
TYPE Methods

PUBLISHED 14 December 2023

DOI 10.3389/fninf.2023.1265079

OPEN ACCESS

EDITED BY

Georgios N. Dimitrakopoulos,

Ionian University, Greece

REVIEWED BY

Aris Vrahatis,

Ionian University, Greece

Ioannis Kakkos,

National Technical University of Athens, Greece

*CORRESPONDENCE

Mu Qiao

muqiao0626@gmail.com

†PRESENT ADDRESS

Mu Qiao,

LinkedIn, Mountain View, CA, United States

RECEIVED 21 July 2023

ACCEPTED 06 November 2023

PUBLISHED 14 December 2023

CITATION

Qiao M (2023) Factorized discriminant analysis

for genetic signatures of neuronal phenotypes.

Front. Neuroinform. 17:1265079.

doi: 10.3389/fninf.2023.1265079

COPYRIGHT

© 2023 Qiao. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Factorized discriminant analysis
for genetic signatures of neuronal
phenotypes

Mu Qiao*†

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA,

United States

Navigating the complex landscape of single-cell transcriptomic data presents

significant challenges. Central to this challenge is the identification of a

meaningful representation of high-dimensional gene expression patterns that

sheds light on the structural and functional properties of cell types. Pursuing

model interpretability and computational simplicity, we often look for a linear

transformation of the original data that aligns with key phenotypic features of

cells. In response to this need, we introduce factorized linear discriminant analysis

(FLDA), a novel method for linear dimensionality reduction. The crux of FLDA lies

in identifying a linear function of gene expression levels that is highly correlated

with one phenotypic feature while minimizing the influence of others. To augment

this method, we integrate it with a sparsity-based regularization algorithm. This

integration is crucial as it selects a subset of genes pivotal to a specific phenotypic

feature or a combination thereof. To illustrate the e�ectiveness of FLDA, we

apply it to transcriptomic datasets from neurons in the Drosophila optic lobe.

We demonstrate that FLDA not only captures the inherent structural patterns

aligned with phenotypic features but also uncovers key genes associated with

each phenotype.

KEYWORDS

single-cell transcriptomics, linear discriminant analysis, dimensionality reduction

algorithm, generalized eigenvalue problem, pheno- and geno-typing

1 Introduction

The analysis of gene expression data in single cells presents an intriguing and complex

problem. Each cell’s gene expression data can be viewed as a high-dimensional vector,

allowing each cell to be represented as a single point in the vast space of gene expression.

Clusters form within this space, each identifiable and associated with a particular cell type,

thanks to the verification from the molecular markers of cell types (Macosko et al., 2015;

Shekhar et al., 2016; Tasic et al., 2016, 2018; Peng et al., 2019).

When the phenotypic traits of each cell type are known, either from past studies or

direct measurement (Sanes and Masland, 2015; Cadwell et al., 2016; Zeng and Sanes, 2017;

Strell et al., 2019), we can label each cell type according to its unique characteristics. For

example, differentiation of neuronal cell types could be achieved through analyzing a variety

of features, such as dendritic and axonal laminations, electrophysiological properties, and

connectivity (Sanes and Masland, 2015; Zeng and Sanes, 2017; Gouwens et al., 2019). These

features are often categorical in nature.

A critical challenge arises when we attempt to factorize the high-dimensional gene

expression data into modules that align with these phenotypes. In simple terms, we aim

to find a low-dimensional embedding of gene expression where each axis signifies a single

factor. This factor might correspond to a specific phenotypic feature or potentially, the

combination of several.
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Ideally, variation along one axis in the embedding space

would exclusively affect one phenotypic feature. However, due to

inevitable noise in the data, this is challenging to achieve. As a

workaround, we allow for data projected along one axis to vary

primarily with one phenotypic feature and minimally with others.

Simultaneously, we want to preserve cell type identities in the low-

dimensional space. This means that cells of the same type should

remain in close proximity within the embedding space, while cells

of different types remain distinct.

In order to address this issue, we propose the method of

factorized linear discriminant analysis (FLDA). This is a supervised

dimensionality reduction technique, rooted in the concepts of

multi-way analysis of variance (ANOVA; Fisher, 1918). FLDA

enables the factorization of data into components that correspond

to phenotypic features and their combinations. It then seeks a linear

transformation that is highly variable with one component, yet

stable with others. The power of this approach lies in its simplicity

and interpretability. To further leverage our analysis, we introduce

a sparse variant of this method. This variant restricts the number of

non-zero elements contributing to each linear projection, thereby

identifying a subset of genes crucial to each phenotype. The efficacy

of FLDA is demonstrated through its application to a single-cell

RNA-Seq dataset of T4/T5 neurons in Drosophila (Kurmangaliyev

et al., 2019), focusing particularly on two phenotypes: dendritic

location and axonal lamination.

