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Neuroscience has made significant strides over the past decade in moving from 
a largely closed science characterized by anemic data sharing, to a largely open 
science where the amount of publicly available neuroscience data has increased 
dramatically. While this increase is driven in significant part by large prospective 
data sharing studies, we are starting to see increased sharing in the long tail of 
neuroscience data, driven no doubt by journal requirements and funder mandates. 
Concomitant with this shift to open is the increasing support of the FAIR data 
principles by neuroscience practices and infrastructure. FAIR is particularly critical 
for neuroscience with its multiplicity of data types, scales and model systems 
and the infrastructure that serves them. As envisioned from the early days of 
neuroinformatics, neuroscience is currently served by a globally distributed 
ecosystem of neuroscience-centric data repositories, largely specialized around 
data types. To make neuroscience data findable, accessible, interoperable, and 
reusable requires the coordination across different stakeholders, including the 
researchers who produce the data, data repositories who make it available, 
the aggregators and indexers who field search engines across the data, and 
community organizations who help to coordinate efforts and develop the 
community standards critical to FAIR. The International Neuroinformatics 
Coordinating Facility has led efforts to move neuroscience toward FAIR, fielding 
several resources to help researchers and repositories achieve FAIR. In this 
perspective, I  provide an overview of the components and practices required 
to achieve FAIR in neuroscience and provide thoughts on the past, present and 
future of FAIR infrastructure for neuroscience, from the laboratory to the search 
engine.
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Introduction

The transformation of neuroscience from a closed to an open science, where the entirety of 
research products like data and code produced during a study are routinely made available, has 
accelerated in recent years. Data sharing requires that the necessary human and technical 
infrastructure be in place to make these data broadly available. The first Human Brain Project, 

OPEN ACCESS

EDITED BY

Maaike M. H. Van Swieten,  
Netherlands Comprehensive Cancer 
Organisation (IKNL), Netherlands

REVIEWED BY

Leonardo Candela,  
National Research Council (CNR), Italy  
Alexandre Rosa Franco,  
Nathan Kline Institute for Psychiatric Research,  
United States

*CORRESPONDENCE

Maryann E. Martone  
 mmartone@ucsd.edu

RECEIVED 11 August 2023
ACCEPTED 31 October 2023
PUBLISHED 05 January 2024

CITATION

Martone ME (2024) The past, present and 
future of neuroscience data sharing: a 
perspective on the state of practices and 
infrastructure for FAIR.
Front. Neuroinform. 17:1276407.
doi: 10.3389/fninf.2023.1276407

COPYRIGHT

© 2024 Martone. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

TYPE Review
PUBLISHED 05 January 2024
DOI 10.3389/fninf.2023.1276407

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2023.1276407﻿&domain=pdf&date_stamp=2024-01-05
https://www.frontiersin.org/articles/10.3389/fninf.2023.1276407/full
https://www.frontiersin.org/articles/10.3389/fninf.2023.1276407/full
https://www.frontiersin.org/articles/10.3389/fninf.2023.1276407/full
https://www.frontiersin.org/articles/10.3389/fninf.2023.1276407/full
https://www.frontiersin.org/articles/10.3389/fninf.2023.1276407/full
mailto:mmartone@ucsd.edu
https://doi.org/10.3389/fninf.2023.1276407
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2023.1276407


Martone 10.3389/fninf.2023.1276407

Frontiers in Neuroinformatics 02 frontiersin.org

funded by the US National Institute of Mental Health in the 1990s, 
launched some of the first efforts to “database the brain,” envisioning 
a “paradigm shift in which primary data are openly shared with the 
worldwide neuroscience community” (Koslow, 2000). Despite this 
early optimism, neuroscience had a rocky history with open data 
sharing. Unlike the genomics and structural biology communities 
where the mechanisms and value of sharing primary sequence and 
structural data were agreed upon fairly early, the how and why of 
sharing the more diverse and complex data types of neuroscience was 
met with early resistance (Whose Scans Are They, Anyway?, 2000). In 
these early days, before the spotlight was shown on reproducibility 
problems facing neuroscience (Ioannidis, 2007; Button et al., 2013) 
and before “big data” became a buzzword in neuroscience and across 
biomedicine, there were few motivations or incentives for researchers 
to share their data openly. Like other areas of biomedicine (Nelson, 
2009), neuroscience archives were largely underpopulated relative to 
the amount of data generated in Table 1 (Ferguson et al., 2014).

Neuroscience started to put its first big stake in the ground for open 
data sharing with the commissioning of large prospective data sharing 
efforts where large, comprehensive data sets were collected by large 
teams of scientists with the goal of making them openly available. Some 
of early efforts include the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI; Weiner et al., 2010) launched in 2004 and Allen Brain Atlas 
launched in 2005, followed by large consortia such as the Human 
Connectome Project (2011) and the Big Brain (2013; Amunts et al., 
2013) among many others. The large national and international brain 
projects launched in the second decade of the 21st century articulated a 
strong commitment to the open sharing of data and tools. The European 
Human Brain Project (HBP) was launched in 2013, followed by the US 
Brain Research through Advancing Innovative Neurotechnologies 
(BRAIN) Initiative (2014), the Korean Brain Initiative (2016), Canadian 
Brain Research Strategy (2017), Japan BRAIN/Minds (2018), and the 
China (2021) and Australian Brain Projects (International Brain 
Initiative, 2020; Quaglio et al., 2021). These projects have provided a 
significant infusion of resources to develop the next generation 
infrastructures necessary to house the sizes and complexity of data 
developed through new imaging, genomic, and physiological techniques.

An updated analysis of the repositories listed in Ferguson et al. 
(2014) provides some data on the current state of data sharing. Table 1 
shows that data sharing has increased overall, but it is uneven, with 
explosive growth in some repositories, e.g., NeuroMorpho.org and 
FigShare, and more modest growth in others. But with the release of 
the data sharing mandates by funding agencies around the globe 
(Funders’ Policies, 2015; Eke et  al., 2022), neuroscience-whether 
practiced by large consortia or individual labs-is now expected to 
be  “open by default and open by design” (National Academies of 
Sciences, Engineering, and Medicine, 2018). So the question is no 
longer whether neuroscience as a whole will share data, it is how 
effectively? We  are seeing some real success stories emerging in 
neuroscience from the reuse of data, e.g., (Torres-Espín et al., 2021; 
Almeida et al., 2022) and the ability for multiple groups to analyze the 
same datasets are providing new insights into notions of reproducibility 
and robustness (Botvinik-Nezer et al., 2020), but public data are still 
often difficult to find and use. Effective data sharing, that is, data 
sharing that views data as a public product of research meant to 
be reused, referenced, and respected requires the infrastructure, skills, 
tools, and willingness on the part of the neuroscience community to 
value data as a research product (Martone and Nakamura, 2022).

