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In the field of neuroscience, a considerable number of commercial data 
acquisition and processing solutions rely on proprietary formats for data storage. 
This often leads to data being locked up in formats that are only accessible by 
using the original software, which may lead to interoperability problems. In fact, 
even the loss of data access is possible if the software becomes unsupported, 
changed, or otherwise unavailable. To ensure FAIR data management, strategies 
should be established to enable long-term, independent, and unified access to 
data in proprietary formats. In this work, we demonstrate PyDapsys, a solution 
to gain open access to data that was acquired using the proprietary recording 
system DAPSYS. PyDapsys enables us to open the recorded files directly in 
Python and saves them as NIX files, commonly used for open research in the 
electrophysiology domain. Thus, PyDapsys secures efficient and open access 
to existing and prospective data. The manuscript demonstrates the complete 
process of reverse engineering a proprietary electrophysiological format on 
the example of microneurography data collected for studies on pain and itch 
signaling in peripheral neural fibers.
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1. Introduction

Many commercial software solutions use custom proprietary formats to store their data. 
Reasons vary from dealing with special use cases to trying to lock users into a vendor-
specific ecosystem. While there is a trend in the general IT space to open-source custom 
solutions and establish cross-vendor standards (Kilamo et al., 2012), in the scientific world, 
the focus is put on FAIR data principles (Wilkinson et al., 2016). FAIR principles consist of 
a number of requirements for data to be findable, accessible, interoperable, and reusable. 
Proprietary formats naturally obstruct the adoption of these principles. In some research 
domains, large efforts are put into building solutions to convert proprietary formats into 
open standards, while simultaneously lobbying companies to use open formats. Examples 
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of such formats are DICOM1 for storing, managing, and exchanging 
medical images and EDF (Kemp et  al., 1992) for biosignals, 
including EEG systems.

Progress has also been made in the field of neuroscience, where 
the Neuroscience Information Exchange format (NIX) (Stoewer et al., 
2014) and the Neurodata Without Borders (NWB) (Rübel et al., 2022) 
projects are aiming to establish community standards for sharing 
neuroscientific data. Both projects specify a storage layout, which is 
implemented on top of the Hierarchical Data Format (HDF5) but use 
different approaches to model data. NWB uses a stricter and more 
standardized data model, whereas NIX allows for a comparatively 
flexible structure and can describe the file contents using the open 
metadata Markup Language (odML) (Grewe et al., 2011).

However, smaller fields of neuroscience are facing challenges to 
fully adopt FAIR data principles, as vendors may not have the resources 
to address the specific wishes of such small user-bases. The “Data 
Acquisition Processor System” (DAPSYS)2 is a general-purpose 
neurophysiological data acquisition system (DAS) for recording and 
processing neural signals, which is, among other places, used in the 
microneurography (MNG) lab of the University Hospital RWTH 
Aachen. MNG is an electrophysiological technique to record activity 
from single nerve fibers of the peripheral nervous system using a single 
microelectrode (Vallbo and Hagbarth, 1968; Torebjork and Hallin, 1974; 
Ackerley and Watkins, 2018). Due to the small size of the electrode, the 
method causes only minimal discomfort and does not require 
anesthetics. This means that the volunteer stays awake and cooperates 
during the recording, making it possible to correlate nerve fiber signals 
with individual sensations. Thus, MNG is a unique translational method 
in sensory research in humans, especially in chronic pain and itch.

DAPSYS uses a proprietary format to store data and only offers 
manual (file-by-file) export of the recordings to CSV files. However, 
the CSV exports produce comparatively large files (see Table 1) and 
take a long time (see Table 2). In addition, some minor precision 
loss due to the fixed number of decimals in the exported CSV is 
observed. Our recent works on establishing data-sharing standards 
in the MNG community and developing a computational pipeline 
for spike analysis in MNG data (Schlebusch et al., 2021; Kutafina 
et  al., 2022; Troglio et  al., 2023) has raised the urgency for an 
efficient way to read DAPSYS recordings and store them in more 
suitable data formats, such as HDF5.

1 DICOM: Digital Imaging and Communications in Medicine, Medical Imaging 

Technology Association (MITA), https://www.dicomstandard.org.

2 Data Acquisition Processor System (DAPSYS), Brian Turnquist, http://

dapsys.net.

While there are many commercial applications for reverse 
engineering, most of them target computer science professionals and 
the primary use-case of reverse engineering software, not file formats. 
The MARBLE project3 is to our best knowledge the first research-
oriented solution to reverse engineer file formats with the aim of 
making the process as accessible as possible. However, at the time of 
the reported work, MARBLE was still in development and the usage 
required problem-specific adjustments.