2 Factorized linear discriminant
analysis (FLDA)

Let’s consider a situation where each cell type can be

characterized by two phenotypic features, both of which are

categorical. This essentially means that the sample space for cell

types is a Cartesian product of the sample spaces of the two

phenotypic features I and J:

I × J = {(i, j)|i ∈ I, j ∈ J} (1)

In this equation, i, j represent different categories of the two

phenotypic features. Suppose we have observed nij cells for each cell

type (i, j). This information can be visualized with a contingency

table, as shown in Figures 1A, B. Note here we account for the

scenario where the table might be only partially filled.

We denote the expression values of g genes measured in the

kth cell of the cell type (i, j) as xijk(k ∈ 1, 2, ...nij) (xijk ∈ R
g).

Our task is to find linear projections yijk = u
T
xijk (u ∈ R

g) and

zijk = v
T
xijk (v ∈ R

g) that align with features i and j, respectively

(see Figure 1C).

To address this, we explored whether we could factorize, for

example, yijk, into components dependent on features i and j. By

employing the principles of linear factor models from multi-way

ANOVA and the concept of variance partitioning, we formulated

an objective function to find u that maximizes this objective (for a

detailed analysis, refer to Appendix A).

u
∗ = argmax

u∈Rg

u
T
NAu

uTMeu
(2)

With a complete table, where a and b are the number of

categories for feature i and j, we have:

NA = MA − λ1MB − λ2MAB (3)

Here, MA, MB, and MAB denote the covariance matrices

explained by feature i, feature j, and their combination, respectively.

The hyper-parameters λ1 and λ2 determine the relative weights of

MB andMAB in comparison toMA. The residual covariancematrix,

Me, represents variance within cell type clusters and signifies noise

in gene expressions. The formal definitions of these terms are

as follows:

MA =
1

a− 1

a∑

i=1

(mi. −m..)(mi. −m..)
T (4)

MB =
1

b− 1

b∑

j=1

(m.j −m..)(m.j −m..)
T (5)

MAB =
1

(a− 1)(b− 1)

a∑

i=1

b∑

j=1

(mij −mi. −m.j +m..)

(mij −mi. −m.j +m..)
T

(6)

Me =
1

N − ab

a∑

i=1

b∑

j=1

[
1

nij

nij∑

k=1

(xijk −mij)(xijk −mij)
T] (7)

and

m.. =
1

ab

a∑

i=1

b∑

j=1

mij (8)

mi. =
1

b

b∑

j=1

mij (9)

m.j =
1

a

a∑

i=1

mij (10)

with

mij =
1

nij

nij∑

k=1

xijk (11)

Analogously, the linear projections v for feature j and w for

the combination of both features i and j can be determined by

similar formulas. By applying the same rationale to a partial table,

we can derive u or v as the linear projection for feature i or j (see

Appendix B for a detailed mathematical discussion).

Note that NA is symmetric and Me is positive definite,

transforming the optimization problem into a generalized

eigenvalue problem (Ghojogh et al., 2019). When Me is invertible,

u
∗ is the eigenvector associated with the highest eigenvalue

of M
−1
e NA. Generally, if we aim to embed xijk into a d-

dimensional subspace aligned with feature i (d < a), we take

the eigenvectors corresponding to the d largest eigenvalues of

M
−1
e NA, which we term as the top d factorized linear discriminant

components (FLDs).
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FIGURE 1

Illustration of our approach. (A, B) Here, cell types are represented by two phenotypic features, labeled with i and j, respectively. If only some

combinations of the two features are observed, we have a partial contingency table (B) rather than a complete one (A). (C) We aim to find linear

projections of the data that separate the cell types in a manner factorized according to the two features. In this diagram, u, v, and w are aligned with

Feature 1, Feature 2, and their combination respectively, with the projected coordinates y, z, and s.

In situations where the number of genes greatly exceeds the

number of cells, Me becomes singular and non-invertible. In such

cases, we resort to solutions suggested in Friedman (1989), Dudoit

et al. (2002), and Bickel and Levina (2004) that uses a diagonal

estimate of Me: diag(σ̂ 2
1 , σ̂

2
2 , ..., σ̂

2
p ), where σ̂ 2

i is the ith diagonal

element of Me. This solution has been employed in multiple

computational biology studies (Tibshirani et al., 2003; Butler et al.,

2018; Stuart et al., 2019).

As multi-way ANOVA can handle contingency tables with

more than two dimensions, our analysis can be easily extended

to handle more than two phenotypic features (Hahn et al., 2023).

In summary, FLDA is well-suitable for data whose labels form a

Cartesian product of multiple features.

3 Sparse regularization of FLDA

In computational biology applications, we are often interested

in identifying a small subset of genes that effectively characterizes a

specific phenotypic feature. This leads to the identification of axes

with a few non-zero elements. To find such a sparse solution, we

address the following optimization problem:

u
∗ = argmax

u∈Rg

u
T
NAu

uTMeu
subject to ||u||0 ≤ l (12)

where the number of non-zero elements of u∗ is constrained to

be less or equal to l.

