
Frontiers in Neuroinformatics 01 frontiersin.org

PyDapsys: an open-source library
for accessing electrophysiology
data recorded with DAPSYS
Peter Konradi 1*, Alina Troglio 2, Ariadna Pérez Garriga 1,
Aarón Pérez Martín 3, Rainer Röhrig 1, Barbara Namer 2,4,5† and
Ekaterina Kutafina 1†

1 Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany,
2 Research Group Neuroscience, IZKF, RWTH Aachen, Aachen, Germany, 3 Simulation and Data Lab
Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation, JARA,
Forschungszentrum Jülich GmbH, Jülich, Germany, 4 Department for Neurophysiology, University
Hospital RWTH Aachen, Aachen, Germany, 5 Institute of Physiology and Pathophysiology, Friedrich-
Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

In the field of neuroscience, a considerable number of commercial data
acquisition and processing solutions rely on proprietary formats for data storage.
This often leads to data being locked up in formats that are only accessible by
using the original software, which may lead to interoperability problems. In fact,
even the loss of data access is possible if the software becomes unsupported,
changed, or otherwise unavailable. To ensure FAIR data management, strategies
should be established to enable long-term, independent, and unified access to
data in proprietary formats. In this work, we demonstrate PyDapsys, a solution
to gain open access to data that was acquired using the proprietary recording
system DAPSYS. PyDapsys enables us to open the recorded files directly in
Python and saves them as NIX files, commonly used for open research in the
electrophysiology domain. Thus, PyDapsys secures efficient and open access
to existing and prospective data. The manuscript demonstrates the complete
process of reverse engineering a proprietary electrophysiological format on
the example of microneurography data collected for studies on pain and itch
signaling in peripheral neural fibers.

KEYWORDS

interoperability, open data, FAIR, data management tools, reverse-engineered,
microneurography, electrophysiology, pain

1. Introduction

Many commercial software solutions use custom proprietary formats to store their data.
Reasons vary from dealing with special use cases to trying to lock users into a vendor-
specific ecosystem. While there is a trend in the general IT space to open-source custom
solutions and establish cross-vendor standards (Kilamo et al., 2012), in the scientific world,
the focus is put on FAIR data principles (Wilkinson et al., 2016). FAIR principles consist of
a number of requirements for data to be findable, accessible, interoperable, and reusable.
Proprietary formats naturally obstruct the adoption of these principles. In some research
domains, large efforts are put into building solutions to convert proprietary formats into
open standards, while simultaneously lobbying companies to use open formats. Examples

OPEN ACCESS

EDITED BY

Christian Haselgrove,
UMass Chan Medical School, United States

REVIEWED BY

Rania Mohamed Hassan Baleela,
University of Khartoum, Sudan
Candido Cabo,
The City University of New York, United States

*CORRESPONDENCE

Peter Konradi
 peter.konradi@rwth-aachen.de

†These authors have contributed equally to this
work

RECEIVED 29 June 2023
ACCEPTED 28 August 2023
PUBLISHED 14 September 2023

CITATION

Konradi P, Troglio A, Pérez Garriga A, Pérez
Martín A, Röhrig R, Namer B and
Kutafina E (2023) PyDapsys: an open-source
library for accessing electrophysiology data
recorded with DAPSYS.
Front. Neuroinform. 17:1250260.
doi: 10.3389/fninf.2023.1250260

COPYRIGHT

© 2023 Konradi, Troglio, Pérez Garriga, Pérez
Martín, Röhrig, Namer and Kutafina. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

TYPE Brief Research Report
PUBLISHED 14 September 2023
DOI 10.3389/fninf.2023.1250260

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2023.1250260﻿&domain=pdf&date_stamp=2023-09-14
https://www.frontiersin.org/articles/10.3389/fninf.2023.1250260/full
https://www.frontiersin.org/articles/10.3389/fninf.2023.1250260/full
https://www.frontiersin.org/articles/10.3389/fninf.2023.1250260/full
mailto:peter.konradi@rwth-aachen.de
https://doi.org/10.3389/fninf.2023.1250260
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2023.1250260

Konradi et al. 10.3389/fninf.2023.1250260

Frontiers in Neuroinformatics 02 frontiersin.org

of such formats are DICOM1 for storing, managing, and exchanging
medical images and EDF (Kemp et al., 1992) for biosignals,
including EEG systems.

