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Few-shot EEG sleep staging based
on transductive prototype
optimization network

Jingcong Li, Chaohuang Wu, Jiahui Pan and Fei Wang*

School of Software, South China Normal University, Guangzhou, China

Electroencephalography (EEG) is a commonly used technology for monitoring

brain activities and diagnosing sleep disorders. Clinically, doctors need tomanually

stage sleep based on EEG signals, which is a time-consuming and laborious

task. In this study, we propose a few-shot EEG sleep staging termed transductive

prototype optimization network (TPON) method, which aims to improve the

performance of EEG sleep staging. Compared with traditional deep learning

methods, TPON uses a meta-learning algorithm, which generalizes the classifier

to new classes that are not visible in the training set, and only have a few

examples for each new class. We learn the prototypes of existing objects through

meta-training, and capture the sleep features of new objects through the “learn

to learn" method of meta-learning. The prototype distribution of the class is

optimized and captured by using support set and unlabeled high confidence

samples to increase the authenticity of the prototype. Compared with traditional

prototype networks, TPON can e�ectively solve too few samples in few-shot

learning and improve the matching degree of prototypes in prototype network.

The experimental results on the public SleepEDF-2013 dataset show that the

proposed algorithm outperform than most advanced algorithms in the overall

performance. In addition, we experimentally demonstrate the feasibility of cross-

channel recognition, which indicates that there are many similar sleep EEG

features between di�erent channels. In future research, we can further explore

the common features among di�erent channels and investigate the combination

of universal features in sleep EEG. Overall, our method achieves high accuracy in

sleep stage classification, demonstrating the e�ectiveness of this approach and its

potential applications in other medical fields.
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1 Introduction

Electroencephalogram (EEG) is a method for detecting brain signals (Ismail et al., 2016).

It uses tiny electrodes attached to the scalp to detect electrical activity in the brain. The EEG

signals generated by brain thinking activity can be analyzed and processed by corresponding

analysis algorithms, and then converted into corresponding commands to control computers

or electronic devices (Hramov et al., 2021).

In recent years, non-invasive brain–computer interfaces (BCI) have achieved significant

results in the acquisition of EEG signals (Galán et al., 2008). BCI have been applied in many

fields such as sleep signal acquisition, disease diagnosis, emotion analysis, and robot control,

which have broad application prospects (Allison et al., 2007).

The application of EEG in monitoring sleep quality is also essential (Sadeh, 2015). Sleep

staging can monitor the quality of each sleep segment and determine a person’s sleep quality
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(Carskadon et al., 2005). In the auxiliary diagnosis of some sleep-

related diseases such as epilepsy and sleep apnea, sleep staging plays

an important role in the diagnosis of the disease (Samy et al., 2013)

and can help improve our analysis of these related diseases. The

identification of sleep stages is crucial for the diagnosis of sleep

disorders, among which obstructive sleep apnea (OSA) is one of

the most common diseases (Korkalainen et al., 2019). Traditional

manual sleep staging using EEG signals is time-consuming and

laborious since it requires analyzing sleep stages from the entire

night’s sleep signal.

In recent years, a research method for EEG sleep staging using

deep learning algorithms has been proposed. Deep learning is a

new research direction in the field of machine learning (Arel et al.,

2010). It is introduced into machine learning to make it closer

to its original goal of artificial intelligence (AI) (Arrieta et al.,

2020). Deep learning is a complex machine learning algorithm

that learns the internal rules and representation levels of sample

data. The information obtained during the learning process is

very helpful for interpreting data such as text, images, and sound

(LeCun et al., 2015; Tsinalis et al., 2016). The ultimate goal is to

enable machines to analyze and learn like humans and recognize

data such as text, images, and sound. Deep learning is a powerful

tool in the processing of EEG signals and has shown excellent

performance in speech and image recognition (Amin et al., 2019;

Sun et al., 2019). Traditional EEG sleep staging algorithms include

deep learning algorithms or end-to-end trained deep learning

algorithms, including convolutional neural network (CNN) or

recurrent neural network (RNN) algorithms (Dong et al., 2017;

Chambon et al., 2018; Phan et al., 2018; Perslev et al., 2019; Qu

et al., 2020), involving state-of-the-art sleep staging networks such

as DeepSleepNet (Supratak et al., 2017) and SeqSleepNet (Phan

et al., 2019).

The traditional approach to deep learning research involves

obtaining a large dataset for a specific task and training a model

from scratch using that dataset (Dietterich, 1997). Although deep

learning models can achieve high accuracy, the training time

and computational cost of this method are significant due to the

requirement for large amounts of data (Alzubaidi et al., 2021).

In the case of unfamiliar subjects, using deep learning algorithms

would require re-calculating, which would consume a considerable

amount of computational time and resources. Furthermore, data

from different cohorts may come from varying sources due to

variations in the number and location of EEG channels, sampling

frequency, experimental paradigms, and subject variability, making

models trained on one cohort not directly applicable to another,

limiting their applicability in clinical settings (Boostani et al., 2017;

Andreotti et al., 2018).

Meta-learning, also referred to as learning to learn, involves

a systematic examination of the performance of various machine

learning methodologies across a diverse spectrum of learning tasks.