This problem, also known as a sparse generalized eigenvalue

problem, presents three challenges (Tan et al., 2018): Handling

extremely high-dimensional data, Me can be singular and non-

invertible; Working with the normalization term u
T
Meu, which

restricts the application of many sparse eigenvalue solutions;

Maximizing a convex objective over a non-convex set, a problem

known to be NP-hard.

To overcome these challenges, we employ the truncated

Rayleigh flow (Rifle) method, which was designed specifically

for solving sparse generalized eigenvalue problems. The Rifle

algorithm is a two-step process (Tan et al., 2018): First, it acquires

an initial vector u0 that is close to u
∗. For this, we use the non-

sparse FLDA solution as an initial estimate for u0; Second, it

iteratively performs a gradient ascent on the objective function.

This is followed by a truncation step that retains the l entries of

u with the highest values and sets the remaining entries to zero.

The step-by-step process of applying the Rifle method to solve our

problem is detailed in the following pseudo-code:

procedure RIFLE(NA,Me, u0, l, η) ⊲ η is the step size

t = 1 ⊲ t indicates the iteration number

while not converge do ⊲ Converge when ut ≃ ut−1

ρt−1 ←
u
T
t−1NAut−1

u
T
t−1Meut−1

C ← I + ( η

ρt−1
)(NA − ρt−1Me)

ut ←
Cut−1
||Cut−1 ||2

Truncate ut by preserving the top l entries of

u with the largest values and setting the remaining

entries to 0

ut ←
ut
||ut ||2

t← t + 1

end while

return ut

end procedure

As previously demonstrated in Tan et al. (2018), the Rifle

method can effectively converge to the unique sparse leading

generalized eigenvector, assuming it exists, at the optimal statistical

rate of convergence. The computational complexity of the second

step in each iteration isO(lg+g), indicating that the Rifle algorithm

scales linearly with g, the number of genes in the input data.

In terms of hyperparameter selection, the step size η should

be small enough to ensure convergence, specifically ηλmax(Me) <

1, where λmax(Me) is the largest eigenvalue of Me. This is akin

to taking small steps to ensure that we don’t overshoot the

optimal solution. The other hyperparameter, l, which determines

the number of genes to be preserved, is chosen empirically based

on the design of the subsequent experiment. This parameter

Frontiers inNeuroinformatics 03 frontiersin.org

https://doi.org/10.3389/fninf.2023.1265079
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Qiao 10.3389/fninf.2023.1265079

can be adjusted depending on the specific requirement of a

biological study.

4 Related work: dimensionality
reduction

FLDA is one method for linear dimensionality reduction

(Cunningham and Ghahramani, 2015). In formal terms, linear

dimensionality reduction can be defined as follows: Given n data

points, each of g dimensions, X = [x1, x2, ..., xn] ∈ R
g×n, and a

chosen reduced dimensionality r < g, an objective function f (.) is

optimized to produce a linear projection U ∈ R
r×g . The result is a

low-dimensional transformed dataset Y = UX ∈ R
r×n.

Leading methods for linear dimensionality reduction include

Principal Component Analysis (PCA), Factor Analysis (FA),

Linear Multidimensional Scaling (MDS), Linear Discriminant

Analysis (LDA), Canonical Correlation Analysis (CCA), Maximum

Autocorrelation Factors (MAF), Slow Feature Analysis (SFA),

Sufficient Dimensionality Reduction (SDR), Locality Preserving

Projections (LPP), and Independent Component Analysis (ICA;

Cunningham and Ghahramani, 2015). These approaches are

important in single-cell transcriptomics for dissecting cellular

heterogeneity, understanding cellular differentiation trajectories,

and identifying correspondences between cells in different

experiments (Trapnell et al., 2014; Stuart et al., 2019; Xiang et al.,

2021).

4.1 Unsupervised methods for linear
dimensionality reduction

Unsupervised linear dimensionality reduction methods,

including PCA (Jolliffe, 2002), ICA (Hyvärinen et al., 2001),

and FA (Spearman, 1904), project data into a low-dimensional

space without the use of supervision labels. These methods are

crucial in the initial stages of single-cell data analysis to reduce

dimensionality and noise, and have been used in numerous studies

to identify subpopulations of cells and understand the variance

structure of the data (Stuart et al., 2019; Xiang et al., 2021). The

shortcoming of these unsupervised methods is that the axes of

the low-dimensional space often fail to represent the underlying

structure of the data, rendering them uninterpretable. This issue is

particularly pronounced with gene expression data due to its high

dimensionality (usually encompassing tens of thousands of genes)

and the noisy expressions of many genes. These noisy expressions

result in significant variance among individual cells, albeit without

a structured pattern. In the absence of supervisory signals from

phenotypic features, unsupervised methods tend to select these

genes to construct the low-dimensional space, which does not

provide the desired alignment or effective separation of cell type

clusters. To illustrate this, we compared the performance of PCA

on the gene expression data with that of FLDA. In brief, we solved

the following objective to find the linear projection:

u
∗ = argmax

u∈Rg

u
T
XX

T
u

uTu
(13)

The results of this comparison are detailed in the

Results Section.