Progress has also been made in the field of neuroscience, where
the Neuroscience Information Exchange format (NIX) (Stoewer et al.,
2014) and the Neurodata Without Borders (NWB) (Rübel et al., 2022)
projects are aiming to establish community standards for sharing
neuroscientific data. Both projects specify a storage layout, which is
implemented on top of the Hierarchical Data Format (HDF5) but use
different approaches to model data. NWB uses a stricter and more
standardized data model, whereas NIX allows for a comparatively
flexible structure and can describe the file contents using the open
metadata Markup Language (odML) (Grewe et al., 2011).

However, smaller fields of neuroscience are facing challenges to
fully adopt FAIR data principles, as vendors may not have the resources
to address the specific wishes of such small user-bases. The “Data
Acquisition Processor System” (DAPSYS)2 is a general-purpose
neurophysiological data acquisition system (DAS) for recording and
processing neural signals, which is, among other places, used in the
microneurography (MNG) lab of the University Hospital RWTH
Aachen. MNG is an electrophysiological technique to record activity
from single nerve fibers of the peripheral nervous system using a single
microelectrode (Vallbo and Hagbarth, 1968; Torebjork and Hallin, 1974;
Ackerley and Watkins, 2018). Due to the small size of the electrode, the
method causes only minimal discomfort and does not require
anesthetics. This means that the volunteer stays awake and cooperates
during the recording, making it possible to correlate nerve fiber signals
with individual sensations. Thus, MNG is a unique translational method
in sensory research in humans, especially in chronic pain and itch.

DAPSYS uses a proprietary format to store data and only offers
manual (file-by-file) export of the recordings to CSV files. However,
the CSV exports produce comparatively large files (see Table 1) and
take a long time (see Table 2). In addition, some minor precision
loss due to the fixed number of decimals in the exported CSV is
observed. Our recent works on establishing data-sharing standards
in the MNG community and developing a computational pipeline
for spike analysis in MNG data (Schlebusch et al., 2021; Kutafina
et al., 2022; Troglio et al., 2023) has raised the urgency for an
efficient way to read DAPSYS recordings and store them in more
suitable data formats, such as HDF5.

1 DICOM: Digital Imaging and Communications in Medicine, Medical Imaging

Technology Association (MITA), https://www.dicomstandard.org.

2 Data Acquisition Processor System (DAPSYS), Brian Turnquist, http://

dapsys.net.

While there are many commercial applications for reverse
engineering, most of them target computer science professionals and
the primary use-case of reverse engineering software, not file formats.
The MARBLE project3 is to our best knowledge the first research-
oriented solution to reverse engineer file formats with the aim of
making the process as accessible as possible. However, at the time of
the reported work, MARBLE was still in development and the usage
required problem-specific adjustments.

Therefore, in this paper, we show our approach to reverse
engineering the DAPSYS file format and implement a Python
library to gain open access to our own data recorded in the
microneurography lab. By providing functionality to load data into
the structure defined by the Neo library (Garcia et al., 2014), it can
be simply exported to multiple data formats used in
electrophysiology, including NIX. This ensures full access to the
data even if DAPSYS is unavailable.

The primary aim of our work is to ensure the accessibility and
interoperability of DAPSYS-recorded data sets. The secondary aim is to
share the steps of our reverse engineering solution with the neuroscience
community to support building FAIR access to rare data formats.

2. Method

2.1. Data

We used four DAPSYS files, recorded at the microneurography labs
of the University Hospital RWTH Aachen and Friedrich-Alexander-
University of Erlangen-Nürnberg. The studies involving human
participants were reviewed and approved by the Ethics Boards of those
two institutions with the corresponding numbers EK141-19 and 4361.
The participants provided their written informed consent, and the
studies were conducted according to the Declaration of Helsinki.

