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Speech understanding in cochlear implant (CI) users presents large intersubject

variability that may be related to di�erent aspects of the peripheral auditory

system, such as the electrode–nerve interface and neural health conditions. This

variability makes it more challenging to proof di�erences in performance between

di�erent CI sound coding strategies in regular clinical studies, nevertheless,

computational models can be helpful to assess the speech performance of

CI users in an environment where all these physiological aspects can be

controlled. In this study, di�erences in performance between three variants

of the HiRes Fidelity 120 (F120) sound coding strategy are studied with a

computational model. The computational model consists of (i) a processing

stage with the sound coding strategy, (ii) a three-dimensional electrode-

nerve interface that accounts for auditory nerve fiber (ANF) degeneration, (iii)

a population of phenomenological ANF models, and (iv) a feature extractor

algorithm to obtain the internal representation (IR) of the neural activity. As

the back-end, the simulation framework for auditory discrimination experiments

(FADE) was chosen. Two experiments relevant to speech understanding were

performed: one related to spectral modulation threshold (SMT), and the other one

related to speech reception threshold (SRT). These experiments included three

di�erent neural health conditions (healthy ANFs, and moderate and severe ANF

degeneration). The F120 was configured to use sequential stimulation (F120-S),

and simultaneous stimulationwith two (F120-P) and three (F120-T) simultaneously

active channels. Simultaneous stimulation causes electric interaction that smears

the spectrotemporal information transmitted to the ANFs, and it has been

hypothesized to lead to evenworse information transmission in poor neural health

conditions. In general, worse neural health conditions led to worse predicted

performance; nevertheless, the detriment was small compared to clinical data.

Results in SRT experiments indicated that performance with simultaneous

stimulation, especially F120-T, were more a�ected by neural degeneration than

with sequential stimulation. Results in SMT experiments showed no significant

di�erence in performance. Although the proposed model in its current state is

able to perform SMT and SRT experiments, it is not reliable to predict real CI users’

performance yet. Nevertheless, improvements related to the ANF model, feature

extraction, and predictor algorithm are discussed.
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1. Introduction

People diagnosed with severe or profound sensorineural

hearing loss that keep some healthy auditory nerve fibers (ANFs)

are good candidates to receive a cochlear implant (CI) and recover

to some extent their sense of hearing. A CI consists of an

electrode array implanted in the cochlea, and a wearable sound

processor usually located behind the ear. The sound processor is

responsible for converting acoustic signals into electric stimulation

patterns that are delivered to the ANFs via the intracochlear

electrodes (Wouters et al., 2015). In many auditory tasks, there

is a big gap in performance between normal hearing (NH) and

CI listeners (Nelson et al., 2003; Nelson and Jin, 2004). Electric

stimulation has its limitations to convey the necessary information

for the proper coding of sounds in the auditory system (Moore,

2003). To reduce this gap, researchers are dedicated to find better CI

sound coding strategies (Nogueira et al., 2005, 2009; Landsberger

and Srinivasan, 2009; Dillon et al., 2016; Langner et al., 2020a;

Gajecki and Nogueira, 2021), but the evaluation of the potential

benefits of new ideas usually requires extensive testing procedures

with implanted volunteers. In addition, there is high variability

in the performance among CI users (Moberly et al., 2016), which

makes it more difficult to generalize from the results.

CI sound coding strategies using current steering aim at

providing an increased number of stimulation places in the

implanted cochlea (Landsberger and Srinivasan, 2009; Nogueira

et al., 2009). The general idea is to create virtual channels by

“steering” the electrical field between two adjacent electrodes,

balancing their output current at different ratios. The commercial

sound coding strategy HiRes with Fidelity120 (F120), from

Advanced Bionics, offers up to 120 virtual channels using 16

electrodes because every electrode pair is able to steer the electrical

field to eight different locations. Furthermore, power savings can

be achieved by stimulating various virtual channels simultaneously.

Simultaneous stimulation allows to increase the pulse duration

and consequently decrease the maximum current needed (Langner

et al., 2017). The drawback is that simultaneous stimulation

produces electric interaction that causes spectral smearing across

channels, which also causes temporal smearing since temporal

modulations may be reduced (Nogueira et al., 2021). The balance

between power savings and CI users’ performance was investigated

by Langner et al. (2017) using three variations of the F120.

Sequential stimulation (F120-S), where one virtual channel was

active at a time, was compared to paired (F120-P) and triplet

(F120-T) stimulation, where two and three virtual channels were

active at the same time, respectively. They found out that the

channel interaction that occurs with the simultaneous stimulation

in F120-P and F120-T has a negative impact on performance,

with F120-T obtaining the worst score. Nevertheless, high inter-

subject variability was found in speech intelligibility and spectral

modulation detection threshold.

It has been shown that peripheral aspects such as neural

health condition (Nadol, 1997), insertion depth and position of

the electrode array (Dorman et al., 1997), along with more central

aspects such as neural plasticity (Han et al., 2019) may account

for an important part of the inter-subject variability observed in

CI users. However, it is not possible to estimate the degree of

ANF degeneration without invasive methods unless the individual

is already implanted with a CI (Prado-Gutierrez et al., 2006;

Ramekers et al., 2014; Imsiecke et al., 2021; Langner et al., 2021).

Langner et al. (2021) investigated the hypothesis that individuals

with good neural health and electrode positioning will show a lower

difference in performance when using simultaneous stimulation

strategies (F120-P and F120-T) compared to sequential stimulation

(F120-S). Healthy conditions lead to lower focused thresholds and

less channel interaction between virtual channels; therefore, healthy

neural conditions could lead to less detriment in performance

when comparing sequential and simultaneous stimulation. The

performance was evaluated using the Hochmair–Schulz–Moser

(HSM) sentence test (Hochmair-Desoyer et al., 1997) at a signal-

to-noise ratio (SNR) where participants roughly understood 50%

of the words with F120-S. The results showed no correlation

between any measure intended to estimate the neural health

and difference in performance, arguably, because of the small

number of individuals measured. On the contrary, computational

models that simulate the electrode–nerve interface in CI users can

assess the relation between neural health and performance. These

computational models can isolate the parameter of study to remove

the inter-subject variability, i.e., nerve count, nerve degeneration,

electrode position, or insertion depth.