4.2 Supervised methods for linear
dimensionality reduction

Supervised linear dimensionality reduction techniques, such

as LDA (Fisher, 1936; McLachlan, 2004) and CCA (Hotelling,

1936; Wang et al., 2016), can overcome the aforementioned

issues. By incorporating supervised signals of phenotypic features,

genes whose expressions do not inform on the phenotypes can

be de-emphasized.

4.2.1 Linear discriminant analysis (LDA)
LDA models the differences among data organized in pre-

determined classes. Formally, the optimization problem solved by

LDA is as follows:

u
∗ = argmax

u∈Rg

u
T
6bu

uT6eu
(14)

where6b and6e are estimates of the between-class and within-

class covariance matrices, respectively.

Unlike FLDA, LDA doesn’t explicitly formulate the

representation of these classes as a contingency table composed of

multiple features. As a result, when applied to an example problem

where cell types are organized into a two-dimensional contingency

table with phenotypic features i and j, the axes from LDA are

generally not aligned with these two phenotypic features.

However, it is possible to perform two separate LDAs for the

two features. This modification allows the axes from each LDA

to align with its specific feature. We refer to this approach as

“2LDAs.” There are two main limitations of this approach: first,

it discards information about the component depending on the

combination of the two features; second, it explicitly maximizes the

segregation of cells with different feature levels, which sometimes is

not consistent with a good separation of cell type clusters. Detailed

comparisons between LDA, “2LDAs,” and FLDA are provided in the

Results Section.

4.2.2 Canonical correlation analysis (CCA)
CCA projects two datasets Xa ∈ R

g×n and Xb ∈ R
d×n to

Ya ∈ R
r×n and Yb ∈ R

r×n, such that the correlation between Ya

and Yb is maximized. Formally, it tries to maximize this objective:

(u, v) = argmax
u∈Rg ,v∈Rd

u
T(XaX

T
a )
− 1

2XaX
T
b
(XbX

T
b
)−

1
2 v

(uTu)−
1
2 (vTv)−

1
2

(15)

To apply CCA to our problem, we designate Xa as the

gene expression matrix, and Xb as the matrix of d phenotypic

features (d = 2 for two features as demonstrated later). Unlike

FLDA, CCA identifies a transformation of gene expressions that

is aligned with a linear combination of phenotypic features,

instead of a factorization of gene expressions corresponding to
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individual phenotypic features. The differences in these approaches

are quantified and discussed in the Results Section.

4.3 Non-linear dimensionality reduction
methods

Apart from linear dimensionality reduction, non-linear

methods have emerged as popular choices for analyzing single-cell

transcriptomic datasets due to their ability to capture complex,

non-linear relationships inherent in the data (Xiang et al., 2021).

Notable among these methods are t-Distributed Stochastic

Neighbor Embedding (t-SNE) (Maaten and Hinton, 2008) and

Uniform Manifold Approximation and Projection (UMAP;

McInnes et al., 2018). Unlike linear methods, these algorithms can

unravel intricate structures in the data by modeling non-linear

manifold structures.

t-SNEminimizes the divergence between two distributions over

pairs of data points, one in the high-dimensional space and one

in the low-dimensional space, to create a map that reflects the

structure of the data. UMAP assumes that the data is uniformly

distributed on a locally-connected Riemannian manifold and seeks

to find a similar uniform distribution in lower dimensions.

The comparison of FLDA with t-SNE and UMAP hinges

on the trade-off between linear and non-linear dimensionality

reductions. While non-linear methods excel in capturing complex

data structures and modeling dropout effects (Qiu, 2020), and

often produce visually appealing embeddings, they exhibit certain

limitations compared to linear methods, such as:

• Interpretability: Linear methods offer a clear and direct

relationship between the original features and the reduced

dimensions, which facilitates interpretability. In contrast,

the embeddings produced by non-linear methods are often

challenging to interpret due to the complex and non-linear

transformation functions involved.

• Computational Efficiency: Linear methods are generally more

computationally efficient compared to non-linear methods,

which can become computationally intensive, especially as the

size of the dataset increases.

In single-cell transcriptomics applications, the choice

between linear and non-linear dimensionality reduction hinges

on balancing the capture of complex data structures with the

maintenance of interpretability and computational efficiency. In

the context of this paper, our proposed FLDA method is designed

to address the challenges associated with single-cell data by offering

a structured and interpretable low-dimensional space aligned with

neuronal phenotypes. Therefore, we constrained our comparisons

of FLDA with other linear dimensionality reduction methods that

share the objective of interpretability.

