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Background: Understanding neural connections facilitates the neuroscience and

cognitive behavioral research. There are many nerve fiber intersections in the

brain that need to be observed, and the size is between 30 and 50 nanometers.

Improving image resolution has become an important issue for mapping the neural

connections non-invasively. Generalized q-sampling imaging (GQI) was used to

reveal the fiber geometry of straight and crossing. In this work, we attempted to

achieve super-resolution with a deep learning method on diffusion weighted imaging

(DWI).

Materials and methods: A three-dimensional super-resolution convolutional neural

network (3D SRCNN) was utilized to achieve super-resolution on DWI. Then,

generalized fractional anisotropy (GFA), normalized quantitative anisotropy (NQA),

and the isotropic value of the orientation distribution function (ISO) mapping were

reconstructed using GQI with super-resolution DWI. We also reconstructed the

orientation distribution function (ODF) of brain fibers using GQI.

Results: With the proposed super-resolution method, the reconstructed DWI was

closer to the target image than the interpolation method. The peak signal-to-noise

ratio (PSNR) and structural similarity index measure (SSIM) were also significantly

improved. The diffusion index mapping reconstructed by GQI also had higher

performance. The ventricles and white matter regions were much clearer.

Conclusion: This super-resolution method can assist in postprocessing low-

resolution images. With SRCNN, high-resolution images can be effectively and

accurately generated. The method can clearly reconstruct the intersection structure

in the brain connectome and has the potential to accurately describe the fiber

geometry on a subvoxel scale.

KEYWORDS

super-resolution convolutional neural network (SRCNN), generalized q-sampling imaging
(GQI), peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), diffusion
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1. Introduction

1.1. Super-resolution image

Image quality depends on the resolution. High-resolution images
can help us work with high-precision requirements, but it is
difficult to obtain high-resolution images. In recent years, improving
image resolution has become an important issue in the computer
vision field. Among many resolution improving methods, image
super-resolution is well-known. Currently, two methods are often
used for image super-resolution: interpolation- and learning-based
methods. The interpolation method uses the information in a low-
resolution image to input values into new pixels during the super-
resolution process (Keys, 1981). Common interpolation methods
include neighboring, bilinear, and bicubic interpolation. By using this
method, the super-resolution process is simple and fast. However,
there is a disadvantage to using this method: it cannot reconstruct
the high-frequency contour signal in the image. It is easily distorted
in the high-resolution image. These problems can be solved by
using learning methods such as the example-based method. This
method obtains the mapping between the high-resolution image
and its label. Pioneers used machine learning algorithms to obtain
the mapping. Glasner et al. (2009) proposed a super-resolution
framework through small block analysis in interpolated results and
high-resolution images. Chang et al. (2004) proposed a method based
on K nearest neighbor embedding. Karl et al. (2006) predicted pixel
information through a support vector machine (SVM). Schulter et al.
(2015) implemented a super-resolution architecture with random
forest. They developed a judgment decision tree suitable for the
image super-resolution regression task. Although the example-based
method requires more time to obtain a higher peak signal-to-noise
ratio (PSNR) image, we can successfully complete some research with
precise needs.

1.2. Super-resolution in medical images

When the medical image is generated by the instrument, the
image often contains noise. There are also some artifacts and
other noise in MRIs. Poor-quality DWI affects the quality of other
mappings. It is impossible to reconstruct more accurate neural
connections. Trinh et al. (2014) noted that noise or blur in the image
often destroys the image contrast and affects diagnostic accuracy.
The super-resolution model is a commonly used medical image
reconstruction method. Using similar (same organization and type)
and high-quality medical images as training resources can help us
build accurate models between high-resolution and low-resolution
images. To accurately perform super-resolution, Dinh-Hoan Trinh
et al. designed an architecture with the first layer of the architecture
for training a noise removal model (Trinh et al., 2012b) and the
second layer for training a super-resolution model (Trinh et al.,
2012a). These research contributions to image processing help to
overcome the shortcomings of imaging hardware.

1.3. Super-resolution diffusion MRI

During the past 20 years, many pioneers have attempted to
track the brain connectome of animals (Esther, 2020). Understanding

neural connections helps scientists conduct cognitive behavioral
research. There are many nerve fiber intersections in the brain that
need to be observed, and the size is between 30 and 50 nanometers.
In the past, kissing and curvature situations in the brain connectome
could not be reconstructed due to insufficient image resolution.
Although diffusion spectrum imaging (DSI), q-ball imaging (QBI),
and generalized q-sampling imaging (GQI) models can solve these
problems, these methods are still limited by their image resolution.
Improving image resolution has become an important task. With
the progress of deep learning, obtaining high-resolution images
with a better signal-to-noise ratio has become easier. The dilemma
encountered in reconstructing the brain connectome has been
overcome, and scholars have been able to complete their research with
high precision requirements.