Computational models of the electrode–nerve interface for CIs

have been proposed at different levels of complexity. Fredelake

andHohmann (2012) presented a one-dimensional interfacemodel

where the ANFs are equally distributed along a cochlear axis with

the electrode array positioned in the center of this ANF population

with equidistant electrodes. The spatial spread of stimulation was

calculated depending on the distance between electrodes and ANFs

with an exponential decay function. Neural health conditions with

this model were assessed by changing the ANF density while

maintaining the total neural activity constant. Lower ANF density

requires higher current levels; therefore, the excitation from a single

electrode reaches further ANFs in the cochlear axis causing channel

interaction and spectral smearing. However, this electrode–nerve

interface is very limited when representing physical aspects that

occur in real implantation. From clinical imaging data, a patient-

specific three-dimensional model of the implanted cochlea can

be constructed (Rattay et al., 2001; Stadler and Leijon, 2009;

Kalkman et al., 2014; Malherbe et al., 2016; Nogueira et al., 2016;

Heshmat et al., 2020, 2021; Croner et al., 2022). These models

fit a population of ANFs (type 1 spiral ganglion neurons) that

extend from the organ of Corti to the central axons. Also, it is

possible to control the positioning of the electrode array inside

the scala tympani. The voltage spread produced by the electric

stimulation from the electrode array can be calculated using a

homogeneous model of the extracellular medium (Rattay et al.,

2001; Litvak et al., 2007a; Nogueira et al., 2016), or using a finite

element method (FEM) to account for the different electrical

properties of all structures between the stimulating electrode and

the ANF population (Nogueira et al., 2016). Such an electrode–

nerve interface can be coupled with an ANF model capable of

simulating action potentials (also called spikes) from the electrical

stimulation (Ashida and Nogueira, 2018).

Regarding the ANF models, there are two different approaches.

The “physiological” approach aims to simulate processes on
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a microscopic level. An example is the multi-compartment

Hodgkin–Huxley model (Rattay, 1999; Rattay et al., 2001; Smit

et al., 2008) that offers a very precise electrical behavior of the ANF

segments when transmitting the action potentials throughout the

peripheral axon, the soma, and the central axon. The drawback

of this approach is the high demand for computational resources.

The “phenomenological” approach tries to reproduce the effective

outcome without detailed simulation of the involved intermediate

processes. The spike generation algorithm does not consider

how the spike travels through the nervous system, hence there

is no geometric information involved. Some models depend

completely on a probabilistic function (Bruce et al., 1999), while

others are based on a leaky integrate-and-fire electrical circuit

where the membrane voltage is calculated for every time step,

and when it reaches a threshold, the ANF produces an action

potential (Hamacher, 2004; Joshi et al., 2017). The membrane

voltage depends on many other parameters like feedback currents,

refractory periods, and membrane noise to introduce stochasticity.

These parameters can be adjusted to fit data measured in humans

or animal models to account for physiological aspects. The output

of an ANF model is the “spike train”, which consists of a binary

array indicating the time frames where an action potential (spike)

is produced. With a population of ANFs, it is possible to integrate

the spike trains, in time and cochlear place, to obtain features that

are representations of sound at higher levels in the auditory system.

Integration allows to reduce the amount of data while preserving

the information that reaches, for example, a speech recognition

algorithm (Fredelake and Hohmann, 2012; Jürgens et al., 2018).

The simulation framework for auditory discrimination

experiments (FADE) (Schädler et al., 2016) is a computational tool

capable of performing speech recognition tasks and psychoacoustic

experiments simulating human performance. Originally, FADE

was used to simulate the performance of NH and hearing aided

people (Kollmeier et al., 2016; Schädler et al., 2018). Then, a CI

sound coding strategy and a CI auditory model were incorporated

into FADE to perform simulations of speech reception thresholds

(SRTs) using data from different CI users (Jürgens et al., 2018).

The SRT is defined as the signal-to-noise ratio (SNR) where 50%

of the words in a sentence are correctly identified (Wagener et al.,

1999) and it is a direct indicator of the CI user performance in

speech understanding. However, Jürgens et al. (2018) used the

same peripheral auditory model as Fredelake and Hohmann

(2012), which is a simplified one-dimensional representation of the

electrode–nerve interface. The incorporation of a more complex

peripheral auditory model with a three-dimensional representation

of the electrode–nerve interface should turn FADE into a powerful

framework to assess studies related to neural health conditions in

CI users. It can also be useful to assess the benefits of novel sound

coding strategies. Objective instrumental measures commonly

used for this purpose rely on vocoders to simulate the degraded

sound delivered by the CI (Chen and Loizou, 2011; Santos et al.,

2013; El Boghdady et al., 2016), not accounting for physiological

aspects of the implantation.

Performance with a CI may be also predicted using simpler

behavioral measurements than the SRT. The spectral modulation

threshold (SMT) is defined as the ripple depth in dBs at which

79.4% of spectral rippled noise is differentiated from flat noise. SMT

has been used alongside speech recognition experiments because

it is a good indicator of how well the spectral cues in speech

signals were perceived (Litvak et al., 2007b; Langner et al., 2017).

It was used by Langner et al. (2017) as an indicator of how these

spectral cues are affected by the channel interaction occurring

in simultaneous stimulation (F120-P and F120-T), compared

to sequential stimulation (F120-S). Their results showed similar

performance between F120-S and F120-P but a clear lowering of

performance with F120-T.

In this study, a computational model that simulates the

performance of real CI users in SRT and SMT experiments is

presented. The goal is to show the effects of parallel stimulation

and neural degeneration in CI outcome performance. This model

was tested with the three sound coding strategies used by Langner

et al. (2021) (F120-S, F120-P and F120-T), and the hypothesis

that channel interaction affects individuals with poorer neural

health conditions to a larger extent is assessed. In the next section,

the different parts composing this computational model and how

the SRT and SMT experiments were implemented with FADE

are described. A further section presents the results obtained,

and the last section contains the discussion and conclusions of

this study.

2. Materials and methods

2.1. The computational model

The proposed computational model consists of (i) a “front-end”

containing the CI sound coding strategy, the peripheral auditory

model with a three-dimensional electrode–nerve interface, and

a feature extraction algorithm; (ii) a “back-end” with a hidden

Markov model (HMM) already incorporated in the framework

FADE.

2.1.1. Front-end
2.1.1.1. Cochlear implant sound coding strategy

The software BEPS+ from Advanced Bionics was used to create

the pulse tables for the F120-S, F120-P, and F120-T sound coding

strategies. The pulse tables are defined as the sequence of electrical

pulses to create one cycle of stimulation. Figure 1 shows partial

pulse tables corresponding to these strategies. A pulse consists of

a cathodic-leading biphasic pulse. The electrodes are enumerated

from the most apical to the most basal and each virtual channel

composed of two simultaneously stimulated electrodes are depicted

with a color code. The pulse phase duration was set to 18µs and the

pulse rate across virtual channels was kept constant at 1,852 pps by

adding a gap between subsequent pairs, or triplets, of stimulating

virtual channels for F120-P and F120-T, respectively.

The HiRes implantable cochlear stimulator (ICS) from

Advanced Bionics was used to transform audio signals into

electrodograms. The audio signal was calibrated to−49 dB full scale

[dBFS], corresponding with an audio signal at 65 dB sound pressure

level [dBSPL] captured by the microphone of the CI device. At this

value, the signal level was close to the knee point of the adaptive

gain control of the CI sound processor.
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FIGURE 1

Pulse tables for the sequential, paired, and triplet stimulation versions of the HiRes Fidelity120 sound coding strategy. Horizontal axis is the temporal

axis. Electrodes are enumerated from e1 (most apical) to e16 (most basal). The virtual channels composed of two simultaneously stimulated

electrodes are enumerated from channel 1 (Ch 1; stimulation with e1 and e2) to channel 15 (Ch 15; stimulation with e15 and e16). (A) Sequential

stimulation, where the virtual channels are activated one after another. (B) Paired stimulation, where two virtual channels are activated at the same

time followed by a zero-phase gap with an equivalent duration of one biphasic pulse. (C) Triplet stimulation, where three virtual channels are

activated at the same time followed by a zero-phase gap with an equivalent duration of two biphasic pulses.