Effective data sharing starts with the FAIR data principles 
(Wilkinson et al., 2016) which grew out of frustrations experienced 
when trying to use open data on the web in the early days of sharing 
data. Through the Neuroscience Information Framework (NIF), 
started in 2008 (Gardner et al., 2008), we were tasked with cataloging 
all the neuroscience-relevant digital products that were being created 
(Cachat et al., 2012). NIF was also tasked with developing a strategy 
to query across the dozens of neuroscience data-and knowledge bases 
and the 100’s of biomedical databases with neuroscience-relevant 
information that were coming on-line. In these early days of on-line 
databases, the problems with accessing the data were legion: broken 
links, insufficient metadata, non-standardized vocabularies and 
nomenclature, non-actionable data formats, cryptic variables, and 
proprietary formats to name a few.

FAIR states the minimum set of requirements for digital data for 
it to be useful: data should be findable, accessible, interoperable, and 
reusable. FAIR then lays out a set of practices that would make it 
more likely that data will meet these requirements. The FAIR data 
principles were formulated in a workshop in Leiden in 2014 
(Wilkinson et al., 2016), and were first released through FORCE11, 
the Future of Research Communications and e-Scholarship. The 
paper came out 2 years later in 2016. When our group participated in 
the 2017 kick off meeting for the BRAIN Initiative Cell Census 
Network (BICCN), a large consortium designed to use multimodal 
data techniques to determine the major cell types in the brain, few 
hands were raised when we asked how many people had heard of 
FAIR. Fortunately, FAIR eventually made its way to neuroscience and 
found a natural home in the International Neuroinformatics 
Coordinating Facility (INCF.org), an international organization 
devoted to developing standards and coordinating infrastructures for 
neuroscience. INCF incorporated FAIR into its mission statement 
and has served as a coordinating center for introducing neuroscience 
to FAIR through its role as a standards organization for neuroscience, 
its training programs, and other resources (Abrams et al., 2021).

The FAIR partnership

The FAIR acronym itself is now likely better known among 
practicing neuroscientists, as funders and journals have started to 
support FAIR in their data sharing policies; but the details of FAIR as 
elaborated in the detailed recommendations are fairly arcane. Anyone 
outside the field of informatics is likely to look at these and scratch 
their head. Persistent identifiers? Knowledge representation 
languages? A plurality of relevant attributes? Thus, while the 
practicing neuroscientist may understand what FAIR stands for, they 
are often at a loss to explain exactly how to achieve it. In reality, no 
one can create fully FAIR data alone; it requires the interplay of data 
acquisition and documentation practices, infrastructure, informatics, 
and community consensus. FAIR is therefore best thought of as a 
partnership between investigators, data repositories, data aggregators 
and community organizations (Figure 1). Navigating the landscape 
of FAIR data sharing and neuroscience infrastructure requires 
understanding the roles, responsibilities, and interfaces between each 
of these stakeholder groups. In the following I discuss the different 
components and some of the tasks required for FAIR and provide 
information and resources to help navigate the different components 
required for fully FAIR neuroscience.
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TABLE 1 State of population of selected data repositories 2014 vs. 2023.

Resource 
name

Country 
/ region

Type of 
data

Date 
started

Data 
elements 
2014

Update to 
resource (Feb 
2023)

Data 
elements 
2023

Datasets 
added 
since 
2014

Provenance

NDAR USA

Demographics, 

imaging, genetic, 

phenotypic

2009 (oldest 

news archives)

>108,000 

subjects (from 

157 labs)

Now NDA; no 

longer restricted to 

autism

– –

Not comparable as 

new data types were 

added

NeuroMor 

pho.Org
USA

digitally 

reconstructed 

neurons

2006

11,335 

(reconstructio 

ns from 1,339 

publications)

Still in existence 

under same 

stewardship

298,387 

reconstructions

2,103 

publications

287,052 

reconstructions

764 

publications

https://neuromorpho.

org/LS_availability.jsp

Feb 25 2023

Cell Centered 

Database/ 

CIL-Cell Image 

Library

USA

images, videos, 

and animations of 

cell

2002

CCDB/2010 

CIL

10,360 image 

datasets

Still in existence 

under same 

stewardship

13,990 3,630

http://www.

cellimagelibrary.org/

images?k=&simple_

search=Search

copied number of 

results Feb 25, 2023

FigShare International Various –

> 8,000

datasets 

(query: 

neuroscience)

Still in existence 

under same 

stewardship

182,542 174,542

query: neuroscience 

with dataset filter

Feb 252,023

ModelDB USA

computational 

neuroscience 

models

1996
875 available 

datasets

Same stewardship; 

transition of 

leadership

1787 912

https://tinyurl.

com/37z5p88f

Feb 252,023

Open Source 

Brain

United 

Kingdom
Models 2014

47 available 

datasets

Still in existence 

under same 

stewardship

99 52

https://www.

opensourcebrain.org/

projects

CRCNS USA
computational 

neuroscience
2008

38 available 

datasets

Under same 

stewardship; not 

clear if still active

140 102
documented through 

NIF; Feb 2023

XNAT Central USA Neuroimaging 2010
34 available 

datasets

Will 

be decommissioned 

in Oct 2023

510 300

https://central.xnat.

org/

project number on 

home page; accessed 

Feb 252,023

1,000 

Functional 

Connecto mes 

Project/IN DI

International 

(USA, 

China, 

Germany, 

Spain)

fMRI, DTI, 

MPRAGE, 

psychological 

assessements, 

behavioral 

phenotype, 

demographic

2009 28 datasets

Under same 

stewardship; also 

1,000 Functional 

Connectomes INDI

33 5

OpenfMRI USA fMRI 2012 24 datasets

Under same 

stewardship; 

changed name to 

Open Neuro

805 781

https://openneuro.

org/

Feb 26 2023

BIRN USA
Imaging, 

histology
– 21 datasets No longer in service –

LONI Image 

Data Archive
USA Imaging –

18 (atlas), 9 

databases

Under same 

stewardship; changed 

location; hard to 

compare as atlases 

and databases are not 

provided

144 135
https://ida.loni.usc.

edu/login.jsp

(Continued)
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FIGURE 1

Major stakeholders involved in defining and implementing FAIR. Some of the major requirements for achieving FAIR are listed under each stakeholder 
group. The INCF is given as an example of a community organization supporting FAIR for neuroscience.