5 Experimental design

5.1 Datasets

To quantitatively evaluate FLDA against other linear

dimensionality reduction methods such as PCA, CCA, LDA,

and the “2LDAs” approach, we initially opted for synthetic

datasets. The primary rationale behind this choice lay in the

controlled environment synthetic data afford, enabling a precise

and standardized comparison of the methods under varying

conditions. These datasets consisted of four types of cells, each

containing 250 examples, generated from a 2× 2 Cartesian product

of two features i and j (Figure 2A). We generated expressions for

1000 genes of each cell, with gene levels being either purely noise-

driven or correlated with feature i, feature j, or the combination of

both. Detailed information about the data generation can be found

in Appendix C.

To bridge the gap between the controlled synthetic

environment and real-world biological scenarios, we employed

a dataset of Drosophila T4/T5 neurons (Kurmangaliyev et al.,

2019) to demonstrate the applicability and advantages of FLDA in

analyzing single-cell transcriptome datasets. T4 and T5 neurons,

while similar in general morphology and physiological properties,

differ in the location of their dendrites in the medulla and

lobula, which are two separate brain regions. Both T4 and T5

neurons comprise four subtypes, each pair demonstrating axonal

lamination in a specific layer within the lobula plate (Figure 3A).

Thus, we identified these neurons using two phenotypic features:

feature i indicating the dendritic location in either the medulla

or lobula, and feature j signifying axonal lamination at one of the

four layers (a/b/c/d) (Figure 3B). In this study, we concentrated

on a dataset containing expression data for 17,492 genes from

3,833 cells, all collected at a predefined time during brain

development.

5.2 Data preprocessing

The preprocessing of the T4/T5 neuron dataset adhered

to previously documented procedures (Shekhar et al., 2016;

Kurmangaliyev et al., 2019; Peng et al., 2019; Tran et al., 2019).

Briefly, the transcript counts within each column of the count

matrix (genes×cells) were normalized to equate to the median

number of transcripts per cell, leading to normalized counts, or

Transcripts-per-million (TPMgc), for Gene g in Cell c. We used the

log-transformed expression data, denoted by Egc = ln (TPMgc + 1),

for subsequent analysis. We selected highly variable genes for

further FLDA application based on a common approach in single-

cell RNA-Seq studies. This approach is based on establishing a

relationship between mean and coefficient of variation (Chen et al.,

2016; Pandey et al., 2018; Kurmangaliyev et al., 2019). For this

particular experiment, we set the hyper-parameters λs in Equation

(3) to 1.

5.3 Evaluation metrics

The dimensionality reduction process should satisfy two

primary goals: (1) to identify axes that efficiently segregate distinct

cell types, and (2) to discover axes that are well-aligned with

the respective labels. Consequently, to evaluate the effectiveness

of FLDA and various alternative methodologies, we implemented

the following metrics (Detailed information of implementing these

metrics can be found in Appendix D):
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FIGURE 2

Quantitative comparison between FLDA and other models. (A) Illustration of data synthesis. For implementation details, see Appendix C. The color

bar represents the expression values of the 1000 generated genes. (B) Normalized overall Signal-to-Noise Ratio (SNR) metric for each analysis,

normalized with respect to that of LDA. The normalized SNR metric of PCA is below 0.8. (C) Overall modularity score for each analysis. The error bars

in (B, C) denote standard errors calculated from 10 repeated simulations.

FIGURE 3

Application of FLDA to the dataset of T4/T5 neurons. (A) T4/T5 neuronal cell types and their dendritic and axonal location phenotypes. (B) The

organization of T4/T5 neurons in a complete contingency table, where i indicates dendritic location and j indicates axonal termination. (C) SNR

metric for each discriminant axis. (D) Data projection into the three-dimensional space consisting of the discriminant axis for feature i (FLDi) and the

first and second discriminant axes for feature j (FLDj1 and FLDj2 ). (E–G) Data projection into the two-dimensional space comprised of FLDi and FLDj1

(E), FLDj1 and FLDj2 (F), or FLDj2 and FLDj3 (the third discriminant axis for feature j) (G). Di�erent cell types are represented by di�erent colors as

depicted in (A, D).

• Signal-to-Noise Ratio (SNR): This metric measures the

efficacy of each discriminant axis in distinguishing distinct cell

types. Higher SNR suggests better separation of different cell

types. This metric is relevant to the first goal.

• Explained Variance (EV): This metric gauges the

proportion of variance of the feature i or j that a

discriminant axis explains. Higher EV indicates that the

dimensionality reduction method effectively encapsulates
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TABLE 1 Average Silhouette scores for FLDA and other models.