Biphasic pulses of the electrodograms were resampled to 1MHz

to guarantee equal anodic and cathodic phases. This sample

rate was also needed in the implementation of the peripheral

auditory model.

2.1.1.2. Peripheral auditory model

Figure 2 shows the composition of the proposed peripheral

auditory model. The electrodograms obtained from the sound

coding strategy were transformed to obtain the voltage spread

based on a three-dimensional electrode–nerve interface model

embedded in a homogeneous medium. The amount of stimulation

at every ANF was obtained from this voltage spread and the

times when action potentials are elicited in every ANF (spike

trains) were simulated with an active nerve fiber model. The spike

activity is defined as the collection of spike trains produced in an

ANF population.

The electrode–nerve interface used in the proposed model was

based on the cochlea model presented in Nogueira et al. (2016).

Cochlear geometry, electrode location, and position of the ANF

population were taken from a generic version of their model. The

number of ANFs was increased from 7,000 to 9,001 and distributed

along 900◦ of insertion angle from base to apex (two turns and a

half) with a separation of 0.1◦. The ANFs were indexed in order

from the base of the cochlea (high frequencies) to the apex of the

cochlea (low frequencies). Another adjustment was done to the

electrode array. Nogueira et al. (2016) modeled an electrode array

of 22 electrodes; therefore, the electrodes 21, 19, 17, 15, 13, and

11 were removed to obtain the 16 electrodes present in advanced

bionics CIs. The resulting electrode–nerve interface is shown in

Figure 3.

The morphology of the ANFs was modeled after the myelinated

fibers presented in Ashida and Nogueira (2018), which is a

simplified representation consisting of segments with a constant

internodal length (Li) equal to 200 µm that extends from the

location of the peripheral terminal toward the cochlear nerve.

In this morphological model, there is no differentiation between

the peripheral axon, central axon, or the soma. As in Ashida

and Nogueira (2018), the electric stimulation in the myelinated

model was calculated at the nodes that join together two adjacent

segments. The voltage produced by the stimulation current In
coming out of the electrode n was calculated for every node a of

every fiber f as shown in Equation (1).

Unfa =
ρextIn

4πdnfa
. (1)

The extracellular resistivity of the homogeneous medium (ρext)

was set to 3.0 �m as in Ashida and Nogueira (2018). The variable

dnfa is the distance between the electrode n and the node a. This

approach results in a voltage spread inversely proportional to the

distance dnfa (Litvak et al., 2007a; Nogueira et al., 2016).

The activation function has been proposed by Rattay (1999) to

approximate the amount of functional electrical stimulation over

an ANF. In this model, it was calculated as shown in Equation (2).

The activation function in a node a depends on its external voltage

(Unfa ), and the external voltage on its adjacent nodes (a-1 toward

the periphery and a+1 toward the central neural system). The axon

internal resistance (Ri) was obtained as “Ri = 4Lir/πD
2”. The

axon diameter (D) was set to 2.0 µm, and the axial resistivity (r)

to 1.0 �m, as mentioned by Ashida and Nogueira (2018). Notice

that the activation function in this study has units in Amperes [A]
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FIGURE 2

Peripheral auditory model for cochlear implants consisting of a population of auditory nerve fibers and an electrode array. The input is the

electrodogram generated by the cochlear implant sound coding strategy, and the output is the spike activity produced by the auditory nerve fiber

population.

instead of volts per second [V/s] as originally defined by Rattay

(1999). This is because the membrane capacitance is not included

in Equation (2); however, this membrane capacitance is taken into

account in a further stage of the model.

Anfa =
Unfa−1

− Unfa

Ri
+

Unfa+1
− Unfa

Ri
. (2)

To simulate the spikes generated by each ANF, the neuron

model of Joshi et al. (2017) was implemented. This is a

“phenomenological” model that represents the peripheral and

central axons as two independent adaptative integrate-and-fire

circuits that are coupled together by a logical “OR” gate (see Figure

1 in Joshi et al., 2017). This phenomenological model does not

convey any geometric information such as the distance between

the stimulating electrode and the ANF. Therefore, the induced

current I (called stimulation current in Joshi et al., 2017) was

adjusted according to the activation function obtained from the

electrode–nerve interface model as shown in Equation (3).

I = MC

N
∑

n=1

Anfamax
. (3)

Notice that the activation function in Equation (2) has a value

for every node in an ANF. To simplify the implementation, only

the node (amax) with the maximum absolute value of the activation

function was taken into account to compute the induced current

I. This is based on the fact that this is the node with the highest

probability to produce a spike. In addition, a modeling factor

(MC) that allowed to calibrate the peripheral auditory model was

added. It was adjusted to reproduce approximately the same spike

count reported by Joshi et al. (2017) given different stimulation

current levels.

The model of Joshi et al. (2017) assumes that the peripheral and

central circuits share the same induced current (I), but they respond

differently to the positive (anodic; I+) and negative (cathodic;

I−) phases of the biphasic pulses. Therefore, in this study, the

peripheral axon circuit is referred to as cathodic-excitatory while

the central axon circuit as anodic-excitatory. The circuit specific

induced current (IStim) was obtained with Equation (4), where the

inhibitory compression (β) was set to 0.75.

IStim =

{

−(I− + βI+) Cathodic-excitatory circuit.

I+ + βI− Anodic-excitatory circuit.
(4)

The membrane voltage (V) for both circuits is calculated with

Equation (5), where the membrane capacitance (C) takes different

values for the cathodic-excitatory (856.96 nF) and the anodic-

excitatory (1772.4 nF) circuit, h(V), is a passive filter dependent

on membrane voltage, ISub and ISupra are internal subthreshold and

suprathreshold adaptation currents, and INoise is a noise current

source with a Gaussian spectral shape that introduces stochastic

behavior into the spike trains. The passive filtering, the evolution

of the adaption currents and the noise have their own function and

can be found in the publication of Joshi et al. (2017). Whenever

the membrane voltage of the cathodic-excitatory or the anodic-

excitatory circuit reached a threshold, a spike was generated and

the ANF entered in an absolute refractory period (ARP) of 500 µs.

During the ARP, neither the cathodic- nor anodic-excitatory circuit

could produce a spike.

C
dV

dt
= h(V)− ISub − ISupra + INoise + IStim. (5)

Another important feature of the proposed peripheral auditory

model is the representation of different neural health conditions.