This process enables the acquisition of knowledge from the amassed

meta-data, allowing for significantly accelerated learning of novel

tasks beyond conventional capabilities (Vanschoren, 2019). This

not only expedites and enhances the development of machine

learning workflows and neural network architectures but also

facilitates the replacement of manually engineered algorithms with

innovative data-driven approaches. Yaohui Zhu proposed a multi-

attentionmeta-learning (MattML)method for few-shot finegrained

image recognition (FSFGIR) (Zhu et al., 2020). Instead of using

only base learner for general feature learning, the proposed meta-

learning method uses attention mechanisms of the base learner and

task learner to capture discriminative parts of images.

Meta-learning algorithms can enable cross-subject EEG

sleep staging, greatly reducing the training time required for

sleep staging. Nannapas proposed a meta-learning MAML-based

method, MetaSleepLearner, for sleep staging EEG signals (Finn

et al., 2017; Banluesombatkul et al., 2020). They introduced

a transfer learning framework based on model-agnostic meta-

learning (MAML) to transfer acquired sleep stage knowledge from

a large dataset to new individual subjects. The accuracy achieved

on the Fpz-Cz validation channel was 72.1% and the MF1 score

was 64.8, demonstrating the feasibility of cross-subject EEG sleep

staging. Shi et al. (2023) used meta-transfer learning, proposed

MTSL, further improved the feature extracter based on the meta-

learning framework, and introduced the idea of transfer learning

to improve the performance of sleep staging in small sample

scenarios through a new meta-transfer framework, and achieved

79.8% ACC on sleep-EDF. In MetaSleepLearner, the experiment

uses too many training sets for hybrid training and requires fine-

tuning on unused subject data, so the complexity of the experiment

does not favor a specific implementation. In MTSL, a multi-

stream parallel CNN network is used to extract EEG features from

each of the three scales, and finally, the multi-scale features are

fused through feature splitting to obtain the final EEG feature

representation. Since the network features are too complex, the

running time and computational consumption are too large and

difficult to implement.

In this study, we propose a few-shot EEG sleep staging

based on transductive prototype optimization network (TPON)

method to improve the accuracy of cross-subject EEG sleep

staging. The aim is to improve the performance of cross-

subject EEG sleep staging and also to achieve innovative cross-

channel recognition of sleep with good performance. Our

experiments are carried out with 20 subjects in the Sleep-

EDF dataset, which has a small amount of data and moderate

network complexity. We use the prototype network model

in meta-learning. Compared with traditional machine learning

and other meta-learning methods, our experiment has shorter

training time and higher accuracy improvement. Our experiment

is based on the prototype network method of meta-learning

proposed by Snell et al. (2017). To improve it, we utilize

the Transductive Distribution Optimization (TDO) algorithm

proposed by Liu et al. (2023). Our experiment is conducted

on the Fpz-Cz and Pz-Oz channels and uses the AASM

(Berry et al., 2012) scoring standard, which classifies sleep into

five stages.

The main contributions of this study are as follows:

• We propose a few-shot EEG sleep staging based on

transductive prototype optimization network (TPON)

method to improve the performance of cross-subject EEG

sleep staging.
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FIGURE 1

The overall framework of TPON.

• By using few-shot learning and TPON method, we effectively

alleviated the problem of too few samples in sleep staging and

improved the generalization ability to new subjects.

• In the five-way 15-shot scenario, the cross-subject sleep

staging accuracy of TPON can be improved to 87.1%,

MF1 to 81.7, and the cross-channel sleep staging can

also achieve an accuracy of 82.4%. Additionally, we first

experiment and discuss the feasibility of cross-channel sleep

staging recognition.

2 Proposed method

In this study, we propose a few-shot EEG sleep staging

based on transductive prototype optimization network (TPON)

method to improve the accuracy of cross-subject EEG sleep

staging. Our experiments are based on the prototypical network

approach of meta-learning, where prototypes are used in

combination with high confidence unlabeled samples to achieve

subject transfer.

2.1 Overall framework of TPON

The overall framework of TPON is depicted in Figure 1.

Different subjects will be used for both meta-training and meta-

testing, which is shown at stage A in Figure 1, 19 of them for

meta-training and the remaining one for meta-testing. In the meta-

training phase, we combine the sleep data of 19 meta-training

subjects. Each participant had two nights of data. In the meta-

testing phase, data from two nights of one meta-testing subject

are combined. We also cross-tested 20 times to obtain average

results for all subjects. During meta-testing and meta-training, the

sleep network shares the weight values. In the meta-training stage,

prototypes of five sleep cycles are obtained through 50 experiments

and randomly averaged sampling. Then, during our meta-testing

phase, unlike meta training, due to the few-shot size of the meta-

testing set.

Phase B in Figure 1 is the backbone network we used, including

SleepNet combined with Transformer. The C and D stages in

Figure 1 are the improved prototype network and transformation

distribution optimization (TDO) methods we used, respectively.

The mentioned three phases are discussed in detail in the following

sections.
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FIGURE 2

Prototypical network.

We utilizing the various distance metric functions, including

the Cosine distance formula, the Manhattan distance formula, the

Euclidean distance formula, and the Chebyshev distance formula.

By comparison, we then obtain the highest accuracy among the

four.We identify the class to which a test EEG data segment belongs

based on its proximity to the prototype. We then compute the

average accuracy, precision, loss, and F score for each of the five

categories.

2.2 Prototypical networks

In this study, we focus on the prototypical network approach,

which is shown in Figure 2 and stage C in Figure 1. The method is

based on the classification of sleep EEG signals. We have developed

our prototypical network model, which maps sleep EEG signals to

embedding vectors and uses their clustering for classification (Hori

et al., 2001). The novel feature of our model is that it constructs

a richer embedding space through a learned prototypical network

related to EEG sleep, such that EEG signals can be projected there.