1.4. Convolutional neural network

Convolutional neural networks (CNNs) are widely used in
computer vision fields (LeCun et al., 1989) and have become popular
in image classification. In 2012, the deep learning network AlexNet
won the ImageNet competition championship with a top-5 error rate
of 15.4% (Cui et al., 2017) by overtaking SVM machine learning
technology. Deep learning gradually replaced SVM in the ILSVRC
competition. AlexNet is composed of convolution layers, which can
extract features from image data. There are some pooling layers and
rectified linear unit (ReLU) layers between the convolution layers.
During the convolution operation, image features are obtained.
Downsampling and emphasizing features are important processes.
The pooling layer can complete this operation. A reduction in the
number of parameters can reduce hardware usage and computing
time (Krizhevsky et al., 2012). The operation of the convolutional
layer involves linear transformation. When the excitation function is
not used, the neural network executes only linear transformation, and
the approximate ability of the network is limited. The use of ReLU can
improve the nonlinear characteristics of the convolutional network
(Nair and Hinton, 2010). The nonlinear function can represent the
nonlinear and complex arbitrary function mapping between the input
and output. With the above characteristics, CNNs can efficiently
process image data.

1.5. Super-resolution convolutional neural
network

Chao et al. proposed a super-resolution convolutional
neural network (SRCNN), a neural network composed of three
convolutional layers, to implement 2D image super-resolution
(Dong et al., 2016). They obtained mapping between high-resolution
images and low-resolution images through this structure. Pham
et al. (2017) extended the 2D SRCNN to a 3D architecture. They
achieved super-resolution on MRI T1 images. Although the number
of training parameters increased several times due to the expansion
from the 2D network to the 3D network, the resolution of the
in-plane and through-plane can be increased with a 3D model. The
process of 3D image super-resolution can be simplified. Compared
with the implantation method, higher PSNR and higher structural
similarity index measure (SSIM) images can be obtained. Lin et al.
(2021) adopted a deep neural network structure in super-resolution
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model training for diffusion MRI. Their method is suitable for images
with wide-range intensity. Chatterjee et al. (2021) adopted UNet
for training a super-resolution model and reconstructed the brain
connectome with DWI results.

In this work, we attempted to achieve super-resolution on
diffusion MRI images. We added a residual structure to the 3D
SRCNN. The extracted features and the interpolation results were
averaged. With image super-resolution technology, we were eager
to obtain images with the best performance index. The 3D SRCNN
algorithm has the potential to reduce the bias of resolving the fiber
geometry on a subvoxel scale.

2. Materials and methods

2.1. Participants and diffusion MRI data
acquisition

A total of 347 participants were recruited from the Chiayi
Chang Gung Hospital. Our study was approved by the Institutional
Review Board of the Chang Gung Memorial Hospital, Chiayi,
Taiwan. All participants were scanned by a 3 T MRI imaging system
(Verio, SIEMENS, Germany) at Chiayi Chang Gung Memorial
Hospital. For diffusion imaging, a single-shot, diffusion-weighted
spin echo-planar imaging sequence was performed. The image
acquisition parameters were as follows: repetition time (TR)/echo
time (TE) = 8943/115 msec; number of excitations = 1; field of
view (FOV) = 250 × 250 mm2; slice thickness = 4 mm; matrix
size = 128× 128; voxel size = 3.4× 3.4× 4 mm3; b-values = 0, 1,000,
1,500, and 2,000 s/mm2 in 193 total noncollinear directions. The total
acquisition time of each participant was approximately 30 min.

We selected 319 subjects’ images as training data and 28 subjects’
images as test data. The maximum common factor value of each
dimension in the original image was 1. During preprocessing, we
attempted to increase the image matrix size from 44 × 44 × 12 to
132× 132× 36 voxels.

2.2. Experimental design

In this work, we used DWI as training and testing data. The
ratio of training data to test data was approximately 11:1. Initially,
the high-resolution image was downsampled to a low-resolution
image at a ratio of 1/3. Then, the low-resolution image was restored
to resolution by the interpolated method at a ratio of 3. We
attempted to obtain the mapping between the interpolated result and
the high-resolution image. During the training process, the model
was continuously modified with the model optimizer according to
numerous pairs of interpolated results and super-resolution images.
The latest model that we obtained was suitable to test images for
super-resolution (Figure 1A).