A degeneration index (αf ) was assigned to every ANF, which was

a natural number from 0 to 20, indicating how many segments

were removed from its modeled morphology. The segments were

always removed from the most peripheral part resembling the

dendritic degeneration that occurs when the inner hair cells in

the basilar membrane are damaged (Spoendlin and Schrott, 1988;

Frontiers inNeuroinformatics 05 frontiersin.org

https://doi.org/10.3389/fninf.2023.934472
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Alvarez et al. 10.3389/fninf.2023.934472

FIGURE 3

Electrode–nerve interface. It is a three-dimensional representation of the auditory nerve fibers (ANFs) (red) arranged in a spiral shape along the

basilar membrane (continuous black line) and centered in the spiral ganglion axis (dashed black line). The electrodes (blue) are inserted almost one

complete turn into the scala tympani. Some ANFs present a mild degeneration (dotted green).

Nadol, 1997). The nerve degeneration was limited to 20 segments

because, beyond this point, the amount of stimulation current

required to elicit a spike was excessive compared to real CI users.

Figure 4 shows how nerve degeneration was implemented in the

proposed electrode–nerve interface.

It is worth mentioning that removing segments may result

in situations where the degenerated part surpasses the physical

location of the soma, which in real spiral ganglion neurons would

be somewhere between the seventh and the twelfth segment.

Nevertheless, degeneration of the peripheral axon could also

be modeled as the loss of myelin sheets, or by reducing its

diameter (Heshmat et al., 2020, 2021; Croner et al., 2022). The

effects of this type of degeneration would be that nodes in the

central axon will be the ones that produce a spike. Therefore,

removing segments in our model was used to investigate excitation

at most central locations, rather than to represent the real

physical degeneration.

Because it is unknown how the current flows in the most

peripheral nodes after degeneration, it was decided to discard

them from the activation function calculation. In this regard,

Rattay (1999) proposed to remove the first term in Equation (2);

nevertheless, in degenerated ANFs, following this proposal could

result in a rise of the activation function despite the worst neural

health condition and this effect was undesired in our model.

2.1.1.3. Internal representation as features

The feature extraction algorithm was based on the internal

representation (IR) presented by Fredelake and Hohmann (2012),

which accounts for more central processes in the auditory pathway.

The IR consists of a spatial and a temporal integration of the spike

activity produced by the ANF population. The first step was to

downsample the spike activity to a sample rate of 10 kHz.

To perform the spatial integration, the ANFs were grouped

resembling the auditory filters described in Moore (2003). It is
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FIGURE 4

Electrode–nerve interface geometrical model with auditory fibers degenerated (dotted green). Mean degeneration (αf ) equal to 20 segments.

mentioned that a maximum of 39 independent auditory filters can

be formed at the same time to code sound in NH people, but it

is also mentioned that the effective number of channels for CI

users could be reduced depending on the number of electrodes

implanted. Therefore, in the computational model, the number of

auditory filters used was limited between 16 (number of electrodes)

and 39. Lengths of the auditory filters ranged between 1.1 and

2.6 mm in the 42 mm basilar membrane of the modeled cochlea.

To obtain the number and distribution of these auditory filters

along the basilar membrane, adjacent ANFs were grouped by their

most likely stimulating electrode (highest absolute value of the

activation function) to form auditory filters. If an auditory filter

was below the minimum size (1.1 mm), its fibers were merged with

the adjacent auditory filter toward the apex. In case an auditory

filter size exceeded the maximum value (2.6 mm), its most basal

ANFs were used to form a new auditory filter of maximum size

while the remaining ANFs were used to form a different auditory

filter. Once the auditory filters were formed, the spike trains of their

corresponding ANFs were added together to obtain the spike group

activity (Sg), where g was the auditory filter index.

The next step was to integrate this spike group activity across

time. For each group, the signal was low pass filtered as shown in

Equation (6), where Fg(k) is the filtered spike group activity, k is the

time frame index, fs is the sample frequency equal to 10.0 kHz, τLP
is the time constant of the filter set to 1 ms, and the operator “∗”
denotes a convolution.

Fg(k) = Sg(k) ∗ exp

(

−
(

k
√
2fsτLP

)2
)

. (6)

From this point, a forward masking effect is implemented. A

masker signal Zg was derived from the filtered spike group activity

using a recursive low pass filter (see Section 2.3 in Fredelake and

Hohmann, 2012). This masker signal increases exponentially with

onsets in the spike group activity and decreases exponentially with
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the offsets. The IR is finally themaximum value between themasker

signal and the filtered spike group activity. The whole forward

masking effect is taken from Fredelake and Hohmann (2012) and

it is not detailed in this study. A visual representation is found in

Figure 4 of Fredelake and Hohmann (2012).

To meet the requirements of the back-end, the IR was further

downsampled to a sample rate of 100 Hz using a moving average

low pass filter to diminish the effects of aliasing.

2.1.2. Back-end
The computational model used the framework FADE as the

back-end. As a predictor algorithm, FADE uses an HMM that

represents the target stimulus with an eight-state Markov chain

and a one-component Gaussian mixture model (GMM) to learn,

and subsequently predict, the features (each auditory filter in

the IR) (Schädler et al., 2016). FADE counts with different

“ready-to-use” experiment templates, processing algorithms, and

feature extraction algorithms that are intended to predict NH and

hearing aid performances (Kollmeier et al., 2016; Schädler et al.,

2016, 2018). Hence, two new experiment templates (described

in detail in Section 2.4) were developed to perform SRT and

SMT experiments. The tasks handled by these new templates are

as follows:

1. The generation of the stimulus audio files composing the

training and testing corpus.

2. The generation of the electrodograms from these audio files

using the respective CI sound coding strategy as the processing

algorithm.

3. The generation of the stimuli’ IRs using the proposed peripheral

auditory model as the feature extraction algorithm.

4. The training of the HMM with the IRs obtained from the

training corpus.

5. The predictions over the IRs of the testing corpus with the

trained HMM.

6. The evaluation of the performance of the HMM.

In the evaluation stage, FADE generated a file with the

score obtained at different training conditions (dBSNR in SRT

experiments and dBcontrast in SMT experiments). Scores were

represented as data points in a scatter plot and a non-linear

regression to a psychometric function was performed. This

psychometric function is defined in Equation (7), where pchance is

the lower horizontal asymptote of the function representing the

probability of getting a correct answer with random predictions,

pmax is the upper asymptote of the function representing the

predicted performance in ideal conditions, prange is the difference

between the upper and lower asymptotes, s is the slope, or growth

rate, at the inflection point of the psychometric function, and

xo is the offset of the inflection point in the x-axis (dBSNR
or dBcontrast). The regression was performed with the MATLAB

function “fitnlm”. The coefficient of determination R2 was obtained

in every experiment, which is a reference of how well the scattered

data was represented by the regressed psychometric function.

Ps(x) = pchance +
prange

1+ e−s(x−xo)
. (7)

2.2. Fitting and calibration

The fitting procedure in CI users consists of the adjustment

of the stimulation levels of each electrode in the array, or virtual

channels in the case of current steering strategies such as F120. Each

electrode, or virtual channel, stimulates at levels between threshold

(T) andmost comfortable loudness (MCL) that are unique for every

CI user. By default, the advanced bionics device sets T to 10% of

the MCL level resulting in a 20 dB dynamic range. Stimulation

levels with the advanced bionics device are given in clinical units

(CU), which are integer values from 1 to 471. The equivalent output

current (In) [µA] was obtained with Equation (8), where Tp is the

pulse duration in µs (18 µs in this study), Imax is the maximum

output current equal to 2,040 µA, and Tmax is the maximum pulse

duration equal to 229 µs (Advanced Bionics, 2020).

