.45 62.32

TPR (%)

Training 61.72 70.91 64.39 90.01 68.09

LOO 58.16 70.86 62.87 61.93 66.49

Test 57.93 70.87 62.37 61.60 66.77

TNR (%)

Training 61.72 47.98 52.38 73.21 59.13

LOO 56.57 47.98 51.76 55.61 57.58

Test 55.17 48.00 51.67 55.30 57.87
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Table 11 reports the results separately for RRMS and
PPMS cases. For encoding 1 and 4, results for PPMS cases
are slightly better. Note that most patients present the RRMS
variant.

The five encodings have very close performance, with
encodings 1 and 4 showing best values of BA on LOO. As expected,
despite similar performance, they produce different trees and assign
different weights to their features. In encoding 1 and 4 the tree
grows in both directions favoring HLA features which present
several values and discarding the binary KIR features. The decision
trees’ rules generated from these encodings involve multiple
alternative conditions, making their interpretation challenging
despite yielding optimal results.

In one-hot encoding (encodings 2, 3, 5), when there are a few
options for splitting, the decision trees result very sparse. The trees
grow in the direction of the zero variables.

As an example, Figure 1 shows the obtained tree for encoding
3 that is the most interpretable even if it is not the best one. Patients
are grouped in 3 leaves, e.g., one of them is associated to people with
HLA-A∗30 without HLA-DRB1∗16 (R = 16.07%, 121/299 patients
and 151/619 controls).

On the contrary, controls are grouped in 4 leaves. One of
them is associated to people without HLA-A∗30, HLA-C∗06, HLA-
DRB1∗04 (R = −21.35%, 69/299 patients and 275/619 controls).

Note that, the well-known extended haplotype HLA-A∗30,
HLA-B∗18, HLA-C∗05, HLA-DRB1∗03, shows a risk R = 11%
with 104/299 patients and 146/619 controls, while the extended
haplotype HLA-A∗02, HLA-B∗58, HLA-C∗07, HLA-DRB1∗16
shows a negative risk R = −6.73%, with 19/299 patients and
81/619 controls.

In the first haplotype, the presence of HLA-A∗30 belonging
to the risky haplotype is associated with the absence of HLA-
DRB1∗16 included in the protective haplotype. This results in a
higher risk. The encoding 5, where the HLA couple is supplied
as input, identifies several classes of patients, for example some
associated to the well-known HLA susceptibility allele HLA-DR∗03:

• HLA-DRB1∗{03, 03}; R = 9%, with 37/299 patients and 22/619
controls.

• HLA-DRB1∗{03, 15}; R = 3%, with 12/299 patients
and 8/619 controls.

6.2. Multiple classifier system

Individual decision trees suffer from variances, i.e., small
variations of training data set may lead to a disproportional
modification of the model. Moreover, greedy algorithms cannot
guarantee to return the globally optimal decision tree.

These disadvantages can be mitigated by training multiple
trees. Thus, multiple classifiers or random forests (RFs) could
address these issues (Rokach and Maimon, 2015). Since the limited
dataset is a problem for bootstrap resampling performed by
RFs, this technique has been discarded and only the simplest
multiple classifier system (MCS) has been considered. Combining
the prediction of several classifiers reduces variance and enhances
generalization. Hard classification voting has been adopted as
decision rule. In this case, predictions are the majority vote of
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TABLE 11 True positives (TP), false negatives (FN) and true positive rate (TPR) for RRMS and PPMS patients.

Encoding

Indexes 1−without
encoding

2−1H
encoding 1

3−1H
encoding 2

4−combination
w/o encoding

5−combination
1H encoding

All (299) TP 198 201 202 200 199

FN 101 98 97 99 100

TPR % 66.22 67.22 67.56 66.89 66.56

RRMS (218) TP 145 146 149 144 143

FN 73 72 69 74 75

TPR % 66.51 66.97 68.35 66.06 65.60

PPMS (81) TP 53 55 53 56 56

FN 28 26 28 25 25

TPR % 65.43 67.90 65.43 69.14 69.14

FIGURE 1

Decision tree for encoding 3.

contributing models. The MCS improves classification accuracy
with respect to the single trees.

Figure 2 shows the ROC curve obtained by the MCS on LOO.
The best obtained performances on training data and LOO are
shown in Table 12, where also the AUC is reported. As it can be
noticed the ensemble of trees shows enhanced results than single
models for all the performance indices. For the sake of comparison,
Table 12 shows also the results obtained by implementing a MCS
from NB models, trained with the same database and coding used
for DTs.

The MCS constructed by means of a DT ensemble presents
better performances with respect to all the indexes.

It is important to notice that, due to the fact that there are
some controls and patients that show the exact same genotype,
as mentioned in 2.3, the algorithm makes inevitable errors in the
classification. The error resulting from such ambiguity in the input
data consists of 1 FN and 7 FPs.