Resource 
name

Country 
/ region

Type of 
data

Date 
started

Data 
elements 
2014

Update to 
resource (Feb 
2023)

Data 
elements 
2023

Datasets 
added 
since 
2014

Provenance

BrainLiner Japan

ECoG, EEG, 

fMRI, MEG, 

Microelect rode, 

NIRS, Optical 

Imaging, PET, 

Other

2011
10 available 

datasets

Platform there but 

does not look like it 

has been updated 

recently

23 13
http://brainliner.jp/

search/showall/1

Open 

Connecto me 

Project

USA
Serial electron 

Microscopy
2011

9 available 

datasets
Now NeuroData 24 15

https://neurodata.io/

project/ocp/

Manually counted 

Feb 252,023

CARMEN
United 

Kingdom
neurophysiology 2006 –

No longer in service 

according to NIF
– –

FITBIR USA
Common data 

elements
2011 – Same stewardship – –

INCF 

Dataspace
International Various 2012 – No longer in service – –

UCSF 

DataShare
USA

biomedical 

including 

neuroimaging, 

MRI, cognitive 

impairment, 

dementia, aging

2011 18 datasets No longer in service – –

Update of Supplementary Table 1 from Ferguson et al. (2014): A sample of Neuroscience centered data repositories available to the community. Only data repositories that accept outside data 
are included in the update. This table provided the number of data elements (usually equivalent to datasets) in each repository in 2014 (Data elements 2014). We include an update on the 
status of the resource (Update to Resource Feb 2023 column), the number of data elements found in Feb 2023 (Data elements 2023), the total number added since 2014 (Datasets added since 
2014), and how these numbers were derived if the repository did not provide the number of datasets directly. Data repositories that are no longer in service are colored in light orange.

TABLE 1 (Continued)
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Laboratories

FAIR data management
In the US National Academies of Science, Engineering and 

Medicine workshop on “Changing the Culture on Data Management 
and Sharing (Martone and Nakamura, 2022), one of the main takeaways 
was that the focus of data sharing efforts should not be targeted toward 
the individual investigator, but the laboratory. As one participant noted: 
“If you can share data with people in your lab, you are much more likely 
to have something worthwhile to share outside the lab.” FAIR data 
management is therefore an intentional lab-wide strategy that ensures 
that data can be shared with lab mates, the PIs, and other colleagues, 

your future self and eventually with the broader scientific community. 
Across all stages of the data lifecycle, the management strategy puts in 
place processes so that data can be found, accessed, combined when 
necessary, and reused. By paying attention to FAIR in the laboratory 
throughout the life cycle, benefits start to accrue to the data creator, the 
laboratory, PI, and collaborators well before data flows out to the wider 
scientific community (Bush et al., 2022; Dempsey et al., 2022).

Examples of lab management practices built on the FAIR 
principles are given in Table 2.

We are starting to see neuroscience researchers sharing their 
experiences with developing and utilizing lab-centric data 
management systems. They range from tightly integrated digital 
infrastructures (Bush et al., 2022; Dempsey et al., 2022) to a set of 

TABLE 2 Some FAIR laboratory data management practices.

FAIR goal Principle FAIR practices Reference

Findable Unique identifiers 1. Create identifiers that are globally unique within the lab for all key entities in the lab, e.g., subjects, 

experiments, reagents, via the creation of a central registry or use of an existing system, e.g., RRIDs for 

reagents and tools. Globally unique = no two objects have the same ID, no ID may be reused.

Fouad et al. (2023)

Rich metadata Each identifier in the registry is accompanied by rich metadata that provides key details, e.g., for 

experiments: dates, experimenter, description, collaborators, techniques etc.; for subjects: species/strain, 

age, weight, etc.

Fouad et al. (2023)

Use unique identifier for file names, folder names, to label physical objects like slides or slide boxes, so that 

all entities associated with the lab can be tied unambiguously to metadata

Accessible Authentication 

and authorization

Create a centralized, accessible store for data and code under a lab-wide account for lab data to ensure that 

files are not scattered around multiple systems or accessible only via personal accounts that may not 

be available after someone has left the lab.

Interoperable FAIR 

vocabularies

Move away from idiosyncratic naming of variables and annotations towards standards like Common Data 

Elements and the use of community-based ontologies, atlases, and controlled vocabularies. Consistent lab, 

wide terminology ensures that lab members can understand what the data are about, and aids in search 

across and combining files.

Bush et al. (2022)

Consider creating a lab-wide data dictionary where all variables used across experiments are clearly 

defined

Bush et al. (2022); 

Fouad et al. (2023)

Reusable Documentation Create a “Read me” file for each dataset where notes can be captured and helpful information provided for 

reuse of the data

Community 

Standards

All files should be collected and stored in well supported open formats ideally to ensure long term 

availability.

Adopt community standards within the lab where possible; a good place to identify relevant standards is to 

look at repositories where the data may end up. Specialized repositories usually have a list of required or 

recommended standards. Some repositories are providing help with developing a data management and 

sharing plan for grant proposals, e.g., INCF, SPARC and ODC-SCI/TBI.

Bush et al. (2022); 

FAIRsharing.org, 

INCF Standards 

Portfolio

Provenance Datasets should be clearly versioned and differences between them documented. Depending on the system 

used for storing data, formal support for versioning may be available, e.g., Google Docs, but if not, 

implement a file naming convention so that versions can be tracked

Always keep a version of record that can be reverted to if necessary. Often when one is working with data, 

different versions are created rapidly and it is easy to lose track of which version is which. It is good 

practice to have stable versions that are easily retrievable so that there are stable points to which to return 

if provenance is lost.