In =
CU

6000

ImaxTmax

Tp
. (8)

The process of fitting requires a closed feedback loop, where

the CI user indicates the loudness perceived to an audiologist. This

loop is virtually closed in the computational model by measuring

the spike activity produced by electric pulse trains at different levels

of stimulation (from 1 to 471 CU in steps of 30 CU) based on the

assumption that the loudness perception is closely related to the

neural activity produced by the ANFs (McKay and McDermott,

1998; McKay et al., 2001).

The fitting stimulus used was a cathodic-leading biphasic pulse

train with a pulse duration of 18 µs and a periodicity of 540 µs

(resulting approximately in 1,852 pps) was consistent with the

experimental parameters. The pulse train had a duration of 200 ms

with 10ms of leading and preceding silence. Because the periodicity

of this fitting stimulus is just above the ARP, it was expected that

ANFs close to the electrodes “fired” with every biphasic pulse of the

pulse train.

For each virtual channel, a group of 858 ANFs with the highest

absolute activation function was selected. This number corresponds

to the number of fibers found in approximately 4 mm section

of the modeled basilar membrane, although the selected ANFs

were not constrained to be adjacent to each other. The MCL was

defined as the CU value where each biphasic pulse elicited a spike

in the selected ANF group with a probability of 75%. A similar

assumption was used by Kalkman et al. (2014). T level was set to

the 10% of the MCL level.

The calibration of the peripheral auditory model refers to

the adjustment of the modeling factor (MC) shown in Equation

(3). This process was closely related to the fitting procedure

described earlier. It was selected a MC equal to 89.525 × 106,

which guaranteed that MCL levels did not exceed the maximum

of 250 cu in any neural health condition used in the experiments.

Stimulation above this limit would produce undesired out of

compliance stimulation.

2.3. Neural health conditions

In preliminary experiments (not shown in this study) it was

found that 9001 fibers introduced a considerable amount of
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redundant information, and also, in the majority of the ANFs the

node with the highest activation function for any electrode was

beyond the fifth node. Therefore, it was decided to use different

αf for every ANF, but defining a mean degeneration value with a

standard deviation of three nodes. This diminished the redundant

information and was a more realistic representation of how the

degeneration gradually occurs (Nadol, 1997).

The peripheral models with a mean ANF degeneration of 5, 10,

and 15 nodes were considered to have a “healthy” neural health

condition, a “moderate” loss, and a “severe” loss, respectively. Those

three cases were assessed in this study and are shown in Figure 5.

2.4. Experiments

A total of nine SMT experiments and nine SRT experiments

were performed using the three variants of the F120 sound coding

strategies (F120-S, F120-P, and F120-T) and three aforementioned

neural health conditions. Each neural health condition in the

peripheral auditory model can be considered as an “individual” in

experiments with real CI users.

2.4.1. Spectral modulation threshold experiments
The spectral modulation threshold (SMT) experiment was

defined by Litvak et al. (2007b). It consists of measuring the smallest

detectable spectral contrast in spectral rippled noise. The spectral

shape of spectral rippled noise is sinusoidal and it is generated using

Equation (9), where |F(fr)| is the magnitude at the frequency bin

fr , Ct is the spectral contrast in dB, fRPO is the ripple-per-octave,

and θ0 is the ripple phase in the spectrum. Notice that the signal is

hard-filtered at values below 350 Hz and above 5,600 Hz.

|F(fr)| =

{

10
Ct
2 sin (2π(log2(fr/350))fRPO+θ0)/20 350 < fr < 5600

0 otherwise
(9)

With human participants, the SMT is obtained with a three

intervals two alternative forced choice procedure consisting of two

reference intervals with no ripple (Ct equals to 0), and one target

interval with a defined Ct . The first interval is always a reference

noise, hence the participant has to indicate if the target interval is

presented in the second or third position. This adaptive procedure

is detailed by Litvak et al. (2007b), and has an equilibrium point of

79.4% correct answers. Because FADE uses a “training and testing”

approach, the adaptive procedure could not be implemented;

however, the equilibrium point is kept as the detection threshold.

The corpus was generated using Equation (9) with MATLAB.

The ripple phase (θ0) was randomly selected for every stimulus

signal. A ripple per octave (fRPO) equal to 0.5 was selected as in the

experiments from Litvak et al. (2007b) and Langner et al. (2017).

The training corpus consisted of 1,000 samples of the spectral

ripple noise with random integer values between 2 and 20 dB for

contrast depth, and 1,000 samples of reference noise (Ct equals to

0). The testing corpus consisted of 10 sets, each one with 50 samples

of reference noise and 50 samples of spectral ripple noise at a target

Ct of 2, 3, 4, 5, 7, 9, 11, 14, 17, and 20 dB, respectively. In total 1,000

samples were predicted at 10 different contrast levels.

The sampling frequency of every sample was 17.4 kHz and the

stimulus duration was limited to 0.4 s. In all cases, loudness roving

was implemented keeping a mean value of−49 dBFS, a roving peak

of 5 dBFS, and a roving resolution of 0.5 dBFS.

The spectral modulation detection performance was described

by the psychometric function in Equation (7), where pchance was set

to 50% because it was a binary decision. The SMT was the x value,

where Ps(x) was equal to 79.4%.

2.4.2. Speech reception threshold experiments
The SRT experiments were performed using the Oldenburg

sentence test (OLSA). OLSA consists of a matrix sentence test

of 50 words that belong to five different categories of 10 words

each: name, verb, number, adjective, and noun. The sentences

were constructed with one word from each category, following

the previously mentioned order, giving a total of 105 possible

combinations (Wagener et al., 1999). In a closed test procedure,

the participants have previous knowledge of the words that may

appear. Several sentences, mixed with noise at a specific SNR, are

presented to the subject and the subject is asked to repeat them.

A score based on the percentage of correctly recognized words is

obtained. This is repeated at different SNR conditions and then

a psychometric function is fitted to the obtained data points. The

SNR value where this psychometric function crosses the 50% mark

of correctly recognized words is the SRT result.

For SRT experiments, Schädler et al. (2016) and Jürgens et al.

(2018) used a subset of 120 OLSA sentences to generate the training

and testing corpus, but in this study, only a subset of 100 OLSA

sentences was used to reduce computational resources. In this

subset, each of the 50 words in the matrix appears exactly 10 times.

A random excerpt of the noise provided by OLSA was added to the

sentences at the required level to obtain the different SNRs, while

the speech was kept at−49 dBFS.

FADE uses a closed training/testing approach, meaning that the

same sentences used in the training are used in the prediction stage.

Therefore, the training corpus was generated with all the sentences

in the subset mixed with noise at seven different SNR levels, from

0 to 18 dB in steps of 3 dB, and without noise, giving a total of 80

unique instances for each word. The testing corpus was generated

with all the sentences mixed at 10 different SNR values, from−9 to

18 dB in steps of 3 dB, giving a total of 5,000 words to be predicted.