In the Figure 2, we show the five-way five-shot during the five

periods of sleep. They are clustered under a distance metric of

orientation and class relevance, which is then used for classification

(Schultz and Joachims, 2003; Chen et al., 2009).

In few-shot learning (Sung et al., 2018; Wang et al., 2020), if

our task is an N-way K-shot, then the support set S, with K-labeled

samples, can be expressed as follows:

S ={(X1, Y1), (X2, Y2), ..., (XN, YN)} (1)

Each prototype is an average vector of embedded support

points belonging to its class. To better represent the features of each

class, the average value of the features of each class is computed by

the backbone network F, which is called the prototype Cq. Under

the K-shot dimension, xi∈{1,. . ., K} is the eigenvector of class i,

and i is any one of the N classes, yi∈{1,. . ., K} are the labels of

the corresponding category. Then, Sq respectively represent the

support set of class q. |Sq| is expressed as the absolute value of Sq.

The calculation formula is as follows:

Cq =
1

|Sq|

∑

(xi ,yi)∈Sq

F(xi), (2)

Based on the distance from the embedding space to the

prototype, the distance metric function d is given, the prototypical

network generates a distribution over classes for the query point x

using a softmax activation function, which is computed as follows :

P(y = q|x) =
exp(−d(F(xi),Cq))

∑

q′ exp(−d(F(xi),Cq′ ))
, (3)

Specifically, P(y = q|x) means that the query sample x is

compared to all Cq′ prototypes, classifying x as a probability value

of class q.

A common prototypical network consists of an backbone

network that maps sleep EEG signals to embedding vectors. One

batch contains a subset of the available training EEG signals. EEG

data from each class is randomly split into support and query

sets. The embedding of the support set is used to define the class

prototype, i.e., the prototype embedding vector of the class. By

using a metric function to measure the distance between the query

set and the prototype, the query set is classified.

2.3 Distance metric

For prototypical networks and matching network, any

measurement function is allowed. In our experiment, dCos means

Cosine distance, dMan means Manhattan distance, dEuc means

Euclidean distance, and dChe means Chebyshev distance, they were

used as comparisons. We obtain the cosine distance as our best

matching and most accurate measurement function.

If there is a query sample Zf, its high-dimensional spatial

characteristics can be expressed F(Zf), and n represents the

dimension of the vector. Therefore, the distance function can be

used to obtain the distance between the high-dimensional vector

F(Zf) of our query sample and the prototype Cq. The distance

calculation formula is as follows:

dCos(F(Zf ),Cq) = − cos θ = −
F(Zf ) · Cq

‖F(Zf )‖‖Cq‖
, (4)

dMan

(

F (Zf) , Cq

)

=

∫ n

k=1

∣

∣F
(

Zf,k

)

−Cq,k

∣

∣, (5)

dEuc
(

F (Zf) , Cq

)

=(

∫ n

k=1

∣

∣F
(

Zf,k

)

−Cq,k

∣

∣

2
)

1
2

, (6)

dChe
(

F (Zf) , Cq

)

=MAX
f

∣

∣F (Zf)−Cq

∣

∣ , (7)

After the Cosine distance between the query sample and the

prototype Cq is obtained, the negative value of the Cosine distance

between the query sample Zf and the prototype Cqis formed into a
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FIGURE 3

The transductive distribution optimization (TDO) method.

probability distribution on the class through the softmax function.

The calculation formula is as follows:

P(yn | Zf ) =
exp(−dist(F(Zf ),Cq))

∑q
n=1 exp(−dist(F(Zf ),C′

q))
, (8)

where Cn(n = 1, 2, ..., Q) is the prototype of class n and dist()

can represent four different distance measurement functions.

At the same time, to have a good evaluation index duringmodel

training, the experiment uses cross entropy as loss function to train

and then minimizes the loss function. The calculation formula is as

follows:

Loss = −
1

n

n
∑

i=1

q
∑

n=1

yin × log(p(yn | Zf )), (9)

where n is the number of query samples and yi is the actual label

of the sample.

2.4 Transductive distribution optimization

Due to the small number of subjects per sleep period in the sleep

data SleepEDF-2013, the problem is that the selected sleep segments

do not accurately describe our actual prototypes. To solve this

problem, we used the TDOmethod based on the original prototype

network.

We propose to use the prototype network approach of TDO

to capture the features of new classes. We first used the original

method, using labeled samples from the five sleep epochs as a

support set, to obtain prototypes of the five sleep epochs. However,

due to the small number of samples in the learning process, it

is not possible to accurately obtain the true distribution of each

class. Therefore, we introduce TDO, which combines support

set and high-confidence unlabeled sample query set to improve

the matching degree of prototypes in prototype network, which

is depicted in Figure 3 and stage D in Figure 1. Algorithm 1

summarizes the prediction process of our proposed method.

Themain steps are illustrated in the figure above, which include

the following three parts:

2.4.1 Generate an original class boundary
In the first stage, we generate an original class boundary using

the backbone network and the labeled data. The feature extraction

prototype network extracts an original prototype for a five-way N-

shot task by using the backbone network, generating an original

class boundary, where all the support set samples come from

labeled data. For an N-way K-shot task, to find out the similarity

scores between all query samples and the support classes, we use

the sample-to-class metric measure to get the relational matrix

R(N×q)×N of similarity probability scores.