Datasets should also be accompanied by detailed experimental protocols that describe how the data were 

acquired and computational workflows that detail the processing steps. Use of tools designed for this 

purpose, e.g., protocols.io, NeuroShapes (Neuroshapes, n.d.) and ReproNIM (Kennedy et al., 2019).

Licenses Prepare to share: Make sure that how and when the data are to be shared is agreed upon with all 

collaborators early on. For clinical datasets, make sure that the consents are in place for open sharing of 

de-identified data.

Examples of laboratory data management practices based on the FAIR principles.

https://doi.org/10.3389/fninf.2023.1276407
https://www.frontiersin.org/journals/neuroinformatics
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practices that can be implemented using “off the shelf ” components 
for an average neuroscience wet lab (Fouad et al., 2023).

Choosing a repository
One of the most important steps for a researcher in ensuring that 

their data is FAIR for the long term is to submit their data to a 
trustworthy repository that supports FAIR. The new NIH data sharing 
policy requires researchers to indicate where they will be sharing their 
data as part of the data management and sharing plan. As 
recommended in Table 2, knowing in what repository the data will 
be published allows the researcher to understand what standards are 
required so they can be  built into the laboratory management 
workflow. With its growing ecosystem of specialized databases, 
researchers have a choice about where to publish their data.

Understanding how the neuroscience repository landscape is 
organized may help in finding the right repository. Repositories are 
generally specialized by data type (Figure 2). However, repositories also 
exist that are specialized for a domain, e.g., the SPARC database accepts 
all data associated with the peripheral nervous system, or serve 
researchers within a particular region, e.g., CONP, or institution, e.g., 
BrainCode and the Donders Repository. Often, multiple repositories 
may be appropriate, in which case there are additional features that 
may make a given repository more or less attractive. These include tool 
support, curation services, support for data citation, choice of license, 
size of data allowed, help with data management plans (see Table 2) 
and possible costs (Murphy et al., 2021). A functioning neuroscience 
ecosystem also requires open neuroscience repositories that have few 

restrictions on data types, regions, or subdisciplines to ensure that all 
data has a home. The EU EBRAIN infrastructure is an example of such 
a repository, as it takes multiple types of data regardless of discipline or 
geographical location, although there may be issues with transferring 
certain types of data across international borders (Eke et al., 2022).

Supplementing the specialist repository landscape are the 
generalist repositories, data repositories that span scientific 
disciplines and data types (Assante et al., 2016). These repositories 
are often useful for publishing smaller supplemental datasets that are 
required for a publication (Stall et al., 2023). Specialist repositories 
generally provide more standards, tools and services for harmonizing 
and using data, and make it easier for researchers to find data of a 
particular type. To aid researchers in choosing an appropriate 
neuroscience data repository, the INCF has a searchable 
infrastructure catalog, where each repository is described according 
to the checklist developed by Sandström et  al. (2022). Other 
repository finder tools include NITRC for neuroimaging related 
repositories, re3data, the catalog of open data repositories 
maintained by the National Library of Medicine, and the NIF listing 
of BRAIN Initiative Repositories.

Repositories

The central role of community repositories
While the investigator takes the central role in acquiring data in 

a manner that supports FAIR, the community repository is arguably 

FIGURE 2

The number of neuroscience specialist repositories supporting different data types. The repository list and associated data types was assembled using 
information available through the INCF Infrastructure Portfolio and the SciCrunch Registry. The data underlying the figure is available at Zenodo, DOI: 
10.5281/zenodo.8239845.
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the central player in implementing the basic requirements for 
achieving FAIR for the long term (Figure 1). We are using the term 
“community repository” here to designate infrastructures that are 
designed to accept primary data contributed by outside researchers, 
rather than a single data set produced by a given project (e.g., the 
Allen Brain Atlas) or a knowledge base that aggregates information 
about a particular entity (e.g., CoCoMac).1 As shown in Figure 1, the 
repositories have critical responsibilities for ensuring that submitted 
data are made available according to the FAIR principles (Lin et al., 
2020). These practices include issuing and maintaining persistent 
identifiers, tying those identifiers to rich metadata, providing access 
and any necessary access controls, enforcing or supporting annotation 
with FAIR vocabularies, enforcing or supporting community 
standards, supporting data versioning, providing links to other 
critical products like experimental protocols and code, and 
provisioning a clear data license for each data set. Repositories also 
have the critical role of ensuring that data is available for the 
long term.

From the earliest days of neuroinformatics, it was envisioned that 
neuroscience would likely best be served by a decentralized system of 
federated databases (Koslow, 2000). Due to the variety and complexity 
of neuroscience data, a single large repository like Genbank or the 
Protein Data Bank was likely not going to be  feasible. The early 
investments in neuroinformatics by the US Human Brain Project and 
the success of the International Neuroinformatics Coordinating 
Facility in growing the field of neuroinformatics globally, led to the 
first generation of neuroscience databases. These databases were 
largely organized around data type, e.g., structural neuroimaging 
(XNAT), functional neuroimaging (fMRI Data Center; Open fMRI), 
neurophysiology (CARMEN; Neurodatabase.org,” GNode), EEG 
(open EEG, iEEG), neuronal morphology (NeuroMorpho), 
microscopic images (Cell Centered Database), neuromodeling 
(ModelDB). Some examples are shown in Table 1.

When the first generation of neuroscience databases were started, 
there were few standard practices for designing web-accessible 
databases. As documented by NIF, each database had a different mode 
of access, different data structure, and the use of standards was very 
limited. It was a time of tremendous technological fluidity, with 
standard features we take for granted today (e.g., RESTful web APIs) 
still being invented. The cloud did not exist, and attempts to build 
resources on the early version of a cloud-like system (“the grid”) met 
with considerable challenges (Grethe et  al., 2005). With today’s 
emphasis on data sharing, increased attention is starting to be paid to 
these critical infrastructures and how they are constructed, operated, 
and evaluated (Nelson, 2022). Various recommendations on desired 
characteristics for data repositories have been issued by different 
groups (Sansone et al., 2020; Shearer, n.d.), including NIH (Selecting 
a Data Repository) and additional sets of principles, e.g., the TRUST 
principles (Lin et al., 2020) and principles for open infrastructures 
(Bilder et al., 2015) have been formulated to help further guide how 
these critical infrastructures should operate. The Elixir project, a large 
scale bioinformatics consortium in the EU, has developed a maturity 
model for evaluating the success of repositories which is designed to 
be  used by funders to determine the criticality of various 

1 http://cocomac.g-node.org/

infrastructures (Bahim et al., 2020). The INCF Infrastructure working 
group recently issued a set of guidelines from a neuroscience 
perspective, that provide a mix of technical and “customer service” 
recommendations for operating repositories (Sandström et al., 2022). 
Although these various lists of desiderata do not overlap completely 
(Murphy et al., 2021), over time we will likely converge on a core set 
of functions and expectations for these critical infrastructures, 
balancing the often dual requirement for these infrastructures to serve 
as both publishing platforms and dynamic scientific gateways 
(Sandström et al., 2022).