Therefore, in this paper, we  show our approach to reverse 
engineering the DAPSYS file format and implement a Python 
library to gain open access to our own data recorded in the 
microneurography lab. By providing functionality to load data into 
the structure defined by the Neo library (Garcia et al., 2014), it can 
be  simply exported to multiple data formats used in 
electrophysiology, including NIX. This ensures full access to the 
data even if DAPSYS is unavailable.

The primary aim of our work is to ensure the accessibility and 
interoperability of DAPSYS-recorded data sets. The secondary aim is to 
share the steps of our reverse engineering solution with the neuroscience 
community to support building FAIR access to rare data formats.

2. Method

2.1. Data

We used four DAPSYS files, recorded at the microneurography labs 
of the University Hospital RWTH Aachen and Friedrich-Alexander-
University of Erlangen-Nürnberg. The studies involving human 
participants were reviewed and approved by the Ethics Boards of those 
two institutions with the corresponding numbers EK141-19 and 4361. 
The participants provided their written informed consent, and the 
studies were conducted according to the Declaration of Helsinki.

2.2. Reverse engineering method

For the reverse engineering process, we  used the hex editor 
“ImHex”4 to open and analyze the DAPSYS files. A hex editor shows 
the binary contents of a file in hexadecimal representation. A value of 
a single byte can be represented by only two characters, making it 

3 MARBLE software project, Steffen Brinckmann et al., https://gitlab-public.

fz-juelich.de/marble.

4 ImHex, Nikolaij “WerWolv” Sägesser, https://github.com/WerWolv/ImHex.

TABLE 1 The size difference between CSV files created by the DAPSYS export and the files created by using PyDapsys with the NIX-exporter of the Neo 
library.

Original file size [MiB] CSV file size 
[MiB]

NIX/H5 file size 
[MiB]

Size increase CSV [%] Size increase NIX/H5 [%]

44.5 229.5 45.1 415.73 1.35

109.0 576.2 109.7 428.62 0.64

124.9 664.5 126.1 432.83 0.96

165.8 889.2 167.4 436.31 0.97

https://doi.org/10.3389/fninf.2023.1250260
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easier to recognize patterns (see Figure 1A for an example). Since 
we knew what values the file should contain, we were able to search 
for them and identify related fields. From there on, we  identified 
structures based on repeating patterns.

The functions of data fields in the structures were then identified 
by using the following workflow:

 1. Make changes to the file using the DAPSYS GUI (for example: 
changing the plot configuration, removing data points, etc.).

 2. Track these changes DAPSYS made to the binary file and 
identify changed fields in the hex editor.

 3. Open a different recording in the hex editor, identify the 
known fields, and change their values using the hex editor.

 4. Open the changed file from step 3 in DAPSYS and verify that 
the changes made to the recording fit with the assumed 
function of the field.

This process was substantially supported by built-in “ImHex” 
functions like the pattern language that can be used to specify the 
layout of structures in the binary file. These structures can be utilized 
to highlight and verify known structures and fields in the file.

2.3. Concept of the library implementation

Based on the results from the reverse-engineering process, 
we implemented a Python library capable of opening and processing 

recordings. The library also offers a method to export data from DAPSYS 
recordings into HDF5 files using the NIX structure (abbreviated as NIX/
H5) for easier data exchange between labs and software.

2.3.1. Verification
To verify the implementation of the file format in PyDapsys, 

we read each of the four DAPSYS files (see 2.1) with PyDapsys. The 
read values were then compared to the CSV files. As the values in 
the exported CSV files only have limited precision (6 or 4 decimal 
places, depending on the type of data exported), we first rounded 
the values read from the file to the same precision before comparing 
them. Comparison of floating-point values was done by comparing 
the absolute difference of two values to the system epsilon for 
64-bit floating point (f64) values. Numeric values from the CSV 
were converted to f64 values using built-in Python functions. 
When comparing f64 with 32-bit floating point (f32) values, the f32 
values were first converted to f64. Texts were compared with 
built-in Python functions.

2.3.2. Performance testing
We also compared the performance (duration and file sizes) of 

the CSV export of DAPSYS and the export to NIX/H5 using 
PyDapsys. To achieve comparable measurements, we only looked 
at the time each system required to write the continuous recording 
to their respective target format, without the time required for user 
interactions or loading the data. We had to focus on a single data 
stream, as DAPSYS would require user interactions in between 

FIGURE 1

(A) “ImHex” showing the start of a DAPSYS files’ table of contents section. Shown are the hexadecimal byte-values of the respective address and the 
interpretation of that byte as characters. Data fields of structures are shown in different colors. The address shown is in relation to the start of the table 
of contents. (B) Structure of the same file from panel (A) shown by the GUI of DAPSYS.