The performances achieved with the MCS system appear to
be very promising with a TPR greater than 73%. This tool would
enable clinicians to identify individuals at higher risk among
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FIGURE 2

Receiving operating characteristic (ROC) curve for training (green)
and LOO (blue) for MCS; the dotted lines (green and blue for
training and leave-one-out, respectively) corresponds to the 95%
confidence interval; the yellow points correspond to the optimal
threshold.

TABLE 12 MCS performance on DTs and NB classifiers for
the training data.

Training LOO

DTs NB DTs NB

TP 242 208 219 176

FN 57 91 81 123

TPR % 80.94 69.57 73.24 58.86

TN 440 409 409 368

FP 179 210 210 251

TNR % 71.08 66.07 66.07 59.45

BA % 76.01 67.82 69.66 59.16

AUC % 82.02 75.20 69.53 62.13

the relatives of MS patients, who require more frequent and
careful follow-up.

Multiple sclerosis (MS) is a rare disease, by definition its
prevalence is very low. So, when a diagnostic test will be used
in the low-prevalence population, it will have a poor PPV. In
contrast, with a good screening test the NPV will be high. To
increase the PPV of the test, it could be targeted to those at
high risk of developing the disease, based on considerations such
as demographic factors, medical history, etc. In this case, the
selected population would be characterized by higher prevalence
with respect to the whole population.

Figure 3A shows the variation of PPV and NPV values with
the prevalence, i.e., with the selected screened population. As it
can be noticed, with a prevalence of 0.5, PPV and NPV are for
training (tr) 74 and 79%, while for validation (LOO) 68 and 71%,
respectively.

Unfortunately, contrarily to individual DTs, the reasons behind
the MCS decision cannot be described as a rule. As an example,
let us consider the answer of the MCS for instances (104 patients
and 146 controls) with the extended haplotype HLA-A∗30, HLA-
B∗18, HLA-C∗05, HLA-DRB1∗03, associated to MS. In this case, the
system shows a TPR of 89%, recognizing 93 patients over 104, and
a TNR of 40%, correctly identifying 59 controls over 146.

Thus, in the face of 11% of misclassified patients, the MCS
is able to correctly identify 40% among the 146 controls with
the extended haplotype, which would be all considered at high
risk of developing MS when considering only the information
coming from the presence of the extended haplotype. It is likely
that the performance of the MCS decision system could be further
improved by extending the HLA analysis to other loci in addition
to the 4 currently considered (HLA-A, HLA-B, HLA-C, and HLA-
DRB1).

6.3. Comparison between entropy-based
risk test and decision trees model

In order to compare the performances of the methods, the same
indexes used for decision trees were calculated for the entropy-
based model. Since the well-known indexes, as TPR, TNR, etc., are
designed for binary problems, then the three degrees risk entropy
model was reduced to a two-classes merging high and medium
risk into one single class. Thus, the positive class is made by high
and medium risk and the negative class by low risk. This ensures
better performances with respect to merging low and medium risk
classes into one class.

It can be noticed that the entropy-based model results are
calculated on the same dataset of controls and patients used to
develop the risk model (the so-called training set). Instead, for
the DTs model, to avoid the risk of overfitting, performances
are computed both for training set and LOO validation set.
Performances on validation set are a better estimate of the model
behavior in case of unseen data.

Considering the performances related to the studies, it is
possible to notice that the performances for controls are similar,
with a TNR (ability to correctly detect healthy controls) for the
entropy study of 70.27% and for the MCS of 71.08 and 66.07% on
training and validation data, respectively. Instead, for MS patients,
the performances are vastly different with TPR (ability to correctly
detect people affected by MS) for the entropy study of 42.96%
and for the MCS of 80.94 and 73.24% on training and validation
data, respectively.

Predictive values are important information for clinicians. In
the proposed case, with a prevalence of 0.5, PPV and NPV are for
training 73.68 and 78.86%, while for validation 68.34 and 71.17%,
respectively. These results in an improvement with respect to the
entropy work, where for a prevalence of 0.5, PPV and NPV reach a
value of 59.10 and 55.20%, respectively, as shown in Figure 3B.

7. Discussion and future work

Multiple sclerosis (MS) is a complex autoimmune disease
affecting the CNS. While genetics plays a role in the development
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FIGURE 3

Negative predictive value (NPV) and positive predictive value (PPV) for varying prevalence values from (A) MCS model, (B) entropy work.

of MS (Goodin et al., 2021), environmental factors such as Epstein-
Barr virus (EBV), vitamin D deficiency, cigarette smoking, age, and
gender are also identified as important risk factors (Handel et al.,
2010; Miljković and Spasojević, 2013; Taylor et al., 2015; Thorley-
Lawson, 2015; Olsson et al., 2017; Parnell and Booth, 2017).