2.4.2 Generate a new class boundary
The class distribution is optimized by using a robust feature

extractor to capture the feature distribution of each class. It is

based on the original support set and some highly confident

unlabeled query samples to obtain a ground-truth prototype of

the transformed distribution. New class boundaries are generated

by combining the original support set and some highly confident

unlabeled query samples. The goal is to generate a new classifier

that predicts the labels of all remaining query samples.

Then, we obtain a similarity probability score matrix B ∈

R(N×q)×N between each prototype Cq and all query samples Zf. For

each class prototype Cq, we select the top k query samples with the

highest similarity probability score as the prototype class candidate

set:
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Require: Support set features S = (xi, yi)
N×K
i=1

Require: Query set features Q = (xi, yi)
N×q
i=1

Require: Backbone network with a convolutional neural

network (SleepNet) and a multilayer Transformer

encoder module.

1: for Select a subject sequentially from all

subjects as the meta-testing subject do

2: Input the support set into the backbone network.

3: Calculate the class prototype of each sleep

stage Cq′ =

∑

xq∈Sf ∪Cq
xq

|Sq |+k
.

4: The distance measurement function is used to

measure the distance between the query set and

the prototype.

The closest one is classified into the same

category.

5: for i in {1, . . ., N} do

6: Select the top k similar query samples to each

prototype as the prototype candidate set for

each novel class Kq:

Kq = {f |bqf ∈ topk(Bq∗)}.

7: Compute the prototyper each novel class in the

support set in Meta-Testing.

8: Calibrate the prototype of the feature

distribution for novel class i to Cq′ =
∑

xq∈Sf ∪Cq
xq

|Sq |+k
.

9: Train a classifier on both support samples and

top k query samples.

10: end for

11: Predict the labels of query samples based on the

trained classifier.

12: end for

Algorithm 1. Transductive prototype optimization network (TPON)

algorithm.

Kq = {f |bqf ∈ topk(Bq∗)},

Cq = {xq|xq ∈ Q, q ∈ Kq},
(10)

topk(·) is an operator to select the top k elements

from each row of the matrix B, k is a hyperparameter

that denotes the number of samples in the prototype class

candidate set for each class, and Q denotes the query set after

Tukey’s transformation. Ki stores the index of the k most

similar query samples of class i and Ci stores the samples

corresponding to Ki.

2.4.3 Generate a new classifier
A new classifier is generated by combining the original

support set and some highly confident unlabeled query

samples to generate new class boundaries. With the goal

of predicting the labels of all remaining query samples,

the mean of the feature distribution for each class is then

computed using the support set and the candidate set of

prototype classes:

C′
q =

∑

xq∈Sf∪Cq
xq

|Sq| + k
, (11)

where |Sq| denotes the number of samples in Sq and k denotes

the number of samples in Cq. This significantly removes the

distribution bias caused by the category mismatch. Our method

does not introduce any additional rational parameters and can be

paired with most classification models and feature extractors. The

introduction of this approach does not add a significant amount of

computation, but it can greatly improve the classification accuracy

and achieve significant learning results.

3 Dataset and experimental setup

In this section, we present the details of our experiments on the

proposed method, including dataset and experimental setup. For

our experiments, the hardware and software configurations used

in our experiments are based on a platform with an Nvidia RTX

3090Ti, Ubuntu 16.04, and PyTorch 1.9.0.

3.1 Datasets

This section describes the use and preprocessing of the

experimental data. The experiment used the benchmark sleep data

disclosed by PhysioNet Sleep-EDF, which included 20 healthy

subjects (26–35 years old), including 10 healthy men and 10

healthy women. The polysomnography (PSG) recording time

of each person is about 20 h. This dataset includes sleep

EEG of healthy subjects’ SC. The * PSG.edf as the suffix

contains EEG (from Fpz-Cz, Pz-Oz electrode positions) and

the * Hypnogram.edf files contain the notes of sleep mode

corresponding to PSG. The sampling rate was 100 Hz for all

EEG.

Sleep experts manually divide these records into eight

categories (W, N1, N2, N3, N4, REM, MOVEMENT, and

UNKNOWN). These modes (hypnograph) include sleep stages

W, N1, N2, N3, N4, REM, M (body movement time), and “?"

(unknown time). This PSG is segmented into 30-s epochs, which

are then be classifified into different sleep stages by the experts

according to sleep manuals such as the Rechtschaffen and Kales

(R&K).

We combined the N3 and N4 phases into a single phase N3 to

maintain the AASM standard (Berry et al., 2012). At the beginning

and end of each recording, there is a long period of W-phase

in which the subject is not sleeping, which we cut off. We only

include 30 min before and after the sleep time, and delete M

(body movement time) and “?" (unknown time). The notes during

EEG sleep have been given separately in the hypnographic files

available in the database. Sleep notes are provided every 30 s in

each EEG signal to note which sleep stage it belongs to. We divided

the sleep EEG of 20 healthy subjects into meta-training subjects

and meta-testing subjects. One of the 20 subjects was used as a

meta-testing subject, and the remaining 19 subjects were tried as

our meta-training subjects, so we can do a 20-fold cross check.
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FIGURE 4

Backbone network.

We take a time window of 30 s to intercept the sleep samples.

Sleep data from two nights for each subject were fused into one

subject.