TABLE 2 The time comparison for exporting the continuous recording.

Original file size 
[MiB]

CSV export 
time* [s]

PyDapsys export to 
NIX/H5 time* [s]

Speedup PyDapsys vs. 
CSV export*

PyDapsys total time [s]

44.5 35 0.36 97.2 0.77

109.0 91 0.46 197.8 0.84

124.9 102 0.68 150.0 1.03

165.8 133 0.98 135.7 1.49

*Time required for processing and writing, excluding user interaction.
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exporting multiple streams. We chose to focus on the continuous 
recording, as it makes up the largest part of a file’s size. We also 
excluded loading times, as there was no reliable way to measure 
them for DAPSYS. Times for PyDapsys were measured using the 
wall-clock time directly in the Python program, whereas DAPSYS 
times were taken by a stopwatch. All measurements were 
performed on the same system.

3. Results

3.1. Analysis of the DAPSYS file structure

The DAPSYS user interface displays the contents of a file in a 
hierarchical structure, composed of folders, text streams, and data 
streams (see Figure  1B). DAPSYS binary files store data in a flat 
structure that can be split into 4 parts:

 1. Header. Files begin with a header with a fixed length. 
Information in the header is not required to read the 
file contents.

 2. Data Pages. DAPSYS stores data in discontinuous chunks, 
which we call “pages.” All pages have a unique ID in the context 
of the file and can hold either data of a waveform or textual data.

 3. Table of Contents (ToC). After the last data page, the ToC 
begins. It defines the hierarchical structure shown in the GUI 
and comprises of folders, which can have additional child 
elements and streams. Streams contain an array of data 
page IDs.

 4. Footer. After the ToC, there comes a small footer consisting of 
a string holding the version and the serial number of the 
DAPSYS program used to create the file.

3.1.1. Data pages
As seen in Figure 2, DAPSYS uses two types of pages: one for 

waveform data and one for textual data. Both types start with the same 
fields that store metadata, such as their ID, which is unique among all 
pages in a file, an identifier for their type (text or waveform), and an 
optional reference to another page. Waveform pages store the 
amplitude of the waveform as an array of 32-bit floating point (f32) 
values, and corresponding timestamps as an array of 64-bit floating 
point (f64) values. For regularly sampled waveforms, only the first 
timestamp is saved in the array, while an additional f64 value is used 
for the regular sampling interval. Text pages are used to store 
comments as well as sorted spikes. They consist of a string containing 
the text, and two f64 values. The first f64 value is used to store the 
timestamp. The second one is used for sorted spikes to indicate the 
timestamp of the automatically recognized spike. For normal 
comments, it is set to the same value as the first timestamp. From our 
observations, DAPSYS writes pages in the order they occur during the 
recording. If, for example, a comment is entered during a recording, 
DAPSYS will save the recorded data up to that point in a waveform 
page, append it to the list of pages followed by the text page containing 
the comment, and then begin a new waveform page with the new data.

3.1.2. Table of contents
The ToC defines the logical structure of a DAPSYS file. As seen in 

Figure 2, its elements consist of folders and streams, all of which have 
an ID unrelated to the IDs used for pages and a string containing their 
display name. Folders can have several other elements as children. 
Streams contain multiple fields for storing the configuration of the plot 
used to visualize their data and most importantly, contain an array of 
the page IDs belonging to that stream. A stream may either reference 
text pages or waveform pages, making it a text or data stream, 
respectively.

FIGURE 2

Simplified logical model of a DAPSYS file. Black arrows show to which other fields the value refers. Large unfilled arrows indicate that an entry extends 
another one. Gray types define shared header fields for a group of types, with extending arrows indicating the field and the value to identify the group 
of fields that follow the header (e.g., a “Folder” and a “Stream” both start with the fields of an generic “Entry.” Depending on the value of the field 
“entry_type,” the fields following the “Entry” will be either those of a “Stream” or a “Folder”).
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3.2. Development of the Python library 
“PyDapsys”