2.3. Generalized q-sampling imaging (GQI)

Using DSI Studio, we reconstructed three GQI indices:
generalized fractional anisotropy (GFA), quantitative anisotropy
(QA), and normalized quantitative anisotropy (NQA) and the
isotropic value of the orientation distribution function (ISO) (Yeh

et al., 2010). GFA indicates the neural anisotropy measurement,
QA represents the number of anisotropic spins that diffuse along
fiber orientations, NQA is the normalized QA, and ISO is defined
as the background isotropic diffusion (Yeh et al., 2010). We also
restructured the orientation distribution function (ODF) of the
low-resolution (original) image, interpolated image, super-resolution
image, and high resolution (target image) using DSI Studio (Yeh et al.,
2010).

2.4. Three-dimensional SRCNN

In this work, we trained a super-resolution model with a three-
layer CNN (Figure 1B). The side lengths of the three convolutional
layers were 9, 3, and 5. The filter channels of the three convolutional
layers were 32, 16, and 1. The filter size and filter channel referred to
the design in the 2D SRCNN (Dong et al., 2016). The larger the size
of the second layer filter was, the longer the training time. However,
this design improved the image reconstruction performance. There is
a ReLU layer between each convolutional layer. The red line indicates
that the features extracted by the convolutional layer were averaged
with the interpolated image in the network.

2.5. Training parameter setting

In the training process, the model optimizer that we used was
AdaGrad (Mukkamala et al., 2017). During the training process,
the learning rate affects the reconstruction performance. AdaGrad
adjusts the learning rate adaptively according to the gradient
variance. If the previous gradient is small, then a faster learning rate
is used for model training. The learning rate is constrained if the
gradient is large in the later stage (Ward et al., 2019). This model
solves the problem of reconstruction between interpolated images
and high-resolution images. Therefore, we set the training batch size
to 1. This allows the model to be modified according to each pairing
in the training dataset. According to b-values, we divided all images
into three groups and trained three different models. We used the
corresponding model to reconstruct the test image with the same
b-values and avoided generalizing related problems.

2.6. Evaluation

Performance indices, including PSNR, SSIM, and cosine
similarity, were performed for evaluation. In the image
reconstruction process, some parameters are used to express
the degree of similarity between the reconstructed and
original images. The signal-to-noise ratio (SNR) represents
the ratio between the signal and noise. The PSNR is
defined by the mean square error (MSE) (Tanchenko,
2014). We quantify the noise by calculating the squared
deviation between the reconstructed and original images [1].

PSNR =
Imax
√
MSE

(1)

The structural similarity index (Wang et al., 2004) is composed
of three parameters: brightnessl(x, y), contrastc

(
x, y

)
, and structural

differences(x, y) (Wang et al., 2005). The degree of image similarity
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FIGURE 1

(A) Workflow to obtain a predicted image from a low-resolution image. When the super-resolution convolutional neural network (SRCNN) model was
trained, the training pairs (source image and target image) had the same resolution. Therefore, the low-resolution image was first restored to resolution
by the interpolated method (interpolated image), and the mapping between the interpolated result and the high-resolution image was obtained. The
model was then applied to the testing image to obtain the predicted image (red arrow). (B) Three-dimensional architecture consisting of convolutional
layers and pooling layers. In the red path, we used the interpolation result and feature mapping obtained by the convolutional layer to average. We used
this architecture to train the super-resolution model.

FIGURE 2

Loss functions of the b = 0 and 1,000, b = 1,500, and b = 2,000 models are presented as blue, green, and red curves, respectively. Since there is only one
image with b = 0 in each subject, we used both b = 0 and b = 1,000 images to train simultaneously and obtain a model.
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cannot be judged by a single view, so this indicator combines three
image characteristics. The structural similarity index is the product of
the three parameter values multiplied by a specific weight. The closer
the value is to 1, the higher the similarity between the two images
(Wang and Bovik, 2002).