Sigma FLDA 2LDAs LDA CCA PCA

2 0.905050961 0.899968945 0.904654957 0.904642723 0.862205691

4 0.809044235 0.799580694 0.80809655 0.808670943 0.70561478

6 0.70898633 0.697440319 0.707543347 0.708353597 0.524329239

8 0.624518364 0.613810816 0.622878691 0.624528348 0.33756613

10 0.535243253 0.526429522 0.532720359 0.534676146 0.145181255

the feature information. This metric is relevant to the

second goal.

• Mutual Information (MI): This metric calculates the

association between each discriminant axis and each feature,

providing insights into how much information an axis

provides about a specific feature. A higher MI score suggests

better ability of the dimensionality reduction method to

capture essential characteristics. This metric is relevant to the

second goal.

• Modularity Score: This metric assesses whether each axis is

predominantly dependent on a single feature (Ridgeway and

Mozer, 2018). A higher modularity score indicates successful

disentanglement of features, which is crucial for interpreting

biological data. This metric is relevant to the second goal.

• Silhouette Score: This metric computes the average Silhouette

value of all samples, which is a measure of how similar a

cell is to its own cluster compared to other clusters. A higher

Silhouette score indicates better cluster separation and tighter

clustering, This metric is relevant to the first goal.

In addition, we evaluated the execution times of FLDA and

alternative methodologies.

6 Results

6.1 Comparative analysis of FLDA with
other linear dimensionality reduction
methods

To provide a quantitative comparison between FLDA and other

dimensionality reduction methods such as PCA, CCA, LDA, and

“2LDAs,” we measured the proposed metrics on the synthesized

datasets as shown in Figure 2A. Given that the synthesized data

was organized in a 2 × 2 table, each LDA of the “2LDAs”

approach could only identify one dimension for the specific features

i or j. Therefore, as a fair comparison, we only included the

corresponding dimensions in FLDA (FLDi and FLDj) and the

top two components of PCA, CCA, and LDA. The overall SNR

values normalized by that of LDA and the modularity scores

across different noise levels are depicted in Figures 2B, C. The

performance of PCA is the worst due to its unsupervised approach,

which cannot effectively mitigate the impact of noise on the signal.

While supervised approaches generally demonstrate superior SNR,

LDA, and CCA suffer from low modularity scores. This outcome

aligns with our expectation, as LDA maximizes cell type cluster

separation without necessarily aligning axes to individual features i

or j, and CCA maximizes the correlation to a linear combination

of phenotypic features rather than individual ones. Conversely,

“2LDAs” achieves the highest modularity scores but exhibits the

lowest SNR among supervised approaches, as it aims to maximize

the separation of cells with different feature levels, which does not

necessarily coincide with maximizing cell type segregation. Both

the SNR and modularity score of FLDA approach optimal values

because it considers both the alignment of axes to different features

and the constraint of variance within cell types. Consistent with the

SNR metric, the average Silhouette score for FLDA is close to those

of LDA and CCA, outperforms "2LDAs", and significantly surpasses

PCA, as detailed in Table 1. Consistent with the modularity score,

a robust axis alignment to either feature i or j is observed in

FLDA and “2LDAs,” but not in the other methods, as shown in a

representative plot of the EV andMImetrics across these models in

Figure 4.

We further analyzed the execution times of FLDA and other

models and summarized the findings in Table 2. The execution

time of FLDA is on par with that of LDA, albeit longer than

PCA’s, attributed to the handling of the covariance matrix in the

denominator. In contrast, the execution times for “2LDAs” and

CCA are considerably extended, nearly doubling those of FLDA

and LDA. This increment is due to “2LDAs” requiring two LDA

operations, while CCA necessitates the computation of covariance

matrices for both input and phenotypic features, thereby doubling

the execution time.

6.2 Real-world application in
computational biology

A significant question in biology is whether diverse cell type

phenotypes are generated by modular transcriptional programs,

and if so, what the gene signature for each program is.

To demonstrate the potential of our approach in addressing

this question, we applied FLDA to the Drosophila T4/T5

neuron dataset.

Given that the data is organized in a 2 × 4 contingency table,

we chose to project the expression data into a seven-dimensional

subspace. This subspace was structured such that one FLD was

aligned with dendritic location i (FLDi), three FLDs were aligned

with axonal termination j (FLDj1−3 ), and the remaining three were

tailored to represent the combination between both phenotypes

(FLDij1−3
). Ranking these axes based on their SNRmetrics revealed

that FLDj1 , FLDi, and FLDj2 had considerably higher SNRs than

the others (Figure 3C). Indeed, data representations in the subspace

comprising these three dimensions clearly separated the eight
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FIGURE 4

Representative plots (at σ = 6) of EV and MI metrics for FLDA and other models. (A, B) EV (A) and MI (B) metrics of FLDA. FLDi and FLDj indicate the

factorized linear discriminants for features i and j. (C, D) EV (C) and MI (D) metrics of 2LDAs. LDi and LDj indicate the linear discriminant components

for features i and j. (E, F) EV (E) and MI (F) metrics of LDA. LD1 and LD2 indicate the first two linear discriminant components. (G, H) EV (G) and MI (H)

metrics of CCA. CCA1 and CCA2 indicate the first two canonical correlation axes. (I, J) EV (I) and MI (J) metrics of PCA. PC1 and PC2 indicate the first

two principal components. EVi and EVj are the explained variance of features i and j along an axis, and MIi and MIj indicate the mutual information

between an axis and features i and j, respectively. Values of EV and MI metrics are also indicated by the color bars on the right side.