The functionality of PyDapsys [see (Konradi et al., 2023) for the 
repository containing the source code. The package is also available 
on PyPI as “pydapsys”] focuses on accessing data stored in a DAPSYS 
file. Pages are read into a dictionary that maps the page IDs to an 
object storing the metadata (type of the page, ID, optional ID of the 
referenced page) and data, i.e., text and timestamps for text pages of 
the corresponding page. The ToC is represented by folder and stream 
objects. The folder objects offer dictionary-like access to their children, 
while stream objects store the IDs of the pages belonging to them. The 
library uses NumPy (Harris et al., 2020) to improve the reading speed 
and memory efficiency of the arrays storing page IDs, amplitudes, and 
timestamps. To keep the library portable, NumPy is the only required 
dependency. The functionality to convert a recording to the Neo 
structure is implemented as an optional dependency. As different 
experiment set-ups may produce different structures in the DAPSYS 
file, there is no “universal” converter. Instead, the library provides an 
abstract base class for Neo converters, which offers functions for 
common conversions (i.e., text stream to event). Based on this class, 
additional converters may be  implemented for different 
ToC structures.

3.2.1. Verification
As described in section 2.3.1, we compared the CSV data exported 

by DAPSYS with the data read by PyDapsys. Depending on the type 
of stream being exported to CSV, the resulting file contains 
different values:

 • Waveform streams: Contain both the timestamps for each data 
point and its signal value. Both timestamp and signal values have 
a precision of 6 decimals.

 • Text streams: Contain the timestamps for each text with a 
precision of 4 decimals and the text itself.

Across all files used for testing, 284,453,786 individual floating-
point values were compared, of which 3,009,074 values differed. The 
maximum difference was 0.00001. As this is exactly the precision 
offered by waveform CSV-exports, it is most likely a result from 
rounding errors and not a systemic error in the PyDapsys 
implementation. There were no differences in the text data.

3.2.2. Performance testing
As seen in Table 1, storing data in NIX/H5 with Neo had no 

significant impact on file sizes compared to the original file, whereas 
the CSV increased the file size by factor 4. PyDapsys reliably 
outperformed DAPSYS in the time required for exporting a file by 
more than factor 97 (see Table 2).

4. Discussion

In order to make electrophysiological recordings obtained with 
the DAPSYS DAS available to other systems in our lab, 
we  implemented the open-source Python library “PyDapsys.” The 
library has functionality for reading data from DAPSYS files and offers 

built-in functions to automatically load read data into the structure 
defined by the Neo library, from where it can be exported to NIX and 
other data formats, which are used by the neuroscience community 
and can be read by various other software solutions. By offering direct 
access to the data stored in DAPSYS files, rounding errors that may 
occur when exporting the data to CSV are avoided, thus improving 
the accuracy and quality of subsequent analyses. The library 
outperforms the DAPSYS CSV export, both in export duration and 
size of the exported files, while additionally not being dependent on 
DAPSYS itself. Currently, the usage of the PyDapsys library requires 
a certain level of programming experience. To make the library 
available for a more general audience, we are working on implementing 
a GUI (graphical user interface).

While DAPSYS is not used very commonly, it should be seen as a 
representative of many domain-specific proprietary formats, which 
are used in neuroscientific research. FAIR data handling principles 
require the accessibility and interoperability of data, and the opening 
of proprietary formats is a necessary step to ensure those qualities 
(Berens and Ayhan, 2019). We  expect the presented process of 
analyzing the files with the “ImHex” software and modifying the 
parameters to understand their internal structure to be useful for 
other research groups, who are facing similar challenges. It is 
important to note that the DAPSYS file format does not utilize any 
compression or encryption. Reverse engineering compressed or 
encrypted data would have made the process significantly 
more difficult.

In general, our case highlights the importance of proper 
procedures to ensure long-term access to experimental data. In the 
microneurography community, the experiments are complex, and 
many data sets are unique due to rare genetic mutations of the 
patients. Moreover, guaranteeing reliable access and unification of 
data also simplifies collaboration between research groups. Therefore, 
ensuring FAIR principles allows us to optimize the research benefit 
derived from the data.

The appropriate processes should ideally be put in place early on 
to ensure that data is available in open formats. For example, if the 
formats cannot be  read using open software, this could include 
manual exporting new data to open formats once a week to avoid 
forming a backlog and potentially losing access to large quantities of 
non-exported data if the original software is not available anymore.

Open science and FAIR principles are becoming more and more 
widely accepted in academia and in neuroscience in particular. 
However, at the current stage of ongoing works, it is important to 
include smaller communities in the discussion, as the popularity of 
the specific software and hardware solution influences the motivation 
of the vendors to provide open off-the-shelf solutions. PyDapsys 
alongside more general emerging approaches, such as MARBLE, 
serves as an example of a possible solution for these 
research communities.
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