SSIM(x, y) =
[
l(x, y)

]α
·
[
c(x, y)

]β
·
[
s(x, y)

]γ (2)

l
(
x, y

)
=

2µxµy + C1

µx2 + µy2 + C1

c
(
x, y

)
=

2σxσy + C2

σx2 + σy2 + C2

s
(
x, y

)
=

σxy + C3

σxσy + C3

C1 = (0.01 ·
(
2Bit − 1

)
)

2

C2 = (0.03 ·
(
2Bit − 1

)
)

2

C3 =
C2

2

Cosine similarity expresses the degree of similarity by the inner
product between two signals. The higher the similarity of the two
signals, the closer the index is to 1 (Impedovo et al., 2012).

The intensity histogram can express the distribution of pixel
values in an image. The horizontal axis of the histogram represents
the pixel value, and the vertical axis represents the frequency
of the value band.

With the wave pattern in the histogram, we can understand
the super-resolution image and the degree of similarity between the
target images. We used these indicators to judge image quality. This
supports naked-eye observation and allows the study to be completed
from an objective perspective.

3. Results

3.1. Loss function

When we trained the super-resolution model through DWI,
the model was continuously modified. In training, we recorded the
loss function every time we had already trained the data of one
subject. As shown in Figure 2, we recorded the loss functions of the
three models during training. The model was modified according
to the loss function. In this work, we set the mean square error
as a loss function. The rising and falling circumstances in the loss
function help us check the training dataset and optimize the training
parameters.

3.2. Original image, interpolated image,
and SRCNN image at different iterations

In Figure 3, we display the DWI image super-resolution results.
The histograms of the super-resolution images, low-resolution

images, interpolation results, and target images shown below are
compared. According to the multiplication of three indicators,
we selected the best number of iterations from the three models
to present reconstructed super-resolution results. Images with
different b-values are reconstructed with their best models. There
are three sections in the 3D images: axial, coronal, and sagittal
views.

3.3. Diffusion indices

We used DSI Studio to reconstruct three indices of GQI
(GFA, NQA, and ISO) with the DWI SRCNN result, which
produced the best model. In Figure 4, the results of the
low-resolution image, interpolated image, super-resolution
image, and target image are compared via three sections
of axial, coronal, and sagittal views. Below each group of
pictures, we used a histogram to judge the reconstruction
effect.

Figure 5 shows the ODF results of the low-resolution (original)
image, interpolated image, super-resolution image, and high-
resolution (target image). The super-resolution image provides more
detail than the low-resolution and interpolated images. Thus, ODF
has the potential to assess more complex fiber connections.

3.4. PSNR, SSIM, and cosine similarity

In Figure 6 and Supplementary Tables 1–4, we display the
performance index of DWI interpolated images and super-resolution
images reconstructed with the model for different numbers of
iterations. We input the test images into the model for prediction
every approximately 5,000 iterations. The PSNR, SSIM, and cosine
similarity indices of all test results were calculated (193 < angles per
subject > ∗28 < subjects ≥ 5,404).

The average, standard deviation, and maximum and minimum
values were recorded. Finally, we multiplied the values of the three
indicators. In the process, we normalized the PSNR to between 0 and
1, dividing all PSNR values by the best average value.

In Figure 7 and Table 1, we calculated the performance indicators
of all images. Each mapping contains 28 images (1 < image/per
subject > ∗28 < subjects ≥ 28). The performance indicators (PSNR,
SSIM, and cosine similarity indices) of GFA, NQA, and ISO mappings
were calculated and shown.

4. Discussion

4.1. Three-dimensional SRCNN

Converting the original 2D SRCNN model to 3D SRCNN can
help improve the through-plane resolution in MRIs. If the 2D
SRCNN is used to improve the through-plane resolution, then we
must first train the axial, sagittal, and coronal models of MRI and then
combine the test results predicted by the three models. This method
is more complicated. Although there are fewer training parameters
in the 2D model, the process of combining test results is more
complicated. Therefore, we selected a 3D model for training, which
simplifies the testing process.
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FIGURE 3

Super-resolution result of diffusion-weighted imaging (DWI) including
(A) null; (B) b = 1,000 s/mm2, direction = (0.26728, –0.96286,
0.0382407); (C) b = 1,500 s/mm2, direction = (0.267599, –0.962729,
0.0392831); and (D) b = 2,000 s/mm2, direction = (0.505928,
–0.834259, –0.219201).

4.2. Test image with different resolutions

This model can adapt to images with different resolutions. In
the proposed deep learning structure, the training pair has the same
resolution, and the model is composed of convolution filters with
different values. Thus, when the model adapts images with different
resolutions, convolution layers can still be used for reconstruction.
We attempted to improve the DWI resolution from a voxel size of
3.3 × 3.3 × 3.9 mm3 to 1.1 × 1.1 × 1.3 mm3 with conventional
bicubic interpolation and SRCNN methods. Three SRCNN models
trained by the data with different b-values were used, and DWIs
with different b-values were reconstructed. Compared to the bicubic
method, the quality of high-resolution images with the SRCNN
model significantly improved visually, as shown in Figure 8.