3.2 Data enhancement

There is a problem of imbalanced categories in the dataset of

SleepEDF-2013. The number of a certain category of training is too

small during the meta-training. To solve this problem, we adopted

the method of oversampling in the meta-training dataset and kept

the number of meta-training data consistent during the five sleep

periods by randomly copying the original category of EEG. Let the

backbone network learn the category information in an efficient

and balanced way without the problem of class imbalance.

3.3 Backbone network

In this study, we proposed a feature extraction network to

analyze sleep EEG signals. The network consists of two main

components: a convolutional neural network (SleepNet) and a

multilayer transformer encoder module. Which is shown in

Figure 4 and Stage B in Figure 1. The CNN is used to extract local

features from the signals, while the transformer is used to capture

global correlations between different parts of the signals.

3.3.1 SleepNet features extraction
The CNN component comprises three convolutional layers

with batch normalization and dropout, followed by a linear layer,

as shown in the Table 1. The first layer has 64 filters with a kernel

size of 64 and a stride of 16. The second layer has 128 filters with a

kernel size of 8 and a pooling layer with a kernel size of 4. The third

layer has 256 filters with a kernel size of 8 and a pooling layer with

a kernel size of 4.

Formally, SleeNet extracts the ith feature from one EEG epoch

Xi, CNN(θr) represents CNN converted from single channel EEG to

eigenvector, and θr is the variable parameter of the CNN. The size

of fXi depends on the sampling rate of input EEG. In the formula,

f represents the CNN network we use. As shown in the following

formula:

f(Xi) = CNN(θr)(Xi), (12)

the network is trained using the NAdam optimizer to minimize

the cross-entropy loss.
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TABLE 1 CNN feature extraction.

Layer Kernel/filter Stride/dilation Output size (p)

Input – – 1× 3,000

Conv 64× 1 Stride 16 64× 187

BatchNorm – – 64× 187

ReLU – – 64× 187

Dropout – – 64× 187

Conv 128× 64 Dilation 1, Padding 1 128× 184

BatchNorm – – 128× 184

ReLU – – 128× 184

MaxPool 4× 1 Stride 4

Conv 256× 128 Dilation 1, Padding 1 256× 43

BatchNorm – – 256× 43

ReLU – - 256× 43

MaxPool 4× 1 Stride 4 256× 10

Dropout – – 256× 10

Flatten – – 1× 23,040

Linear 23,040×128 – 1× 128

3.3.2 Transformer encoder module
The output of the third pooling layer is fed to the transformer

component, which consists of encoder layers and transformer

encoder. The encoder layer has a dimensionality of 128 and an

attention mechanism. The encoder is applied to the input signals,

and the output is averaged along the time axis before being fed

to a fully connected layer with a 128-dimensional output. After

the feedforward layer, our output feature vector is fed into the

prototype network. After feature extraction of transformer encoder

module, feature output formula is as follows:

F(Xi) = Encoder(f (Xi)), (13)

where FXi represents features extracted by CNN and Transformer.

3.4 Model settings

Before using a prototypical network, we need to extract features

from the collected data. We can construct a prototypical network

architecture with five-way (1-shot, 3-shot, 5-shot, 10-shot, 15-shot,

20-shot, 25-shot). We randomly select 1, 3, 5, 10, 15, 20, and

25 epochs from the W, N1, N2, N3, and R phases of the meta-

training set, respectively. The five sleep phases are preprocessed

and SleepNet with transformer is used as our pre-trained neural

network to compute prototypes for each sleep phase.

We divided a batch process into a support set and a query set,

utilizing the embedding vectors of the support set to establish a

class prototype. This prototype represented a typical embedding

vector of a given class, and we then utilized values closely related

to it for classification to compare the performance of our approach.

In our experiment, Cosine distance, Manhattan distance, Euclidean

distance, and Chebyshev distance were used as comparisons, and

we obtain the Cosine distance as our best matching and most

accurate measurement function. As such, we adopted the Cosine

distance function as our distance evaluation metric.

To train the backbone network, we use the NAdam optimizer.

To learn feature centers for distinct classes, we employ a stochastic

gradient descent optimizer with a learning rate of 0.0009 and a

center-loss weight of 0.0009. Among them, we use the pre-trained

neural network to extract feature vectors, take the average value,

conduct normalization processing, and use softmax for prediction

analysis. Experiments were performed on 50 times and then fine-

tuned by taking the average loss of gradient descent.

In the meta-testing, the remaining subjects from the meta-

training were used as the meta-testing set, as a previously unseen

category, for cross-subject EEG sleep staging. We randomly

selected N samples in five sleep periods from the meta-testing

set, and the five groups of samples were used as the meta-testing

support set. Similar to meta-training, after building the initial

prototype network on the first layer, we introduced the TDO

method, including introducing a high confidence unlabeled query

set as our support set, and recalculating the prototype network.

All the rest sleep data is used as the meta-testing set, and the

construction task is verified repeatedly. The average accuracy is

taken as the accuracy of the final test result and the ACC, F1 values,

and the accuracy of each category are obtained.

Since the experimental results may vary depending on the

chosen support set sample, this experiment is repeated 50 times

using the support set randomly, and the average precision is

obtained as the final statistical result of the experiment. The average

accuracy is taken as the accuracy of the final test result and the ACC,

F1 values, and the accuracy of each category are obtained.

3.5 Evaluation

In our experiments, different subjects were used for cross-

subject validation for meta-training and meta-testing subjects, and

the meta-testing query set did not include meta-training subjects.