INCF has served as an important conduit by which the FAIR 
principles have permeated the construction of neuroscience data 
repositories and gateways. Investigators who have been active in INCF 
through governance, committees and working groups are involved 
with several of the next generation neuroscience infrastructures 
including EBrains, CONP, SPARC, DANDI, Open Neuro, and 
BRAIN/Minds. Table 3 lists and compares some of the key ways that 
these infrastructures implement FAIR and “FAIR-adjacent” practices. 
Following consistent design principles that support FAIR provides a 
level of common functionality and services that make it easier to work 
across these databases for an individual user or an automated agent. 
The more similar FAIR practices are across repositories, the more 
likely it is that the repositories themselves are interoperable.

Standards: role of repositories
A significant and positive change that is accelerating progress 

toward FAIR is the emergence of a set of robust standards for 
neuroscience data types that are starting to gain adoption. The INCF 
was created to help with this process of standardization and produced 
some early successes, e.g., the Waxholm space for registration of 
mouse and rat brain data (Hawrylycz et al., 2011; Papp et al., 2014), 
the Neuroimaging Data Model (Keator et al., 2013) the Brain Imaging 
Data Structure (Gorgolewski et al., 2016) were produced with support 
from INCF. Over the last few years, a set of standards has emerged for 
major neuroscience data types that can accommodate the increased 
size and complexity of neuroscience data through additional 
investments by funders and the efforts of the large brain projects, e.g., 
NWB, 3D-MMS (Ropelewski et  al., 2022). Repositories serve as 
important stakeholders in ensuring that standards are followed by 
supporting or requiring them for data submission (Figure 2). Data 
uploaded to OpenNeuro, for example, must be validated against BIDS 
before it is accepted. The INCF has implemented an open community 
review and endorsement process to help improve the quality, usability, 
interoperability and awareness of these standards (Abrams et  al., 
2021). They have made available a searchable Standards and Best 
Practices Portfolio2 where researchers can learn about each standard 
and how it can be used. FAIRsharing.org more broadly aggregates 
standards from across biomedicine and makes them available through 
a searchable catalog.

As neuroscience standards become more mature, better 
supported, and more widely used, they provide the seeds for knitting 
the landscape of neuroscience data repositories into a true data 
ecosystem, where (meta)data can flow from the laboratory to 
repositories and from repositories to computational tools and back 

2 https://www.incf.org/resources/sbps
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again. Figure 3 shows a graph illustrating the connections between 
standards (light gray) and infrastructures that support them (dark 
gray). The data was assembled from the INCF Infrastructure Catalog, 
FAIRsharing, the SciCrunch Registry (Subash et  al., 2023) and 
examination of repository websites. As shown in Figure 3, multiple 
repositories and infrastructures are connected via these standards. For 

example, the Brain Imaging Data Structure (BIDS; Gorgolewski et al., 
2016) links 10 different repositories and computational platforms. The 
success of BIDS has led to extensions of BIDS for other modalities 
through a formal governance process (Governance, n.d.). The 
adoption of these BIDS-based standards starts to create a degree of 
interoperability across data types.

TABLE 3 FAIR practices across data repositories.

Principle Function EBRAINS SPARC DANDI CONP 
Portal

OpenNeuro

F1. Globally 

unique identifier Basic core DOI DOI DOI ARK, DOI DOI

F2. Rich metadata Y DataCite Y DATS Y

A1. Retrievable by 

identifier Y Y Y Y Y

A1.1 Free, open, 

universal retrieval 

protocol Enhanced access Y Y Y Y Y

F4. Registered in a 

searchable 

resource KS, GDS KS, GDS KS, GDS KS KS, GDS

A1.2: 

Authentication 

and authorization Y Y Y Y Y

R1.1: Clear data 

usage license Y CC-BY CC-BY, CC0 Y CC0

R1.3: Community 

standards Use of standards Multiple SDS, MIS NWB, BIDS Y* BIDS

F3: Metadata 

contains identifier Y Y Y Y Y

I1: Formal 

knowledge 

representation 

language Y Y N Y

R1: Plurality of 

relevant attributes Rich(er) metadata OpenMinds OpenMinds, MIS NWB DATS Y

I2: FAIR 

vocabularies Y Y Y Y N

I3: Qualified 

references to other 

metadata Y Y Y Y Y

R1.2: Provenance

Provenance and 

context Exp Protocol Y N

A2: Metadata 

persistence Y Y

Landing page

Additional 

features Y Y Y Y Y

CCFs Y Y* N N N

Data citation Y Y Y Y Y

Curation Y Y N Y N

Comparison of FAIR features across five large brain repositories where the principal investigators have been active through the INCF. The principles are organized according to the functions 
they support based on an organization proposed by Hodson et al. (2018). Highlighted in purple are additional features that are relevant for FAIR although they are not mentioned explicitly in 
the FAIR principles, e.g., the use of landing pages and support for data citation. KS, INCF Knowledge Space; GDS, Google Dataset Search; DOI, Digital object identifier; NWB, NeuroData 
Without Borders; BIDS, Brain Imaging Data Structure; DATS, Data tag suite.
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FIGURE 3

Ecosystem of neuroscience resources emerging around standards. Network graph of neuroscience data repositories and gateways (purple) and some 
of the standards they support (yellow). The graph shows repositories/gateways connected via the use of a common standard. A description of how 
standards were determined is given in the text.