2.2. Reverse engineering method

For the reverse engineering process, we used the hex editor
“ImHex”4 to open and analyze the DAPSYS files. A hex editor shows
the binary contents of a file in hexadecimal representation. A value of
a single byte can be represented by only two characters, making it

3 MARBLE software project, Steffen Brinckmann et al., https://gitlab-public.

fz-juelich.de/marble.

4 ImHex, Nikolaij “WerWolv” Sägesser, https://github.com/WerWolv/ImHex.

TABLE 1 The size difference between CSV files created by the DAPSYS export and the files created by using PyDapsys with the NIX-exporter of the Neo
library.

Original file size [MiB] CSV file size
[MiB]

NIX/H5 file size
[MiB]

Size increase CSV [%] Size increase NIX/H5 [%]

44.5 229.5 45.1 415.73 1.35

109.0 576.2 109.7 428.62 0.64

124.9 664.5 126.1 432.83 0.96

165.8 889.2 167.4 436.31 0.97

https://doi.org/10.3389/fninf.2023.1250260
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.dicomstandard.org
http://dapsys.net
http://dapsys.net
https://gitlab-public.fz-juelich.de/marble
https://gitlab-public.fz-juelich.de/marble
https://github.com/WerWolv/ImHex

Konradi et al. 10.3389/fninf.2023.1250260

Frontiers in Neuroinformatics 03 frontiersin.org

easier to recognize patterns (see Figure 1A for an example). Since
we knew what values the file should contain, we were able to search
for them and identify related fields. From there on, we identified
structures based on repeating patterns.

The functions of data fields in the structures were then identified
by using the following workflow:

 1. Make changes to the file using the DAPSYS GUI (for example:
changing the plot configuration, removing data points, etc.).

 2. Track these changes DAPSYS made to the binary file and
identify changed fields in the hex editor.

 3. Open a different recording in the hex editor, identify the
known fields, and change their values using the hex editor.

 4. Open the changed file from step 3 in DAPSYS and verify that
the changes made to the recording fit with the assumed
function of the field.

This process was substantially supported by built-in “ImHex”
functions like the pattern language that can be used to specify the
layout of structures in the binary file. These structures can be utilized
to highlight and verify known structures and fields in the file.

2.3. Concept of the library implementation

Based on the results from the reverse-engineering process,
we implemented a Python library capable of opening and processing

recordings. The library also offers a method to export data from DAPSYS
recordings into HDF5 files using the NIX structure (abbreviated as NIX/
H5) for easier data exchange between labs and software.

2.3.1. Verification
To verify the implementation of the file format in PyDapsys,

we read each of the four DAPSYS files (see 2.1) with PyDapsys. The
read values were then compared to the CSV files. As the values in
the exported CSV files only have limited precision (6 or 4 decimal
places, depending on the type of data exported), we first rounded
the values read from the file to the same precision before comparing
them. Comparison of floating-point values was done by comparing
the absolute difference of two values to the system epsilon for
64-bit floating point (f64) values. Numeric values from the CSV
were converted to f64 values using built-in Python functions.
When comparing f64 with 32-bit floating point (f32) values, the f32
values were first converted to f64. Texts were compared with
built-in Python functions.

2.3.2. Performance testing
We also compared the performance (duration and file sizes) of

the CSV export of DAPSYS and the export to NIX/H5 using
PyDapsys. To achieve comparable measurements, we only looked
at the time each system required to write the continuous recording
to their respective target format, without the time required for user
interactions or loading the data. We had to focus on a single data
stream, as DAPSYS would require user interactions in between

FIGURE 1

(A) “ImHex” showing the start of a DAPSYS files’ table of contents section. Shown are the hexadecimal byte-values of the respective address and the
interpretation of that byte as characters. Data fields of structures are shown in different colors. The address shown is in relation to the start of the table
of contents. (B) Structure of the same file from panel (A) shown by the GUI of DAPSYS.