4.3. Experimental design

We initially chose a learning rate of 0.005, but a problem was
found: the performance index began to decline at a lower number

FIGURE 4

Super-resolution results of (A) generalized fractional anisotropy (GFA),
(B) normalized quantitative anisotropy (NQA), and (C) isotropic value
of the orientation distribution function (ISO).

of iterations. This phenomenon means that the model will bounce
on both sides of the best-fit point. Therefore, we reduced the initial
learning rate to 0.0005, which also allowed us to judge the number
of iterations where the best model is located through the curve of
the performance index. The training data in our model exceeded
20,000 images, and the batch size was set to 1, resulting in more
than 20,000 iterations in an epoch. Therefore, we used fewer training
epochs for model training.

The obtained training data contain four types of b-value images
of a total of 193 types of noncollinear directions. The image types
contained in the training data are different. If a model is obtained
with all training data, then the model must be adjusted according
to each type of image. Finally, the model may cause distortion in
the super-resolution result. Considering the above problems, we
grouped the training data according to the b value and obtained the
models separately.

4.4. Intensity normalization

Although the tissue contour super-resolution result is similar to
that in the target image, the minimum value of the value range in
the image will be different from that in the target image. This result
affects our subsequent mapping reconstruction. Therefore, after each
resolution adjustment process in the code, we performed pixel value
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FIGURE 5

Orientation distribution function (ODF) result of (A) low resolution (original), (B) interpolation, (C) super-resolution convolutional neural network
(SRCNN), and (D) high resolution (target). (E) Selected ROI in the whole brain.

FIGURE 6

(A) Peak signal-to-noise ratio (PSNR), (B) structural similarity index measure (SSIM), (C) cosine similarity, and (D) product of the three indices. This picture
shows super-resolution effect in the diffusion weighted imaging (DWI) test images. Because the peaks of the indices are different, we could not choose
the best model. Therefore, we added the product of the three indicators as a standard for selection.

normalization to ensure that the resulting image intensity range was
the same as that of the original image.

4.5. Loss function

Figure 2 shows the loss functions of the three models. There
are 20,735 training images in the b = 0 and 1,000 models. When

training with batch size 1, a training cycle must go through
20,735 iterations. The loss function curves of the b = 0 and 1,000
models generally show a steady decline, and the curves have only
small fluctuations caused by the input of different training data.
There are 20,416 training images in the b = 1,500 and b = 2,000
models. When training with batch size 1, a training cycle must
go through 20,416 iterations. Similarly, the loss function has some
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FIGURE 7

(A) Peak signal-to-noise ratio (PSNR), (B) structural similarity index measure (SSIM), and (C) cosine similarity of diffusion indices. These indicators are used
to compare diffusion indices reconstructed with interpolation results and super-resolution results.

small fluctuations but continues to decline. The loss function value
gradually decreases. Waves with small fluctuations are similar across
all training epochs.

4.6. Original image, interpolated image,
and SRCNN image in different iterations

Figure 3 shows the reconstruction effect of the super-resolution
model on DWI. Although the interpolated method can improve
the resolution of the image, this method causes some blocks to
appear blurred. After using the super-resolution method proposed
in this article, the reconstruction results are closer to the target. The
disadvantages of interpolation can be improved.

The pattern in the histogram of the low-resolution image is
similar to the pattern in the histogram of the target image. Since the
number of pixels declines, the pattern looks flat. The histogram of
the super-resolution result is closer to the target than the result of the
interpolation method image. This was the result that we expected.

4.7. Diffusion indices and ODF

As shown in Figures 4, 7, the super-resolution method is better
than the interpolation method. The shape of the ventricle in GFA and
NQA reconstructed with SRCNN DWI looks clear.

The boundary between gray matter and white matter looks
clearer. As shown in Figure 6, the ISO reconstructed with SRCNN
DWI reduces the blur of the reconstruction result of the interpolation
method. The ventricle and white matter area are closer to the target
image. The histogram of the super-resolution image is closer to the
target image than the interpolation method. The direction of the
nerve fiber calculated with the super-resolution image is closer to the
high-resolution (target) image.