Early diagnosis and treatment are crucial, and immunotherapy
using immunomodulatory drugs (IMDs) is currently the
primary approach to slow its progression (Frau et al., 2018;
Pachner, 2022). In recent years, the application of artificial
intelligence (AI) in healthcare (Davenport and Kalakota, 2019)
has shown significant potential, particularly in the analysis
of medical images created by MRI. However, the application
of AI methods to the analysis of MS images still faces
several challenges (Hosny et al., 2018; Prevedello et al., 2019;
Bonacchi et al., 2022).

The new era of genomic medicine may open new avenues for
developing accurate and reliable diagnostic tools based on genetic
sequencing analysis and ML approaches (Brittain et al., 2017). Such
tools may help to identify new biomarkers for early detection of
disease onset and progression as well as the development of novel
drugs to cure different neurological disorders (Chang et al., 2021).

To date, there are more than a hundred relevant published
papers, with more than half of these involving the detection and
segmentation of MS lesions for quantitative analysis. However,
only a few studies have applied AI/ML tools to clinical genetic
and environmental risk factors to predict the development and
progression of MS (Hartmann et al., 2021). This is partly due
to the fact that the majority of MS’s heritable component has
yet to be discovered. While large-scale and collaborative genome-
wide association studies (GWAS) and targeted functional studies
continue to uncover new risk loci (Li et al., 2021), the risk linked
to HLA alleles remains the highest among other susceptibility
genetic variants (De Silvestri et al., 2019; Lorefice et al., 2019).
In this context, it is worth noting that the proposed method
shares similarities with studies employing the Polygenic Risk Score
(PRS) approach, given its potential to consider and incorporate the

information from HLA alleles, which have been consistently shown
to possess the highest risk among other genetic variants associated
with susceptibility to MS (Hone et al., 2021; Breedon et al., 2023).

The current study is the first attempt to use AI/ML to
discriminate subjects at higher risk of susceptibility to MS based
on their immunogenetic characteristics HLA and KIR.

This study used an ensemble learning of DTs, a supervised ML
algorithm, applied to HLA and KIR. The most interesting aspect
of the results, obtained through leave-one-out cross-validation of
the MCS (as shown in Table 12), is the system’s ability to correctly
identify 73.24% of MS patients and 66.07% of healthy subjects. This
performance makes the system a potential tool to help clinicians to
monitor the relatives of MS patients to discriminate subjects with
a higher risk of predisposition to the disease. The main limitation
is the percentage of MS patients, 26.76%, that the algorithm cannot
identify.

Furthermore, it was found that the MCS of DTs produces better
results, when compared with the entropy model (Melis et al., 2019)
and with the MCS of NB models, in the analysis of HLA/KIR
genetic combinations.

While the TNR (ability to correctly detect healthy controls)
of the two analysis methods is comparable (66.07 and 70.27%,
for MCS and entropy model, respectively), the TPR of the
MCS (73.24%) is significantly higher than that of the entropy
model (42.96%).

The complex pathogenetic mechanisms underlying MS, as with
all multifactorial diseases, derive from the interplay between genetic
predisposition and environmental factors. Each individual has a
well-defined epigenetic profile, given by the combination of all
these factors. These profiles, in combination with HLA and KIR,
could potentially improve the predictive performance of the MCS.

The major flaw of applying a ML technique to this particular
dataset is the size of the dataset itself; considering the number
of features of the problem, i.e., the immunogenetic parameters,
it is essential that the size of the dataset is adequate. In fact, to
avoid the curse of dimensionality problem, it is necessary to have
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an amount of well-representative training data. In general, as the
number of features grows, the amount of data needed to generalize
accurately grows exponentially. In this paper some strategies have
been adopted to take into account the small sample size.

While the preliminary results appear promising, further
investigation is warranted using larger sample sizes especially
in different ethnic groups that are less homogeneous than
the population of Sardinia. Such research would aid in a
more comprehensive understanding of the potential clinical
applications of the MCS.

Although MS can manifest with various clinical characteristics,
disease courses, and etiologies, its pathogenic mechanism is
substantially immunological. Therefore, the integration of a larger
set of immunogenetic markers, obtained by typing the non-classical
MHC alleles (HLA-G, HLA-E, HLA-F, MIC-A, MIC-B) along with
alleles of their specific lymphocyte receptors (ILT2, ILT4, NKG2A,
etc.), is likely to enhance the results obtained in this pilot study in
terms of predictive capacity and accuracy.

This approach may provide valuable insights into the disease’s
pathogenesis and help to refine the predictive model, ultimately
contributing to improved personalized risk assessments and
treatment strategies for individuals affected by MS. As this
study serves as a pilot investigation, the inclusion of further
immunogenetic markers in future research could significantly
enhance the predictive capabilities and shed light on the intricate
immunological aspects underlying MS.

In conclusion, the use of the MCS has demonstrated
to be an accurate and reliable diagnostic tool capable of
supplying promising results in discriminating subjects at a higher
risk of developing the disease based on their immunogenetic
characteristics.
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