TABLE 2 The time comparison for exporting the continuous recording.

Original file size
[MiB]

CSV export
time* [s]

PyDapsys export to
NIX/H5 time* [s]

Speedup PyDapsys vs.
CSV export*

PyDapsys total time [s]

44.5 35 0.36 97.2 0.77

109.0 91 0.46 197.8 0.84

124.9 102 0.68 150.0 1.03

165.8 133 0.98 135.7 1.49

*Time required for processing and writing, excluding user interaction.

https://doi.org/10.3389/fninf.2023.1250260
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Konradi et al. 10.3389/fninf.2023.1250260

Frontiers in Neuroinformatics 04 frontiersin.org

exporting multiple streams. We chose to focus on the continuous
recording, as it makes up the largest part of a file’s size. We also
excluded loading times, as there was no reliable way to measure
them for DAPSYS. Times for PyDapsys were measured using the
wall-clock time directly in the Python program, whereas DAPSYS
times were taken by a stopwatch. All measurements were
performed on the same system.

3. Results

3.1. Analysis of the DAPSYS file structure

The DAPSYS user interface displays the contents of a file in a
hierarchical structure, composed of folders, text streams, and data
streams (see Figure 1B). DAPSYS binary files store data in a flat
structure that can be split into 4 parts:

 1. Header. Files begin with a header with a fixed length.
Information in the header is not required to read the
file contents.

 2. Data Pages. DAPSYS stores data in discontinuous chunks,
which we call “pages.” All pages have a unique ID in the context
of the file and can hold either data of a waveform or textual data.

 3. Table of Contents (ToC). After the last data page, the ToC
begins. It defines the hierarchical structure shown in the GUI
and comprises of folders, which can have additional child
elements and streams. Streams contain an array of data
page IDs.

 4. Footer. After the ToC, there comes a small footer consisting of
a string holding the version and the serial number of the
DAPSYS program used to create the file.

3.1.1. Data pages
As seen in Figure 2, DAPSYS uses two types of pages: one for

waveform data and one for textual data. Both types start with the same
fields that store metadata, such as their ID, which is unique among all
pages in a file, an identifier for their type (text or waveform), and an
optional reference to another page. Waveform pages store the
amplitude of the waveform as an array of 32-bit floating point (f32)
values, and corresponding timestamps as an array of 64-bit floating
point (f64) values. For regularly sampled waveforms, only the first
timestamp is saved in the array, while an additional f64 value is used
for the regular sampling interval. Text pages are used to store
comments as well as sorted spikes. They consist of a string containing
the text, and two f64 values. The first f64 value is used to store the
timestamp. The second one is used for sorted spikes to indicate the
timestamp of the automatically recognized spike. For normal
comments, it is set to the same value as the first timestamp. From our
observations, DAPSYS writes pages in the order they occur during the
recording. If, for example, a comment is entered during a recording,
DAPSYS will save the recorded data up to that point in a waveform
page, append it to the list of pages followed by the text page containing
the comment, and then begin a new waveform page with the new data.

3.1.2. Table of contents
The ToC defines the logical structure of a DAPSYS file. As seen in

Figure 2, its elements consist of folders and streams, all of which have
an ID unrelated to the IDs used for pages and a string containing their
display name. Folders can have several other elements as children.
Streams contain multiple fields for storing the configuration of the plot
used to visualize their data and most importantly, contain an array of
the page IDs belonging to that stream. A stream may either reference
text pages or waveform pages, making it a text or data stream,
respectively.