TABLE 2 Average execution time (in seconds) for FLDA and other models.

Sigma FLDA 2LDAs LDA CCA PCA

2 0.67947216 1.540404677 0.760401511 1.453615189 0.045516276

4 0.673864269 1.524357891 0.768786931 1.277295494 0.045400095

6 0.670872188 1.523296094 0.763518047 1.225833297 0.046381855

8 0.674873614 1.526811552 0.761365056 1.207562256 0.045538688

10 0.679605055 1.521809649 0.759853601 1.190890384 0.045457077

neuronal cell types (Figure 3D). As expected, FLDi differentiated

T4 fromT5 neurons, which have dendrites located in different brain

regions (Figure 3E). Interestingly, FLDj1 separated T4/T5 neurons

into two groups, a/b vs. c/d, according to the upper or lower lobula

place, while FLDj2 divided them into another two groups, a/d vs.

b/c, indicating whether their axons laminated at the middle or

lateral part of the lobula plate (Figures 3E, F). Among these three

dimensions, FLDj1 has a much higher SNR than FLDi and FLDj2 ,

suggesting a hierarchical structure in the genetic organization of

T4/T5 neurons: they are first separated into either a/b or c/d

types, and subsequently divided into each of the eight subtypes. In

fact, this matches the sequence of their cell fate determination, as

revealed in a previous genetic study (Pinto-Teixeira et al., 2018).

Lastly, the final discriminant axis of the axonal feature FLDj3

separates the group a/c from b/d, suggesting its role in fine-tuning

the axonal depth within the upper or lower lobula plate (Figure 3G).

To identify gene signatures for the discriminant components

in FLDA, we applied sparsity-based regularization to constrain the

number of genes with non-zero weight coefficients. We set the

number to 20, a reasonable number of candidate genes that could

be tested in a follow-up biological study. We extracted a list of 20

genes each for the axis of FLDi or FLDj1 . The relative importance

of these genes to each axis is directly informed by their weight

values (Figures 5A, C). Alongside, we plotted expression profiles

of these genes in the eight neuronal cell types (Figures 5B, D).

For both axes, the genes critical in separating cells with different

feature levels are differentially expressed in corresponding cell

types. Finally, FLDA allowed us to examine the component that

depends on the combination of both features and identify its gene

signature, providing insights into transcriptional regulation of gene

expressions in the T4/T5 neuronal cell types (Figures 6, 7).

6.3 Perturbation analysis

As FLDA, like other supervised methods, relies on accurate

phenotype labels to extract meaningful information, we sought

to investigate how it might behave in real-world scenarios where
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FIGURE 5

Critical genes extracted from the sparse algorithm. (A) Weight vector of the 20 genes selected for the dendritic phenotype (FLDi). The weight value is

indicated in the color bar with color indicating direction (red: positive and green: negative) and saturation indicating magnitude. (B) Expression

patterns of the 20 genes from (A) in eight types of T4/T5 neurons. Dot size indicates the percentage of cells in which the gene was expressed, and

color represents average scaled expression. (C) Weight vector of the 20 genes selected for the axonal phenotype (FLDj1 ). Legend as in (A). (D)

Expression patterns of the 20 genes from (C) in eight types of T4/T5 neurons. Legend as in (B).

FIGURE 6

Additional plots for FLDA on the dataset of T4/T5 neurons. (A, B) Projection of the original gene expression data into the two-dimensional space

made of the first and second (FLDij1 and FLDij2 ) (A) or the second and third (FLDij2 and FLDij3 ) (B) discriminant axes for the component that depends

on the combination of both features i and j. Di�erent cell types are indicated in di�erent colors as in (B).

inaccuracies are bound to occur. If the phenotypes are annotated

incorrectly, can we use FLDA to raise a flag? To address this, we

propose a perturbation analysis of FLDA, based on the assumption

that among possible phenotype annotations, the projection of

gene expression data with correct labels leads to better metric

measurements than incorrect ones. As detailed in Appendix E, we

deliberately generated three kinds of incorrect labels for the T4/T5

neuron dataset, simulating common errors that could occur during
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FIGURE 7

Additional plots for critical genes extracted from the sparse algorithm. (A) Weight vector of the 20 genes selected for the combination of dendritic

and axonal features (FLDij1 ). The weight value is indicated in the color bar with color indicating direction (red: positive and green: negative) and

saturation indicating magnitude. (B) Expression patterns of the 20 genes from (A) in eight types of T4/T5 neurons. Dot size indicates the percentage

of cells in which the gene was expressed, and color represents average scaled expression.

labeling: the phenotypes of a cell type were mislabeled with those of

another type; a singular phenotypic category was incorrectly split

into two; two phenotypic categories were incorrectly merged into

one. We applied FLDA to gene expressions of T4/T5 neurons using

these perturbed annotations, and found that proposed metrics,

such as SNR and the modularity score, were best when the labels

were correct (Figure 8), suggesting that this type of perturbation

analysis can be used to flag potential errors in labeling.