As tool support grows, standards are also making their way into 
the laboratory. BIDS, for example, has been estimated to have been 
used to organize over 100,000 datasets containing millions of images, 
indicating significant uptake by the research community (Poldrack 
et al., 2023). In a recent paper that outlined a neuroimaging center’s 
implementation of BIDS, Bush et al. (2022) stated: “Learning the BIDS 
specification, implementing software pipelines to map the data, and 
validating that the resultant mappings met the BIDS standard consumed 
many months of effort across multiple imaging center team members… 
The benefits of mapping our data to BIDS, however, far exceed the costs.” 
(Bush et al., 2022). These benefits included access to BID-APPS, a set 
of containerized analysis tools and pipelines that run on validated 
BIDS data, as well as improved code sharing within the lab and with 
colleagues, as well as a reduced barrier to publishing the data in 
OpenNeuro. Similarly, the electrophysiology standard, NWB, has 
made inroads in tackling one of the most challenging data types in 
neuroscience, evidenced by uptake in laboratories (Rübel et al., 2022) 
and support by platforms such as DANDI and EBRAINs.

Standards: use of FAIR vocabularies and common 
coordinate frameworks

Interoperability across neuroscience data has always been 
hampered by the multiplicity of nomenclatures and parcellation 
schemes from brain regions and nerve cells (Martone et al., 2004). 
Although slow, progress has been made. Some repositories are starting 

to map generic neuroanatomical structures to community ontologies 
like UBERON (Mungall et al., 2012). Mapping data to a common 
coordinate framework (CCF) allows more precise localization 
independent of labels applied to them (Hawrylycz et  al., 2023). 
Encouraging signs are emerging, as CCFs for multiple species are in 
use or in development for the major species across the international 
brain projects. For example, both the BICCN/BICAN and EBrains are 
utilizing the Allen Institute Common Coordinate Framework v3 for 
mouse (Hawrylycz et al., 2009, 2023). To help manage the different 
versions and components that go into these atlas-based environments, 
a new standard for describing and versioning brain atlases was 
recently proposed (Kleven et al., 2023).

Standardized nomenclature for cellular taxonomies and 
transcriptionally defined cell types are also emerging from projects 
like the BICCN/BICAN to help deal with the plethora of new cell 
types that are emerging from new transcriptomics-based approaches 
(Miller et al., 2020; Tan et al., 2023). Over the years, there have been 
proposals for naming neurons that can bridge the multiplicity of 
phenotypes generated by multiple experimental techniques (Hamilton 
et al., 2012; Shepherd et al., 2019; Gillespie et al., 2022). However, these 
approaches have had difficulty in handling the complex expression 
patterns coming out of transcriptomics. The BICCN/BICAN recently 
developed the Brain Standards Data Ontology, providing a model for 
providing data-driven definitions of taxonomic classes (Hawrylycz 
et al., 2023; Tan et al., 2023). BICCN has recently introduced Cell 
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Cards to provide a tool for exploring the BICCN taxonomic cell types 
for human, marmoset, and mouse primary motor cortex, including 
linking them to primary data sets (Hawrylycz et al., 2023). As new 
technologies are allowing us to derive wider scale, more complete 
representations of the molecular, morphological, physiological, and 
connectional phenotypes of neurons than was possible in the past, it 
is time for the global neuroscience community to come together 
around a common nomenclature for naming populations of cells that 
will aid in comparison across studies.

Services for accessing ontologies and building them into 
annotation and metadata pipelines have improved significantly over 
the past decade, with tools such as BioPortal3 and the Ontology Look 
Up Service4 providing programmatic access to community ontologies. 
Nevertheless, neuroscience is still a cutting edge science where many 
new terms are needed, particularly for annotating experimental data. 
For this reason, NIF and INCF had developed the NeuroLex Wiki 
(Larson and Martone, 2013) that lowered the barrier for creating new 
ontology terms. When the semantic wiki technology underlying 
NeuroLex was no longer available, the approach and content were 
ported to the Interlex on-line vocabulary management system by NIF 
(Surles-Zeigler et al., 2021). Interlex mints a unique identifier for each 
term (URI) when it is entered and allows the addition of basic 
metadata for each term, e.g., definition, synonyms. It also provides 
basic knowledge engineering functions, e.g., parent–child and other 
relationships, annotations. Interlex also provides various review and 
curation functions. These specialized terms can be used as controlled 
vocabularies or further engineered into ontologies as needed. Surles-
Zeigler et al. (2021) provide a description of how Interlex is being used 
to enhance anatomical annotation of SPARC data, models and 
knowledge base, allowing new anatomical terms to be minted, curated, 
linked to existing ontologies and contributed as necessary to augment 
community ontologies.

On the sustainability of neuroscience data 
repositories

As most neuroscience infrastructure is researcher-led and grant-
supported, questions often arise about long-term sustainability when 
choosing a repository, or indeed, any infrastructure. Sustainability of 
individual resources remains a challenge, not just for neuroscience but 
for all research-led infrastructures that rely on grant funding for their 
operation. Of the data repositories listed in Table  1 taken from 
Ferguson et al. (2014), 4/18 are no longer in service and 3/18 are 
moribund (i.e., not taking data). Three were rebranded and expanded 
their scope, and one merged with another database. The good news is 
that the majority of this first generation of neuroscience databases are 
still in existence, indicating a degree of stability. We  can also see 
movement in the ecosystem, with databases merging with others, or 
moving across institutions indicating a degree of dynamism that keeps 
the ecosystem healthy. Looking at a larger sample using the SciCrunch 
Registry (formerly the NIF Registry; Ozyurt et al., 2016) out of a total 
of 563 neuroscience data resources (including data repositories, 

3 https://bioportal.bioontology.org/

4 https://www.ebi.ac.uk/ols/index

databases, data sets, atlases and knowledge bases), 71 appear to be out 
of service (~13%). These numbers compare favorably to a study done 
on the longevity of bioinformatics biological databases founded in the 
late 20th century, 63% of which were defunct by 2015 (Attwood et al., 
2015). In 2016 NIF began to track the usage of these neuroscience 
resources within the scientific literature (Ozyurt et al., 2016), revealing 
interesting patterns including the creation of thousands of data 
repositories across biomedicine. A recent analysis showed that only a 
handful of these repositories are actively used, with many of the 
neuroscience repositories referenced here among them, suggesting 
that neuroscience is coalescing around a set of core resources 
(Piekniewska et  al., 2023). Thus, while sustainability is always a 
concern, neuroscience repositories have generally been good stewards 
of their data, utilizing a variety of strategies to keep data safe 
and accessible.