FIGURE 2

Simplified logical model of a DAPSYS file. Black arrows show to which other fields the value refers. Large unfilled arrows indicate that an entry extends
another one. Gray types define shared header fields for a group of types, with extending arrows indicating the field and the value to identify the group
of fields that follow the header (e.g., a “Folder” and a “Stream” both start with the fields of an generic “Entry.” Depending on the value of the field
“entry_type,” the fields following the “Entry” will be either those of a “Stream” or a “Folder”).

https://doi.org/10.3389/fninf.2023.1250260
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Konradi et al. 10.3389/fninf.2023.1250260

Frontiers in Neuroinformatics 05 frontiersin.org

3.2. Development of the Python library
“PyDapsys”

The functionality of PyDapsys [see (Konradi et al., 2023) for the
repository containing the source code. The package is also available
on PyPI as “pydapsys”] focuses on accessing data stored in a DAPSYS
file. Pages are read into a dictionary that maps the page IDs to an
object storing the metadata (type of the page, ID, optional ID of the
referenced page) and data, i.e., text and timestamps for text pages of
the corresponding page. The ToC is represented by folder and stream
objects. The folder objects offer dictionary-like access to their children,
while stream objects store the IDs of the pages belonging to them. The
library uses NumPy (Harris et al., 2020) to improve the reading speed
and memory efficiency of the arrays storing page IDs, amplitudes, and
timestamps. To keep the library portable, NumPy is the only required
dependency. The functionality to convert a recording to the Neo
structure is implemented as an optional dependency. As different
experiment set-ups may produce different structures in the DAPSYS
file, there is no “universal” converter. Instead, the library provides an
abstract base class for Neo converters, which offers functions for
common conversions (i.e., text stream to event). Based on this class,
additional converters may be implemented for different
ToC structures.

3.2.1. Verification
As described in section 2.3.1, we compared the CSV data exported

by DAPSYS with the data read by PyDapsys. Depending on the type
of stream being exported to CSV, the resulting file contains
different values:

 • Waveform streams: Contain both the timestamps for each data
point and its signal value. Both timestamp and signal values have
a precision of 6 decimals.

 • Text streams: Contain the timestamps for each text with a
precision of 4 decimals and the text itself.

Across all files used for testing, 284,453,786 individual floating-
point values were compared, of which 3,009,074 values differed. The
maximum difference was 0.00001. As this is exactly the precision
offered by waveform CSV-exports, it is most likely a result from
rounding errors and not a systemic error in the PyDapsys
implementation. There were no differences in the text data.

3.2.2. Performance testing
As seen in Table 1, storing data in NIX/H5 with Neo had no

significant impact on file sizes compared to the original file, whereas
the CSV increased the file size by factor 4. PyDapsys reliably
outperformed DAPSYS in the time required for exporting a file by
more than factor 97 (see Table 2).

4. Discussion

In order to make electrophysiological recordings obtained with
the DAPSYS DAS available to other systems in our lab,
we implemented the open-source Python library “PyDapsys.” The
library has functionality for reading data from DAPSYS files and offers

built-in functions to automatically load read data into the structure
defined by the Neo library, from where it can be exported to NIX and
other data formats, which are used by the neuroscience community
and can be read by various other software solutions. By offering direct
access to the data stored in DAPSYS files, rounding errors that may
occur when exporting the data to CSV are avoided, thus improving
the accuracy and quality of subsequent analyses. The library
outperforms the DAPSYS CSV export, both in export duration and
size of the exported files, while additionally not being dependent on
DAPSYS itself. Currently, the usage of the PyDapsys library requires
a certain level of programming experience. To make the library
available for a more general audience, we are working on implementing
a GUI (graphical user interface).

While DAPSYS is not used very commonly, it should be seen as a
representative of many domain-specific proprietary formats, which
are used in neuroscientific research. FAIR data handling principles
require the accessibility and interoperability of data, and the opening
of proprietary formats is a necessary step to ensure those qualities
(Berens and Ayhan, 2019). We expect the presented process of
analyzing the files with the “ImHex” software and modifying the
parameters to understand their internal structure to be useful for
other research groups, who are facing similar challenges. It is
important to note that the DAPSYS file format does not utilize any
compression or encryption. Reverse engineering compressed or
encrypted data would have made the process significantly
more difficult.

In general, our case highlights the importance of proper
procedures to ensure long-term access to experimental data. In the
microneurography community, the experiments are complex, and
many data sets are unique due to rare genetic mutations of the
patients. Moreover, guaranteeing reliable access and unification of
data also simplifies collaboration between research groups. Therefore,
ensuring FAIR principles allows us to optimize the research benefit
derived from the data.