Our experiments were conducted for 20 rounds, thus validating our

experimental results. The experiment is a multi-class classification

task for sleep staging. Accuracy, F-measure, recall, and kappa values

are used to evaluate the performance of sleep staging. The overall

performance is evaluated in terms of accuracy and Cohen’s Kappa

coefficient. The above evaluation metrics are formulated as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
, (14)

κ =
Accuracy− Pe

1− Pe
, (15)

Recall =
TP

TP + FN
, (16)

Precision =
TP

TP + FP
, (17)

F1 =
2× Recall× Precision

Precision+ Recall
, (18)
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TABLE 2 The performance di�erence between the most advanced algorithm and our proposed TPONmethod.

Database System Overall performance Class-wise MF1

Acc. κ MF1 Wake N1 N1 N3 REM

SleepEDF-2013(Fpz-Cz) MetaSleepLearner (Banluesombatkul et al., 2020) 72.1 0.62 64.8 70.0 29.0 78.6 79.1 67.5

SleepEEGNet (Mousavi et al., 2019) 84.3 0.79 79.7 89.2 52.2 86.8 85.1 85.0

DeepSleepNet (Supratak et al., 2017) 82.0 0.76 76.9 84.7 46.6 85.9 84.8 82.4

DeepSleepNet-Lite (Fiorillo et al., 2021) 84.0 0.78 78.0 87.1 44.4 87.9 88.2 82.4

AttnSleep (Eldele et al., 2021) 84.4 0.79 78.1 89.7 42.6 88.8 90.2 79.0

SeqSleepNet+ (FT) (Phan et al., 2019) 85.2 0.79 79.6 89.2 52.2 86.8 85.1 85.0

TinySleepNet (Supratak and Guo, 2020) 85.4 0.80 80.5 90.1 51.4 88.5 88.3 84.3

XSleepNet2 (Phan et al., 2021) 86.3 0.81 80.6 92.2 51.8 88.0 86.8 83.9

XSleepNet1 (Phan et al., 2021) 86.0 0.81 80.0 91.3 49.5 88.0 86.9 84.2

MNN (Jiang et al., 2020) 85.9 − 80.5 84.6 56.3 90.7 84.8 86.1

Khalili & Asl (Khalili and Asl, 2021) 85.4 0.80 79.3 90.0 46.6 88.4 86.1 84.6

U-Sleep (Perslev et al., 2021) − − 79.0 93.0 57.0 86.0 71.0 88.0

SleepFCN (Goshtasbi et al., 2022) 84.8 0.78 78.8 89.6 44.6 89.1 90.6 80.3

ResNetMHA (Qu et al., 2020) 84.3 − 79.0 90.2 48.3 87.8 85.6 83.3

IITNet (Seo et al., 2020) 83.9 0.78 77.6 − − − − −

FCNN + RNN (Phan et al., 2021) 81.8 0.75 75.6 89.4 44.1 84.0 84.0 76.3

TPON (Ours) 87.1 0.82 81.7 91.9 50.9 91.1 91.9 82.5

SleepEDF-2013(Pz-Oz) DeepSleepNet (Supratak et al., 2017) 79.8 0.72 73.1 88.1 37 82.7 77.3 80.3

SleepEEGNet (Mousavi et al., 2019) 82.8 0.77 77.0 90.3 44.6 85.7 81.6 82.9

TPON (Ours) 83.3 0.77 73.5 90.8 23.8 88.2 86.4 78.3

The bold values represent the metrics in the table that achieved the best result in a particular method.

where TP is true positive, TN is true negative, FP is false

positive, FN is false negative, and Pe is the hypothetical probability

of chance agreement.

4 Results and discussion

In this section, we present a detailed analysis of the

experimental results, including the performance of the sleep stage

and the confusion matrix, and compare them with state-of-the-

art experiments. We also conducted qualitative and quantitative

experiments, including using different shots, different distance

metric functions, and different learning rates. The t-SNE plots of

the ablation experiments are also compared in the experiment to

demonstrate the effectiveness of our experiment. We also discuss

the feasibility of cross-channel sleep analysis and the limitations of

our experiments.

4.1 Sleep stage scoring performance

In Table 2, we show the performance difference between the

most advanced algorithm and our proposed prototypical network

TPON on the Sleep-EDF-2013 dataset. It included two channels,

Fpz-Cz and Pz-Oz (compared using five-way 15-shot method).

Our proposed meta learning cross-subject sleep segmentation

algorithm TPON can be seen from Tables 2, 3. Under the Fpz-

Cz channel, we use fewer subjects and samples than other meta-

learning algorithms, such as MetaSleepLearner. However, the

accuracy is improved by 15%, and the F1 score andMF1 for the five

sleep epochs are higher than those of MAML’s MetaSleepLearner

using Meta-learning, achieving a phased achievement. Compared

to the traditional deep learning algorithm DeepSleepNet, the

overall accuracy of TPON under the Fpz-Cz channel is also

improved by 5.1%. This is a pioneering use of meta-learning

algorithms and makes them comparable in accuracy to traditional

machine learning algorithms. Cohen’s Kappa values increased to

0.82 and MF1 score increased to 81.7. In the Pz-Oz channel, the

accuracy rate reached 83.3, the MF1 reached 73.5, and Cohen’s

Kappa value reached 0.77.

TPON is a prototype network algorithm proposed by us. It

can better train our sleep EEG, after extracting sleep features from

the backbone network. TPON can be effectively mapped into the

space to achieve a better classification effect. In the process of cross-

subject identification, we can also train and identify our unfamiliar

subjects across the subject to achieve a more accurate classification

effect.