As neuroscience data and repositories start to align around the 
FAIR principles, the ecosystem should become more robust as it 
will make it easier for other repositories to absorb data if a 
repository loses its funding. Merging of similar resources also 
makes the ecosystem more efficient. The ‘professionalization” of 
scientific data repositories also means that researchers are taking 
their role as an archive more seriously. The INCF recommendations 
for neuroscience infrastructure include that repositories should 
have an exit plan and they should clearly state their persistence 
policy (Sandström et al., 2022). For example, some repositories are 
partnering with institutional libraries or other resources to ensure 
that data remain available, even if funding is lost (e.g., EBRAINS). 
Another promising development is the repurposing of infrastructure 
components. Rather than building a separate data repository, two 
computational and analytic platforms, Brainlife and NEMAR, 
utilize Open Neuro as their data platform, even as they field their 
own portals with their own branding. The ODC-SCI and ODC-TBI 
share the same infrastructure (SciCrunch; Surles-Zeigler et  al., 
2021), but each have their own separate community portal where 
they can access data and establish their own governance rules. The 
more that neuroscience infrastructure can be repurposed for new 
projects, the less funding needs to go to building and maintaining 
new infrastructures.

Search engines

In tandem with the vision of a distributed system of databases 
laid out by the NIH HBP was the creation of a neuroscience portal 
where data could be accessed via a “a smart ‘neuroscience browser’ 
instructed to look for a particular variable or set of variables and 
import the data back to the user’s computer” (Koslow, 2000). For the 
distributed ecosystem to work effectively, users would have to 
be able to issue dynamic queries across these databases and be able 
to retrieve the necessary subsets of data. And, in fact, FAIR states 
that data should be registered with an appropriate index (F4). NIF 
set up one of the first searches across neuroscience databases by 
creating an index over the contents of distributed databases. At its 
height, NIF queried over 200 data sources across biomedicine 
comprising over 8 million data records (Cachat et al., 2012). NIF 
used the NIFSTD to help mediate across the different vocabularies 
and relationships that were needed to link across databases. NIF 
was able to align different databases covering the same content 
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across a core set of variables, but did not have the resources to 
harmonize the content, especially given the lack of standards at that 
time. NIF was designed to allow researchers to understand what 
was in a given database by providing limited views of the data, but 
not to perform deep structured queries of the content. So you could 
use NIF to identify a database that had relevant data, but for more 
structured queries and to retrieve the complete data, users needed 
to visit the source database. The INCF Knowledge Space and 
currently performs a similar type of search over 16 major 
neuroscience databases (KnowledgeSpace, n.d.).

The more that repositories enforce consistent standards for 
metadata and data formats, the closer neuroscience gets toward 
achieving true federated search and retrieval across the entirety of the 
neuroscience repository ecosystem (Koslow, 2000). The Canadian 
Open Neuroscience Portal was recently launched that allows users to 
search across data hosted in multiple data repositories. It is currently 
deployed across 17 Canadian institutions and also integrates select 
specialist and generalist repositories. All the high level metadata is 
aligned to the DATS standard, developed by the NIH-funded 
BioCADDIE Big Data to Knowledge project (Alter et  al., 2020), 
allowing for a unified dataset search. The portal implements some 
uniform functions that can be executed directly from the portal. Some 
data are available for download via DataLad and containerized 
workflows that work across these distributed data are available via 
Boutiques (Poline et al., 2023).

New tools are also becoming available that lower the barrier to 
making content available to search engines. For example, multiple 
neuroscience databases have marked up their content with schema.
org so that their datasets are searchable through Google Dataset 
Search (Table  3). Neuroscience, like other domains, is building 
knowledge graphs that link neuroscience concepts to each other and 
to datasets to aid in search.EBrains, CONP and the SPARC projects 
are making their data available via a knowledge graph. CONP uses the 
Nexus knowledge graph developed by the Blue Brain Projects which 
provides a set of tools and resources for searching, linking and 
viewing data.5

Community organizations

The FAIR data principles delegate a good amount of 
responsibility to individual communities to define what is FAIR for 
their domain. Community organizations play an important role as 
coordinators by serving as conveners to allow researchers to come 
to consensus about best practices and recommendations for their 
community. International neuroscience is currently supported by 
two community organizations, the INCF and the IBI. IBI is 
principally focused on coordination of the large international brain 
projects, focusing on data sharing among these projects, as well as 
issues such as data governance and ethics. INCF works across all 
neuroscience efforts, whether individual or team based, and focuses 
on standards, infrastructure coordination and training. Both 
organizations provide support for working groups that come 
together to tackle issues such as the development of international 

5 https://bluebrainnexus.io/

data governance (IBI), standards and best practices (INCF, IBI), 
training (INCF), and coordination of infrastructures (INCF, IBI). 
Any member of INCF can propose a working group and membership 
is open to the community, while IBI working groups are set by the 
Strategy Committee. The two organizations work together and with 
other organizations such as the IEEE Neuro Standards working 
group and the Global Brain Consortium.6 In this way, there is a level 
of coordination across these international organizations. Eke et al. 
(2022) raised the issue of whether neuroscience needs an umbrella 
organization modeled after the Global Alliance for Genomic Health, 
to more effectively address data reuse at the technical, ethical, 
sociological and political level.

Is neuroscience FAIR yet?

Neuroscience has made tremendous progress over the first two 
decades of the 21st century in establishing the infrastructure, 
standards, expertise and tools for moving neuroscience significantly 
toward FAIR. It is now served by a set of robust international data 
repositories and scientific gateways specialized for neuroscience 
data, implementing the vision laid out in the dawn of 
neuroinformatics for a distributed ecosystem of repositories. The 
first inroads have been made in establishing FAIR practices and 
supporting infrastructure in the lab to manage data in a way that 
smooths the transition between private, semi-private, and public 
sharing. As best practices for FAIR are articulated, tested, and 
shared, we can expect that the quality of both the databases and the 
data will continue to improve.

A federated system allows neuroscience infrastructure to respond 
more rapidly to new data types and technologies as they are developed. 
While there are more resources to be sustained, there are also more 
resources from which to draw should a repository need to 
be  decommissioned. We  see from the last 20 years that there is 
movement in the repository landscape, with some resources ceasing 
operations, but others merging or changing ownership. As repositories 
start to align around sets of core features, both interoperability and 
flexibility will be increased, providing some measure of stability in an 
otherwise dynamic ecosystem.