The appropriate processes should ideally be put in place early on
to ensure that data is available in open formats. For example, if the
formats cannot be read using open software, this could include
manual exporting new data to open formats once a week to avoid
forming a backlog and potentially losing access to large quantities of
non-exported data if the original software is not available anymore.

Open science and FAIR principles are becoming more and more
widely accepted in academia and in neuroscience in particular.
However, at the current stage of ongoing works, it is important to
include smaller communities in the discussion, as the popularity of
the specific software and hardware solution influences the motivation
of the vendors to provide open off-the-shelf solutions. PyDapsys
alongside more general emerging approaches, such as MARBLE,
serves as an example of a possible solution for these
research communities.

Data availability statement

The data analyzed in this study is subject to the following licenses/
restrictions: the hospital regulations limit open data sharing. Data is
available upon reasonable request. Requests to access these datasets
should be directed to BN, bnamer@ukaachen.de.

https://doi.org/10.3389/fninf.2023.1250260
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
mailto:bnamer@ukaachen.de

Konradi et al. 10.3389/fninf.2023.1250260

Frontiers in Neuroinformatics 06 frontiersin.org

Ethics statement

The studies involving humans were approved by the Ethics Boards
of the University Hospital RWTH Aachen and Friedrich-Alexander-
University of Erlangen-Nürnberg. The studies were conducted in
accordance with the local legislation and institutional requirements.
The participants provided their written informed consent to
participate in this study.

Author contributions

PK developed the software and drafted the manuscript. AT
supervised the work on microneurography data. APG and APM
supervised the software-development work. RR, BN, and EK
supervised the project. All authors substantially revised
the manuscript.

Funding

This work was partially funded by the Excellence Initiative of the
German Federal and State Governments G:(DE-82) EXS-SF-
SFDdM013 and also supported by the IZKF TN1-6/IA 532006. BN
was supported by a grant from the Interdisciplinary Center for
Clinical Research within the Faculty of Medicine at the RWTH

Aachen University and the German Research Council DFG NA 970
3-1, DFG FOR 2690 project 6.

Acknowledgments

The authors would like to thank Abigail Morrison for her support
and many insightful discussions. Also, they would like to thank
Dagmar Krefting for the discussion on interoperability in biosignals.

Conflict of interest

APM was employed by Forschungszentrum Jülich GmbH.
The remaining authors declare that the research was conducted in

the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References
Ackerley, R., and Watkins, R. H. (2018). Microneurography as a tool to study the function

of individual C-Fiber afferents in humans: responses from nociceptors, thermoreceptors,
and mechanoreceptors. J. Neurophysiol. 120, 2834–2846. doi: 10.1152/jn.00109.2018

Berens, P., and Ayhan, M. S. (2019). Proprietary data formats block Health Research.
Nature 565:429. doi: 10.1038/d41586-019-00231-9

Garcia, S., Guarino, D., Jaillet, F., Jennings, T., Pröpper, R., Rautenberg, P. L., et al.
(2014). Neo: an object model for handling electrophysiology data in multiple formats.
Front. Neuroinform. 8:10. doi: 10.3389/fninf.2014.00010

Grewe, J., Wachtler, T., and Benda, J. (2011). A bottom-up approach to data annotation
in neurophysiology. Front. Neuroinform. 5:16. doi: 10.3389/fninf.2011.00016

Harris, C. R., Jarrod Millman, K., Van Der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., et al. (2020). Array programming with NumPy. Nature 585, 357–362.
doi: 10.1038/s41586-020-2649-2

Kemp, B., Värri, A., Rosa, A. C., Nielsen, K. D., and Gade, J. (1992). A simple format
for exchange of digitized Polygraphic recordings. Electroencephalogr. Clin. Neurophysiol.
82, 391–393. doi: 10.1016/0013-4694(92)90009-7