To perform a comprehensive experimental analysis of the

proposed TPON, we performed ablation experiments, as can be

seen in Table 4. Our ablation experiments are compared with our

TPON using the full experimental procedure. The first method
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is TPON. The second approach is to remove the attention

mechanism. The third approach excludes the TDO mechanism.

Finally, the fourth approach excludes the attention mechanism

and the TDO mechanism. The fifth method excludes the TDO

mechanism and the prototype network and adopts the traditional

deep learning approach. The results of the ablation experiments are

shown in Table 4. From Table 4, it can be seen that TPON is the best

sleep staging method in our ablation experiments.

Figure 5 shows confusion matrices on the Fpz-Cz and Pz-

Oz channels from the Sleep-EDF datasets. Each row and column

represent the number of 30-s EEG epochs of each sleep stage

classifified by the sleep expert and our model, respectively. The

last three columns in each row indicate per-class performance

metrics computed from the confusion matrix. Table 3 shows the

PR, RE, and F1 performance in Fpz-Cz and Pz-Oz channels from

the SleepEDF-2013 datase. PR means precision, RE means recall,

and F1 means F-measure.

4.2 Training time performance

In this section, we will calculate the training time of our

proposed few-shot EEG sleep staging algorithm, TPON, based on

TABLE 3 PR, RE, and F1 performance in Fpz-Cz and Pz-Oz channels from

the SleepEDF-2013 datase.

Fpz-Cz Pz-Oz

Stages PR RE F1 PR RE F1

Wake 91.4 92.3 91.9 87.9 93.9 90.8

N1 53.7 48.3 50.9 38.6 17.2 23.8

N2 94.1 88.3 91.1 90.6 85.8 88.2

N3 89.1 94.8 91.9 81.9 91.5 86.4

REM 78.1 87.5 82.5 72.7 84.8 78.3

the prototype network. This includes the training time for each

validation fold on each node, with a total of 20 validation folds.

Our proposed few-shot EEG sleep classification algorithm

effectively solves the problem of long training time in traditional

deep learning. The network initialization can quickly adapt to new

tasks and has the ability to train models on a small number of

samples, including "learning to learn" features. TPON introduces

a prototype-based meta-learning algorithm during the training

process, greatly reducing the time for single test validation. The

training time for each validation fold is ∼22 min, which greatly

saves computation energy and reduces the time for doctors to

manually stage patients.

4.3 Consideration of N-shot learning

In five-way N-shot, we analyze the effect of variation in

the number of shot samples on the accuracy of sleep quintet

classification and MF1 measurement. We show the accuracy of

different shot quantities in the Fpz-Cz and Pz-Oz channels, which

is shown in Figure 6. It can be seen that the accuracy of the

experiment increases with the number of shots. In the Fpz-Cz

channel, the highest accuracy is 87.1% at 10-shot. In the Pz-Oz

channel, the highest accuracy is 83.3% at 15-shot.

We can see that the five-way 15-shot method of using few-shot

learning is similar to the traditional method of using deep learning

with a large number of data samples.

4.4 Di�erent metric distance functions

We compare different distance measurements functions in

Fpz-Cz channel which is shown in Figure 7. In the prototypical

networks, we use different distance metric functions as our

benchmarks, and finally obtain that the most efficient distance

metric function is the Cosine distance function. In our experiments,

TABLE 4 Ablation study on TPON.

Channel Attention TDO Prototype Class-wise MF1 Performance

Wake N1 N2 N3 REM Acc. κ MF1

Fpz-Cz X X X 91.9 50.9 91.1 91.9 82.5 87.1 0.82 81.7

Fpz-Cz × X X 90.8 36.4 91.1 85.9 81.0 86.6 0.81 77.0

Fpz-Cz X × X 92.0 39.0 91.5 90.9 81.2 86.6 0.82 78.9

Fpz-Cz × × X 92.0 39.8 91.3 89.2 80.9 86.4 0.80 78.6

Fpz-Cz X × × 91.2 41.7 88.7 90.7 81.0 85.1 0.80 78.7

Pz-Oz X X X 90.8 23.8 88.2 86.4 78.3 83.3 0.77 73.5

Pz-Oz × X X 90.4 23.7 88.0 86.2 78.2 83.0 0.76 73.3

Pz-Oz X × X 89.7 26.1 86.5 86.5 78.9 82.8 0.77 73.5

Pz-Oz × × X 90.0 24.7 88.1 86.5 78.0 82.9 0.74 73.5

Pz-Oz X × × 88.7 25.7 87.3 85.9 79.2 82.1 0.73 73.4

Our ablation experiments are compared with our TPON using the full experimental procedure. The first method is TPON. The second approach is to remove the attentionmechanism. The third

approach excludes the TDO mechanism. The fourth approach excludes the attention mechanism and the TDO mechanism. The fifth method excludes the TDO mechanism and the prototype

network and adopts the traditional deep learning approach. Our ablation experiments were conducted on two channels, Fpz-Cz and Pz-Oz. The bold values represent the metrics in the table

that achieved the best result in a particular method.
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FIGURE 5

Confusion matrix obtained Fpz-Cz and Pz-Oz channels from the SleepEDF-2013 dataset.

FIGURE 6

The accuracy of di�erent shot quantities in the Fpz-Cz and Pz-Oz channels.

the Cosine distance, the Manhattan distance, the Euclidean

distance, and the Chebyshev distance are used as comparisons.