While the distributed nature of neuroscience infrastructure brings 
many benefits, there are concomitant challenges it imposes on both 
those who submit their data and those that wish to use it. As the 
motivations and incentives for these two user groups can differ 
(Subash et al., 2023), balancing the efforts required to submit vs. reuse 
data will need to be a priority. Until these are addressed, neuroscience 
will not be considered a fully FAIR discipline:

 • Findable: We still do not have an effective query system over the 
ecosystem of neuroscience data, that allows for aggregation 
relevant data distributed across multiple repositories. Important 
steps have been taken by IBI, INCF and CONP, but these efforts 
will need support if they are to be fully realized.

 • Accessible: Users are increasingly acquiring multimodal 
datasets that may require deposition in multiple repositories. 

6 https://globalbrainconsortium.org/
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Currently, that requires a user to navigate multiple repositories, 
set up multiple accounts, entering the same metadata repeatedly 
and creating the necessary linkages across the different parts of 
the dataset (Subash et al., 2023). Some work is underway in the 
US BRAIN Initiative BICCN and BICAN projects to create a 
more unified workflow including a centralized registry, but such 
a service would be  useful across all neuroscience. Many 
repositories are starting to implement login and authorization 
via ORCID, making it easier for users to work across 
multiple repositories.

 • Interoperable: In a distributed system, interoperability is not 
just about the data but also about the infrastructures. Working 
across multiple repositories means working across multiple 
front ends, back ends and data access policies. As core sets of 
features are described for data repositories, neuroscience 
infrastructure may also start to converge on certain design 
patterns that make it easier for users to work across them. A 
term was introduced in an NIH Workshop on a FAIR Data 
Ecosystem for Generalist Repositories: coopetition (NIH 
workshop on the role of generalist repositories to enhance data 
discoverability and reuse: Workshop summary, 2012). 
Repositories can compete on certain features to encourage 
innovation, but there should be a set of features that are shared 
across repositories and work similarly.

 • At the same time, competition among different data providers 
also can lead to a decrease in data interoperability, as repositories 
must compete for users. Thus, many repositories lower their 
requirements for standards compliance (Subash et  al., 2023) 
recommending rather than requiring standards so as to lower the 
barrier of data submission. Instead of making compliance 
optional, neuroscience repositories should work on improving 
their customer service, providing both human and tool support 
to make it easier for researchers to comply with standards. 
SPARC has taken this approach, employing customer-oriented 
curators who assist researchers to comply with SPARC standards. 
SPARC also developed the SODA tool directed toward 
researchers with few computational skills to guide and support 
them in organizing and uploading their files according to the 
SPARC SDS (Bandrowski et al., 2021). In this way, the burden on 
the submitter is lessened, while data quality and standards 
compliance are not sacrificed.

 • Reusable: Despite FAIR, most neuroscience data is still very 
difficult to use. Different projects have devoted different amounts 
of resources to curation of data and quality control. Generally 
curated data is of higher quality because it is more completely 
documented and some QC is performed (Gonçalves and Musen, 
2019). Particularly with the push to make data AI/ML ready, 
funders should be prepared to support curation services for the 
near future, to ensure that high quality data are available. Such 
investments will likely not be needed forever; indeed, labs are at 
this moment experimenting with tools such as ChatGPT to help 
with query and harmonization. However, investments now in 
well curated data can help to accelerate training of these types of 
algorithms, while at the same time, making high quality data 
immediately available for discovery science.

Finally, usability is not simply a matter of technology or 
documentation. As Eke et al. (2022) and (Fothergill et al., 2019) have 

noted, the international nature of neuroscience infrastructure also 
means that issues of transferring data across national borders, i.e., 
international data governance, also must be addressed. Federation 
across distributed databases provides a model that can minimize data 
governance issues, as the data can remain in place, while compute is 
brought to the data (Poline et al., 2023).

The good news is that routine data sharing, if not exactly easy, is 
now at least possible across the sizes and complexities of 
neuroscience data. Islands of interoperation are starting to emerge 
among these different resources promoting federated search and 
shared computational platforms and services. Those of us who were 
involved from the beginning in attempts to “database the brain” 
cannot help but be impressed with how far neuroscience sharing and 
infrastructure has come, even as there is still quite a way to go. As 
the paradigm continues to shift toward open and effective data 
sharing in neuroscience, we  will fulfill the early vision of 
neuroinformatics as a driver for “..a new depth of understanding of 
how the nervous system works in both health and disease.” 
(Koslow, 2000).
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3D-MMS Metadata for 3D microscopy standard

ADNI Alzheimer’s Disease Neuroimaging Initiative

BICAN BRAIN Initiative Cell Atlas Network

BICCN BRAIN Initiative Cell Census Network

BIDS Brain Imaging Data Structure

BIL Brain Image Library

BRAIN Initiative Brain Research through Advancing Innovative Neurotechnologies

CDE Common data element

CONP Canadian Open Neuroscience Platform

CT Computed tomography

DANDI Distributed Archives for Neurophysiology Data Integration

DATs Data tag suite

DBS Deep brain stimulation

DOI Digital Object Identifier

ECOG Electrocorticography

EEG Electron encephalography

EMG Electromyography

ERP Event-related potential

fMRI Functional magnetic resonance imaging

FORCE11 Future of Research Communications and e-Scholarship

HBP Human Brain Project

HED Hierarchical event descriptor

IBI International Brain Initiative

iEEG Intracranial electroencephalography

INCF International Neuroinformatics Coordinating Facility

MEG Magnetoencephalography

MIS SPARC minimal information standard

MRI Magnetic resonance imaging

NEMAR NeuroElectroMagnetic data Archive

NIF Neuroscience Information Framework

NIH National Institutes of Health

NWB Neurodata Without Borders

ODC-SCI Open Data Commons for Spinal Cord Injury

ODC-TBI Open Data Commons for Traumatic Brain Injury

PET Positron emission tomography

SDS SPARC dataset structure

SPARC Stimulating Peripheral Activity to Relieve Conditions

SPECT Single-photon emission computed tomography

URI Uniform Resource Identifier
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