Regarding the psychometric function described in Equation (7),

pchance was set to 10% because it was a one word out of 10 decisions.

The SRT was the x value where Ps(x) was equal to 50%.

3. Results

3.1. Fitting

Figure 6 shows the MCL levels obtained for the computational

model with the healthy, moderate degeneration, and severe

degeneration condition. It also shows as a reference an ideal case

(no degeneration in the ANFs), and the worst case (20 degenerated

segments in the ANFs).

TheMCL level difference across the 15 virtual channels between

ideal and healthy conditions was only on average 2.87 CU.
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FIGURE 5

Three neural health condition representations. (A) Healthy conditions (mean degeneration of 5 nodes). (B) Moderate auditory nerve fiber (ANF)

degeneration (mean degeneration of 10 nodes). (C) Severe ANF degeneration (mean degeneration of 15 nodes).
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FIGURE 6

Most comfortable levels at di�erent neural health conditions of the auditory peripheral model. Ideal conditions is equivalent to no degeneration in

the auditory nerve fibers (ANFs). Healthy conditions, moderate degeneration, and severe degeneration are equivalent to a mean of 5, 10, and 15

segments degenerated in the ANFs, respectively. Total degeneration is equivalent to 20 segments degenerated in almost all the ANFs.

This difference increased with worse neural health conditions.

Between healthy conditions and moderate degeneration, the

difference was on average 23.47 CU, between moderate and

severe degeneration, the difference was 51.27 CU, and between

moderate and total degeneration, the difference was 80.53 CU.

With total degeneration in the ANFs, the MCL levels of the

four most basal electrodes (high frequencies) were above the

desired 250 CU.

3.2. Electrical interaction

Figure 7 shows the effects of electrical interaction with

simultaneous stimulation after fitting. For this figure, paired

biphasic pulses were generated for the 1st, 6th, 11th, and

14th virtual channels to obtain a peak of induced current I

across the ANF population of 0.8 mA. The black continuous

lines correspond to the induced current with simultaneous

stimulation, while the induced currents resulting from each channel

individually (sequential stimulation) are shown with different

colors. The induced current with simultaneous stimulation in

healthy conditions (Figures 7A, B), and with paired stimulation in

severe degeneration (Figure 7C), follows the peaks corresponding

to the induced current of each individual virtual channel. This

is not the case with triplet stimulation in severe degeneration

(Figure 7D), where the peaks corresponding to virtual channels 6

and 14 are almost merged together while the peak corresponding

to the virtual channel 1 is attenuated. Attenuation occurs

when different virtual channels have opposite activation function

signs; therefore, they cancel each other in Equation (3). Note
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FIGURE 7

E�ects of electrical interaction in simultaneous stimulation with F120-P and F120-T sound coding strategies. Panels (A, B) show electrical interaction

in healthy condition while panels (C, D) show electrical interaction in severe degeneration. For this example, the stimulation pulses in every virtual

channel were adjusted until they reached a peak of the induced current across the auditory nerve fibers of 0.8 mA. F120-P uses the virtual channels 6

(Ch 6) and 14 (Ch 14) simultaneously as shown in (A, C). F120-T uses the virtual channels 1 (Ch 1), 6 (Ch 6), and 11 (Ch 11) as shown in (B, D). The

induced current with simultaneous stimulation is shown with black continuous lines. The y-axis corresponds to the magnitude of the induced

current and the x-axis to the insertion angle of the electrode array from base (high frequencies) to apex (low frequencies). The figure was smoothed

to provide a better visualization.

that the induced current toward the apex of the cochlea

(insertion angles around 540◦ and 720◦) also increases with

worse neural health conditions as a consequence of higher

stimulation levels.

3.3. Spectral modulation threshold
experiments

Figure 8 shows the psychometric functions obtained

from the SMT experiments. The upper left box indicates

the corresponding SMT, the expected performance with

an infinite modulation depth (Ct), and the coefficient of

determination (R2). In general, the psychometric regression

obtained an R2 coefficient ranging from 0.97 to 0.99, which

means that the psychometric function represents a good fit for the

results obtained.

Nevertheless, Figure 9 shows that there was no significant

effect on the performance regarding the sound coding strategy

(Figure 9A) or the neural health condition (Figure 9B). As shown

in Figure 9B, a small trend toward poorer performance with worse

neural health conditions (8.57 dB for healthy conditions, 8.76 dB

for moderate degeneration, and 9.63 dB for severe degeneration)

is not significant compared to the clinical data obtained by

Litvak et al. (2007a) and Langner et al. (2017). Also, as shown

in Figure 9A, the expected effect of sound coding strategy on

performance is not obtained (e.g., with severe degeneration the

SMT is better using F120-P than using F120-S). The pmax seems

to not be affected either by the neural degeneration or sound

coding strategy since it varies from 91.2% (F120-T at healthy

conditions) and 93.1% (F120-P at moderate degeneration of

the ANFs).

Data from Litvak et al. (2007b) were collected from 25

CI users (Saoji et al., 2005) and are shown in Figure 9,

part A, with blue boxes. The CI users were using F120-

S (14 participants) and F120-P (11 participants) sound

coding strategies. The results from Langner et al. (2017),

shown in the same graph with green boxes, included 14
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FIGURE 8

Psychometric functions (red) obtained from the computational model results (crosses). The legend in every chart indicates the spectral modulation

threshold (SMT), which is the modulation depth where the psychometric function crosses the 79.4% target line (black). pmax is the expected

performance when the modulation depth tends to infinity. R2 is the coe�cient of determination between the results and the psychometric curve.

The shaded area shows 95% confidence interval. Charts are arranged in columns by neural health (left to right: healthy conditions, moderate

degeneration, and severe degeneration), and in rows by sound coding strategy (top to bottom: F120-S, F120-P, and F120-T).

experiments. Half of them showed the SMT comparison

between F120-S and F120-P sound coding strategies, while

the other half was between F120-S and F120-T. Their

performance showed a large variability but the trend is

to get worse with simultaneous stimulation, especially

with F120-T.

The performance of the computational model ranged from 8.48

to 10.34 dB, which can be considered as a “good” to “average”

performance for CI users, but it does not account for the variability.

The difference between the worst and the best performance of the

model was only 1.90 dB, while in real CI users, it can be more than

18 dB.
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Predicted spectral modulation threshold (SMT) obtained in the experiments compared with measurements obtained with real CI users from Litvak

et al. (2007a) and Langner et al. (2017). (A) Performance of the proposed computational model and the performance from literature grouped by

sound coding strategy. (B) Performance of the proposed computational model grouped by neural health conditions and the combined performance

from Litvak et al. (2007a) and Langner et al. (2017) as a comparison. Predicted values are shown with crosses.

3.4. Speech reception threshold
experiments

Figure 10 shows the psychometric functions obtained from

the SRT experiments. The upper left box in every chart

indicates the corresponding SRT, the expected performance “in

quiet” with pmax, and the coefficient of determination (R2)

obtained with the regression. In general, the psychometric

function represented quite well the data resulted from the

experiments, obtaining an R2 coefficient always equal or greater

than 0.99.