We can see from the following figure that under the condition

of using the same five-way (1-shot to 25-shot), and using

different distance measurement functions, the prototypical

networks has different effects. Finally, we choose the best

performing Cosine distance as the metric function for our

prototypical network.

4.5 Performance of t-SNE visualization in
the attention mechanism ablation
experiment

In this section, we will present three t-SNE plots, which are

shown in Figure 8. We used ablation experiments to compare

TPON performance without a TDO, attentional mechanism. By

comparing the t-SNE plots of the two cases, we can observe that
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FIGURE 7

Compare di�erent distance measurement functions in di�erent shot.

the use of the TDO and attention mechanism leads to a clear

clustering effect, a more reasonable sample distribution, and a

better representation of the distance between samples of different

classes. This indicates that we are able to capture the differences

between different classes more accurately with the TDO and

attentionmechanism. Therefore, we can conclude that in sleep EEG

staging, the use of TDO and attention mechanisms can increase the

performance of classification.

4.6 The e�ect of learning rate

In Figure 9, we consider the impact of learning rate on our

backbone network feature extraction. Therefore, we use a variety

of ways to compare learning rates. We use the 15th subject as our

meta-testing subject to reduce training time. In the meta-training

phase and meta-testing phase, we used to select the most suitable

learning rate η ∈ {1 × 10−1, 1 × 10−2, 1 × 10−3, 1 × 10−4, 1 ×

10−5, 1× 10−6, 0}, as well as the number of training iterations. The

default maximum training iterations were set to 50, respectively.

It can be seen that there are significant differences in the feature

extraction effect among different learning rates. When the learning

rate is 1 × 10−3, the learning effect is the best. After subdivision

learning, we finally determined the learning rate to be 0.0009.

4.7 Cross-channel sleep staging

In the meta-learning, the meta-training stage trains the ability

of the model to “learn to learn." We propose the hypothesis that

the manually segmented sleep data by the physician has only one

channel. We need to classify the sleep EEG signals of another

channel. So, we can perform meta training on the sleep data of

existing channels. Then, the model not only has the ability to “learn

to learn" but also has the ability to recognize unfamiliar channel

data to a certain extent.

Therefore, we propose a cross-channel EEG recognition

network. The key to this idea is to use and train on EEG sleep

data from known channels, and then perform sleep staging on

EEG sleep data from unfamiliar channels. Our experiment uses

the same mechanism as TPON. The only difference is that our

meta-training subjects and meta-testing subjects used different

sleep channels. Adopting this approach is to simulate the real-life

situation described above.

Our experiment used Pz-Oz channel data as the meta-training

set and Fpz-Oz channel data as the meta-testing set. The data of

the Pz-Oz channel include 19 subjects, while the data of the Fpz-

Oz channel uses the remaining subjects. To ensure the rigor of

the experiment, we repeated it 20 times and calculated the average

value.

From the experimental results, our cross-channel EEG sleep

staging achieves good results. Especially in the case of five-way

25-shot, the accuracy is 82.3%, which has reached a high level.

4.8 Limitations of the study

Our dataset refers to the dataset adopted by DeepSleepNet,

using the data of 20 SC subjects (healthy subjects) in Sleep-EDF,

which included 20 healthy subjects (26 to 35 years old), including
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FIGURE 8

Performance of t-SNE visualization in the TDO and attention mechanism ablation experiment. (A) Remove the TDO mechanism. (B) Remove the

attention mechanism. (C) Transductive prototype optimization network (TPON).

FIGURE 9

The e�ect of learning rate.

10 healthy men and 10 healthy women. But we might be dealing

with real-world people with sleep disorders, so the results could be

biased.

There is another limitation here, which is that performance

is slightly worse when there is a large difference between

labeled and unlabeled data. This includes training with one

type of data and testing with another, and the data are very

different, which may be slightly less effective in our cross-data

testing.

In the t-SNE diagram of TPON (Stage A and Stage B in

Figure 8) we learned, we can see that our W, N2, N3, and R stages

have obvious distribution intervals, and the distribution differences

are obvious. However, the N1 phase is not better separated

and mixed with the R phase, which causes difficulties in our

segmentation, and many N1 phases are misclassified as R phases.

5 Conclusion

In this study, we propose a few-shot EEG sleep staging based

on transductive prototype optimization network (TPON) method.

A modified version of the prototypical network algorithm was used
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for the experiments, and the Cosine distance function was used as

the distance metric function. Given the diverse nature of EEG sleep

data across subjects, efficient adaptation and training with new data

from previously unseen subjects remains a significant challenge.

Our future work is to experimentally improve the problem of

having too few N1 stages in the meta-testing dataset. The low

accuracy for N1 staging can be explained by the fact that most

of the disagreements occurred during transitions between sleep

stages and N1 stage typically has a lower bout length (number

of consecutive 30-s epochs scored as N1) compared to the other

stages (Rosenberg and Van Hout, 2014). Although the problem of

having too few N1 stages is related to the proportion of N1 stages

in the whole night during human sleep, we can introduce a relevant

proportionality coefficient to solve the problem of having too low

a fraction of N1. Our future research directions also include the

adoption of more advanced meta-learning algorithms, followed by

the improvement of our backbone network and the adoption of

dynamic convolutional neural networks to address the problem of

imbalanced sample distributions and too few support set samples

in few-shot learning.
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