Kilamo, T., Hammouda, I., Mikkonen, T., and Aaltonen, T. (2012). From proprietary
to open source—growing an open source ecosystem. J. Syst. Softw. 85, 1467–1478. doi:
10.1016/j.jss.2011.06.071

Konradi, P., Troglio, A., Namer, B., and Kutafina, E. (2023). Digital-C-Fiber/PyDapsys.
Zenodo. doi: 10.5281/ZENODO.7970520

Kutafina, E., Troglio, A., De Col, R., Röhrig, R., Rossmanith, P., and Namer, B. (2022).
Decoding neuropathic pain: can we predict fluctuations of propagation speed in

stimulated peripheral nerve? Front. Comput. Neurosci. 16:899584. doi: 10.3389/
fncom.2022.899584

Rübel, O., Tritt, A., Ly, R., Dichter, B. K., Ghosh, S., Niu, L., et al. (2022). The
Neurodata without Borders ecosystem for neurophysiological data science. eLife
11:e78362. doi: 10.7554/eLife.78362

Schlebusch, F., Kehrein, F., Röhrig, R., Namer, B., and Kutafina, E. (2021).
openMNGlab: data analysis framework for microneurography – a technical report. Stud.
Health Technol. Inform. 283, 165–171. doi: 10.3233/SHTI210556

Stoewer, A., Kellner, C., Benda, J., Wachtler, T., and Grewe, J. (2014). File format and
library for neuroscience data and metadata. Front. Neuroinform. 8:15. doi: 10.3389/conf.
fninf.2014.18.00027

Troglio, A., Schlebusch, F., Röhrig, R., Dunham, J., Namer, B., and Kutafina, E. (2023).
odML-tables as a metadata standard in microneurography. Stud. Health Technol. Inform.
302, 368–369. doi: 10.3233/SHTI230144

Torebjork, H. E., and Hallin, R. G. (1974). Responses in Human A and C Fibres to
Repeated Electrical Intradermal Stimulation. J. Neur. Neurosurgery Psych. 37, 653–64.
doi: 10.1136/jnnp.37.6.653

Vallbo, Å. B., and Hagbarth, K.-E. (1968). Activity from skin mechanoreceptors
recorded percutaneously in awake human subjects. Exp. Neurol. 21, 270–289. doi:
10.1016/0014-4886(68)90041-1

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A.,
et al. (2016). The FAIR guiding principles for scientific data management and
stewardship. Sci. Data 3:160018. doi: 10.1038/sdata.2016.18

https://doi.org/10.3389/fninf.2023.1250260
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://doi.org/10.1152/jn.00109.2018
https://doi.org/10.1038/d41586-019-00231-9
https://doi.org/10.3389/fninf.2014.00010
https://doi.org/10.3389/fninf.2011.00016
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1016/0013-4694(92)90009-7
https://doi.org/10.1016/j.jss.2011.06.071
https://doi.org/10.5281/ZENODO.7970520
https://doi.org/10.3389/fncom.2022.899584
https://doi.org/10.3389/fncom.2022.899584
https://doi.org/10.7554/eLife.78362
https://doi.org/10.3233/SHTI210556
https://doi.org/10.3389/conf.fninf.2014.18.00027
https://doi.org/10.3389/conf.fninf.2014.18.00027
https://doi.org/10.3233/SHTI230144
https://doi.org/10.1136/jnnp.37.6.653
https://doi.org/10.1016/0014-4886(68)90041-1
https://doi.org/10.1038/sdata.2016.18

	PyDapsys: an open-source library for accessing electrophysiology data recorded with DAPSYS
	1. Introduction
	2. Method
	2.1. Data
	2.2. Reverse engineering method
	2.3. Concept of the library implementation
	2.3.1. Verification
	2.3.2. Performance testing

	3. Results
	3.1. Analysis of the DAPSYS file structure
	3.1.1. Data pages
	3.1.2. Table of contents
	3.2. Development of the Python library “PyDapsys”
	3.2.1. Verification
	3.2.2. Performance testing

	4. Discussion
	Data availability statement
	Ethics statement
	Author contributions

	References