The effect of neural health is visible in the overall performance,

affecting not only the SRT, but also the predicted performance

in quiet. Figure 11 shows the SRT grouped by sound coding

strategy (Figure 11A) and neural health condition (Figure 11B). In

general, worse neural health conditions led to poorer performance

(higher SRTs). The differences in SRT between healthy and severe

degeneration conditions for F120-S, F120-P, and F120-T were 1.53,

1.63, and 2.77 dBSNR, respectively. This indicates that simultaneous

stimulation with F120-T was more sensitive to the effects of neural

health degeneration than the F120-P.

On the contrary, the sound coding strategy that stimulated with

two virtual channels simultaneously (F120-P) showed better overall

performance, as shown in Figure 11, part A. With better neural

health conditions, F120-T obtained better performance than F120-

S, but with severe degeneration, the performance with F120-T felt

below F120-S performance.

In addition, Figure 11 shows the results obtained by

Jürgens et al. (2018). They measured the SRT in a group

of 14 CI users using the advanced combinational encoder

(ACE) sound coding strategy, which does not use current

steering but it is comparable to F120-S because it uses

sequential stimulation of biphasic pulses. In addition, they

used a computational model to predict the performance

of the CI users based on their individualized electrical

field spread. Their measured SRTs ranged between −0.1

and 6.2 dBSNR. In contrast, the performance of their

computational model ranged between 4.67 and 7.56 dBSNR,

which is considered a poor performance according to

Jürgens et al. (2018).

4. Discussion

In this study, a novel computational model to simulate the

performance of CI users in psychoacoustic experiments was

proposed. The proposed model consists of two main parts:

(i) a front-end that includes a peripheral auditory model; (ii)

a back-end based on the framework FADE. The peripheral

auditory model combined a three-dimensional representation

of the electrode-nerve interface taken from Nogueira et al.

(2016), with a population of “phenomenologically” modeled

ANFs taken from Joshi et al. (2017). This combination

allowed to overcome the geometric limitations of the
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FIGURE 10

Psychometric functions (red) obtained from the computational model results (crosses). The legend in every chart indicates the speech reception

threshold (SRT), which is the signal-to-noise ratio (SNR) where the psychometric function crosses the 50% target line (black). pmax is the expected

performance in quiet. R2 is the coe�cient of determination between the results and the psychometric curve. The shaded area shows 95% confidence

interval. Charts are arranged in columns by neural health (left to right: healthy conditions, moderate degeneration, and severe degeneration), and in

rows by sound coding strategy (top to bottom: F120-S, F120-P, and F120-T).

phenomenological model by making the induced current

dependent on the activation function, which was obtained using

the “morphological” model of Ashida and Nogueira (2018).

In that sense, the proposed peripheral auditory model takes

advantage of the benefits of both “phenomenological” and

“physiological” approaches.

This study assessed different neural health conditions by

gradually removing segments of the ANFs from the periphery

toward the spiral ganglion, which is an approximation to the

real physiological degeneration (Nadol, 1988; Spoendlin and

Schrott, 1988; Nogueira and Ashida, 2018). The activation

function decreases and widens with worse neural health
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FIGURE 11

Predicted speech reception threshold (SRT) obtained in the experiments. (A) Performance of the proposed computational grouped by sound coding

strategy. (B) Performance of the computational model grouped by neural health conditions. Predicted values are shown with crosses. Results from

Jürgens et al. (2018) are shown as a reference in both panels as a reference. The red boxes show their predicted SRTs using an individualized model

using the electrical field spread of real CI users and the yellow boxes show their measured SRTs. The symbol “*” denotes a statistical significance with

a p-value less than 0.05 between healthy condition and severe degeneration.

conditions having an impact in the MCL levels, as shown in

Figure 6. Worst neural health conditions resulted in higher MCL

levels, which is consistent with the findings of Langner et al.

(2021).

Predictions of the proposed computational model were

obtained for two psychoacoustic experiments: SRT and SMT.

The results of the SRT experiment show that worse neural

health conditions result in poorer speech reception performance.

Although this degeneration affected more the performance with

simultaneous stimulation sound coding strategies, especially

with F120-T, the detriment compared to sequential stimulation

(F120-S) was rather small and not as relevant, as shown

by Langner et al. (2017, 2021). A more detailed discussion

regarding SMT and SRT experiments is presented in the following

subsections.

4.1. Spectral modulation threshold
experiments

As shown in Figure 9, the computational model performed

similarly in SMT despite having different neural health conditions

or sound coding strategies. This is because IR is a highly

correlated feature along its dimensions (they are not orthogonal)

and they cannot convey any relative spectral information

that can be used by the HMM to differentiate between

spectral rippled noise and flat noise, especially when the

phase θ0 (see Equation 9) of the spectral rippled noise is

randomized.

When the phase of the spectral ripple noise is randomized,

the spectral peaks and valleys are always located in different

auditory filters of the IR. With every realization of spectral ripple

noise, the mean value of the IR gets closer to the mean value

of the flat noise in every auditory filter. Only the standard

deviation of the IR is always greater in spectral ripple noise

than in flat noise. Therefore, whenever the neural activity in any

auditory filter was greater, or lower, than the activity expected

from the flat noise, the HMM classified it as spectral rippled

noise. This may also explain why it consistently predicts an

SMT around 9 dB since the loudness roving used to generate

the training and testing corpus had a dynamic range of 10

dB.

Prediction algorithms based on HMMs work better with

decorrelated features such as Mel frequency cepstral coefficients

(MFCCs), Garbor filter bank (GFBs), or separable Garbor filter

bank (SGFB) that are obtained from the spectral representation of

the signal as shown by Kollmeier et al. (2016) and Schädler et al.

(2016). On the contrary, IR is somehow equivalent to the bare

spectrum of the audio signal, and it is highly correlation to work

with HMMs.
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4.2. Speech reception threshold
experiments

Speech understanding relies on two principal aspects: temporal

cues and spectral cues (Xu et al., 2005). Depending on the

frequency, the temporal cues can be classified into envelopes

(2–50 Hz), periodicity (50–500 Hz), and fine structure (500–

10,000 Hz), the envelopes being specially important for speech

understanding (Rosen, 1992). In the proposed computational

model, the HMM was able to capture these envelopes along the

auditory filters using Markov chains of eight states (Schädler

et al., 2016); however, periodicity and fine structure is lost. The

spectral cues, commonly related to the formants produced by

the pronunciation of vowels and some consonants, were not

properly captured by the HMM because of the before mentioned

limitations of the IR when representing spectral shapes. Thus,

words with relatively low SNR resulted in an IR much more

similar to a word with a flat spectral shape. This may be the

reason why, compared to real CI users, the performance of the

computational model was worse than expected (higher SRTs) and

did not account for the expected variability of around 6 dB as

measured by Jürgens et al. (2018). Figure 11 also shows that this

problem can be traced back to their computational model. Jürgens

et al. (2018) also used the combination of IR as a feature and FADE

as the back-end with an individualized electrical field spread that

accounted for differences in the electrode–nerve interface between

participants. However, the overall simulated performance resulted

in higher SRTs than the one measured in real CI users as in

our simulations.