In summary, our findings demonstrate that FLDA is a

powerful tool for identifying and interpreting gene expressions

that correspond to particular phenotypic features, even in the

face of potential data mislabeling. This makes it a valuable tool

for understanding complex biological systems. The perturbation

analysis provides a robust method for validating the accuracy

of phenotype annotations, thereby increasing the reliability of

subsequent analyses and conclusions.

7 Discussion

We have introduced FLDA, a novel dimensionality reduction

method that linearly projects high-dimensional data, such as gene

expressions, into a low-dimensional space. The axes of this space

are aligned with predefined features like phenotypes, making it

an intuitive representation. Furthermore, we incorporated sparse

regularization into FLDA, allowing us to select a small set of

critical genes that are most informative about the phenotypes.

Our application of FLDA in a computational biology context,

particularly in the analysis of gene expression data fromDrosophila

T4/T5 neurons with two phenotypic labels, not only illuminated

data structures aligned with the phenotypic labels, but also unveiled

previously unreported genes associated with each phenotype. A

comparison of our gene lists with those from the previous study

(Kurmangaliyev et al., 2019) unveiled consistent genes including

indicator genes for dendritic location like TfAP − 2, dpr2, dpr3,
twz, CG34155, and CG12065, and those for axonal lamination

such as klg, bi, pros, mav, beat − IIIb, and Fas2. Remarkably,

we identified genes not reported in the previous study. For

example, our results suggest that the gene pHCl − 1 is important

to the dendritic phenotype, and the gene Lac is critical to

axonal lamination. These genes are promising genetic targets for

subsequent experimentation.

FLDA’s potential extends beyond the dataset explored in this

study. In a separate work, we applied FLDA to another real-

world single-cell transcriptomic dataset, showcasing its ability

to discern a low-dimensional representation of neuronal types
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FIGURE 8

Evaluation of the e�ect of incorrect phenotype annotation on the dataset of T4/T5 neurons. (A, B) Normalized overall SNR metric (A) and overall

modularity score (B) of FLDA after switching labels of T4a type with another neuronal type. (C, D) Normalized overall SNR metric (C) and overall

modularity score (D) of FLDA after merging the axonal phenotypic level a with another phenotypic level (b/c/d). (E, F) Normalized overall SNR metric

(E) and overall modularity score (F) of FLDA after splitting each axonal phenotypic level into two. Metrics under the original annotation are colored in

green, and their values are indicated by the dashed lines. Here the SNR values are normalized with respect to that of the original annotation.

aligned with phenotypic and species attributes, thereby revealing

evolutionary counterparts of primate retinal ganglion cells (Hahn

et al., 2023). This further substantiates FLDA’s applicability

across diverse datasets and its promise in unveiling biologically

meaningful insights.

The method could also play a role in the discovery of

cell types. For example, the known phenotypes in a population

might only form a partial table with missing entries (Figure 1B).

Like the empty cells in Mendeleev’s Periodic Table led to

the prediction of new elements, these gaps could indicate

predictions of new cell types (Mendelejew, 1869). FLDA can

help pinpoint the region of the gene expression space that

corresponds to the predicted new type, potentially revealing

rare cell populations that might otherwise be overlooked due

to insignificance.

Beyond computational biology, FLDA’s application can extend

to any labeled dataset with labels forming a Cartesian product of

multiple attributes. This ability to separate attribute-specific factors

makes FLDA invaluable in creating disentangled representations

(Karaletsos et al., 2016; Ridgeway and Mozer, 2018). The potential

of FLDA extends to these areas, and its performance can be

optimized for diverse applications.

While our work offers significant advancements, it is not

without limitations. The inherent linearity of FLDA, though

providing an explicit and easily interpretable model, also

presupposes a linear relationship between input features, which

may not always hold true. Future work could involve a non-linear

version of FLDA. For example, the input features can be projected

into an embedding space using a neural network, where the axes

align with each label attribute.

8 Code availability statement

FLDA analysis was performed in Python, and the code and

documentation are available at: https://github.com/muqiao0626/

FLDA-in-ComputBiol.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found at: Data used in the paper can be found in NCBI GEO

under accession: GSE126139.
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