In addition, there is a discrepancy between the effects of

channel interaction in simultaneous stimulation (F120-P and F120-

T) compared to sequential stimulation (F120-S). According to

Langner et al. (2017, 2021), the performance with F120-S is

similar to the performance with F120-P, but better than the

performance with F120-T. This is not the case in the results

shown in Figure 11, part A. This may be caused by the sharp

decay of the voltage spread that is inversely proportional to the

distance dnfa (see Equation 1). A sharp decay diminishes the effect

of electrical interaction between virtual channels in simultaneous

stimulation; therefore, the performance may be more affected by

the refractory period of ANFs. Notice in Figure 1 that with F120-

S the electrical stimulation is continuous, while with F120-P and

F120-T, there are stimulation gaps that may help ANFs to recover

from refractoriness.

However, Figure 7 shows that the presented computational

model is capable of reproducing the effects of electrical

interaction between virtual channels. This effect is larger

with the F120-T sound coding strategy because the virtual

channels are closer together. Electrical interaction obtained

with F120-P is much lower compared to F120-T. This may

explain why in real CI users the performance with F120-P

is similar to the performance with F120-S, but considerably

worse with F120-T (Langner et al., 2017, 2020b). Figures 7,

11, part B, also support the hypothesis assessed in this

study since the performance with triplet stimulation was

significantly affected by severe degeneration compared to

healthy conditions.

4.3. Future improvements

4.3.1. Feature extraction and back-end
As discussed earlier, the IR proposed by Fredelake and

Hohmann (2012) may not be the best set of features to use

with the HMM already implemented in FADE because IR is

highly correlated within its own dimensions. Therefore, it does

not carry any spectral shape information that indicates the relative

neural activity between the auditory filters. A solution could be

to incorporate other decorrelated features that have been shown

to improve the performance of automatic speech recognition

(ASR) algorithms and that also worked with neural activity

(Holmberg et al., 2005, 2007; Nogueira et al., 2007). But, although

these algorithms may provide benefits in performance for the

computational model, these may not represent any particular

physiological aspect of the auditory system, which was the idea

behind the proposed computational model.

The central processes that occur in the auditory pathway

beyond the peripheral auditory system are not completely

understood. The IR is a simple model that makes many

assumptions about how spikes are processed centrally to interpret

sounds. However, the IR was necessary to accommodate the neural

activity to the temporal resolution and number of features adequate

for an HMM back-end. Another way to approach this problem

would be to substitute FADE as the back-end for an algorithm that

can perform predictions directly from the spike activity coming

from the peripheral auditory model (Alvarez and Nogueira, 2022),

but this is a challenging task due to the amount of ANFs modeled

and the sample rate of the spike activity. Artificial neural networks

(ANNs) seem to suit well with this approach (Kell et al., 2018;

Santana et al., 2018; Wang et al., 2018) since ANNs can manage

a large amount of data and there is no intrinsic assumption of

any central auditory process. Neural networks could function as a

“black box” while the detailedmodeling is focused on the peripheral

auditory system (Brochier et al., 2022).

4.3.2. Peripheral auditory model
Although the proposed peripheral auditory model can account

for many physiological aspects, there is room for improvement.

The voltage spread obtained in this study presents a decay

inversely proportional to the distance. This results in a sharper

decay compared to the exponential decay measured in laboratories

with saline solutions (O’leary et al., 1985; Kral et al., 1998).

The sharper the decay, the less electrical interaction between

channels in simultaneous stimulation; therefore, the model is less

sensitive to the differences between the F120 variants studied.

Nevertheless, a more realistic voltage spread could be obtained

by using finite element method (FEM) or a boundary element

method (BEM) in the three-dimensional electrode–nerve instead

of assuming a homogeneous medium (Kalkman et al., 2014, 2022;

Nogueira et al., 2016; Croner et al., 2022). This improvement of the

peripheral auditory model would take into account the electrical

characteristics of the bones, tissue, and other media present in

the cochlea.

Regarding the ANF model, the morphological model used

in this study considers the ANF as a cable with homogeneously
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distributed segments that do not differentiate between peripheral

axon, central axon, or the soma. This approach worked because

it allowed us to adjust the induced current I for the physiological

model of Joshi et al. (2017) depending on different aspects such as

electrode and nerve position, the direction of the ANF with respect

to the electrode, and the effects of degeneration. A more realistic

multi-compartment cable model that represents its morphology

and physiology more accurately (Rattay et al., 2013; Bachmaier

et al., 2019; Kalkman et al., 2022) could be implemented; however,

one must be careful when coupling it with the model of Joshi et al.

(2017). If the morphology already takes into account differences

between the axons and the soma, the original parameters used in

Equation (5) are not validated anymore.

Another improvement could be a new degeneration method

that takes into account, not only the progressive inhibition of

nodes, but the diameter reduction in the axons (Heshmat et al.,

2020; Croner et al., 2022). In the current degeneration method,

the number of degenerated nodes is not equal across the ANF

population, instead, the number of nodes degenerated in each ANF

is governed by a mean value and a standard deviation that is

arbitrarily set to three nodes. This is an assumption made since

there is no available information on how it is in real implanted

cochleas. In fact, it is probable that the fibers degenerate in

different patterns, for example, more degeneration in the basal

turn than in the apical turns. Therefore, in further studies related

to degeneration, different patterns should be taken into account

including dead regions in the cochlea, which are relevant in

electrical stimulation (Moore et al., 2010).

5. Conclusion

The computational model presented in this study was capable

of executing simulations of SRT and SMT experiments. It consisted

of a peripheral auditory model with a three-dimensional electrode–

nerve interface that allows to represent different neural health

conditions by applying a systematic degeneration to the modeled

ANFs. The neural health condition affected the fitting procedure

and speech reception in the expected manner, augmenting the

current needed to reach MCLs and obtaining worst (higher) SRTs,

respectively.

The computational model could not reproduce quantitatively

the expected results in SRT experiments from real CI users where

simultaneous stimulation sound coding strategies (F120-P and

F120-T) consistently performed worse than sequential stimulation

sound coding strategies (F120-S). Nevertheless, the results showed

that the qualitative performance detriment due to neural health

conditions with simultaneous stimulation (especially with F120-T)

was higher than with sequential stimulation.

SMT experiments with the computational model were

inconclusive since the results showed no relevant impact neither

from neural health conditions nor channel interaction caused

by the simultaneous stimulation. This is arguably caused by the

selected IR resulting in features that did not convey spectral shape

information, together with an HMM-based recognizer.

Future developments of the computational model could offer

a reliable tool to assess the effects of different sound coding

strategies and different neural health conditions in psychoacoustic

experiments without the need for testing in implanted volunteers,

especially, in the early development stages of new CI technologies.

The improvements should be focused on the physiological model

of the ANFs and the feature extraction from the neural activity.
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