4.8. PSNR, SSIM, and cosine similarity

In this study, three indices are used to quantify the super-
resolution performance. These indices are then multiplied to judge
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the overall performance. As shown in Supplementary Table 1, the
average PSNR of the b = 0 and 1,000 models can reach a peak at
20,735 iterations. The B = 1,500 and b = 2,000 models have the best
PSNRs at the 45,932th and 61,248th iterations, respectively. After
using the method proposed in this article, PSNR improved compared
with the interpolation method. The b = 0 and 1,000 models had
the best PSNR in a small number of iterations. We believe that
because these training images have high contrast, it is easy to obtain
clear features through the convolutional layer. This makes model
training easier.

As shown in Supplementary Tables 2, 3, the three models
we trained can improve the SSIM and cosine similarity of the
super-resolution test image. The best SSIM and cosine similarity
for the b = 0 and 1,000 models occurred before epoch 1.
However, SSIM dropped to 0.898 in subsequent training, but the
cosine similarity remained above 0.975. High-contrast images with
b = 0 and b = 1,500 may also be more sensitive to model
correction. Models with b = 1,500 and b = 2,000 will reconstruct
the image with the best SSIM and cosine similarity at a higher
number of times. The subsequent decline is slight. As shown
in Supplementary Table 4, we selected the best super-resolution
result based on the product. Since the PSNR change range in
Supplementary Table 1 is much wider than the parameters in
Supplementary Tables 2, 3, there is such a phenomenon. As shown
in Figure 7, the diffusion indices reconstructed using SRCNN
DWI have better performance than those reconstructed using
interpolated DWI.

4.9. GAN comparison

In addition to SRCNN, generative adversarial networks (GANs)
are another recent and state-of-the-art method for image super-
resolution (Goodfellow et al., 2014). GANs consists of two neural
networks: a generator network that creates high-resolution images

from low-resolution ones, and a discriminator network that is trained
to distinguish between real high-resolution images and synthetic ones
generated by the generator. Although SRCNN, one of the pioneer
methods for image super-resolution task, has shown good results,
GANs has been shown to produce more realistic and high-quality
images compared to SRCNN. GANs are able to generate more photo-
realistic images, as well as images with finer details and textures.

However, SRCNN is a simpler architecture compared to GANs,
and thus it is easier to be implemented and trained. In terms of
computational cost, SRCNN requires less computational resources
and time to train, making it more efficient and faster than GANs.
SRCNN is a feedforward network, which means that the output of
the network is a direct function of the input, making it easier to
interpret and understand the network’s behavior. SRCNN has been
reported to perform better on certain types of images, such as text
images and medical images, where the preservation of fine details
is crucial. SRCNN has less hyperparameters to tune, which makes it
less sensitive to hyperparameter tuning and may lead to more robust
performance in different scenarios. Overall, both SRCNN and GANs
are effective methods for image super-resolution, but SRCNN is much
more suitable for real-world application, especially for medical image
super-resolution.

4.10. Limitations

Some shortcomings were not overcome in this study. Compared
with the original DWI, the area around the ventricle in the
SRCNN image looked brighter. This defect may affect nerve fiber
reconstruction. The drawback of the expandable methodology is
that the storage capacity cost and the numbers of calculations for
training and prediction are proportional to the number of patches.
The data form in the dataset makes the size of the dataset difficult
to enlarge. If this technology is applied in clinical medicine, then the
model training time needs to be reduced. We can attempt to adapt a

TABLE 1 Peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and cosine similarity of diffusion indices in all testing images.

PSNR GFA
interpolate

GFA SRCNN NQA
interpolate

NQA SRCNN ISO
interpolate

ISO SRCNN

Average 80.25 119.01 28.54 29.76 23.69 50.33

Std 8.06 10.00 3.71 4.64 8.87 6.55

Max 108.57 141.57 35.02 40.73 44.78 64.76

Min 62.45 104.01 20.70 21.96 10.91 33.99

SSIM GFA
interpolate

GFA SRCNN NQA
interpolate

NQA SRCNN ISO
interpolate

ISO SRCNN

Average 0.964 0.983 0.921 0.980 0.923 0.972

Std 0.008 0.003 0.019 0.005 0.028 0.005

Max 0.980 0.988 0.941 0.987 0.958 0.981

Min 0.940 0.972 0.853 0.966 0.834 0.959

Cosine similarity GFA
interpolate

GFA SRCNN NQA
interpolate

NQA SRCNN ISO
interpolate

ISO SRCNN

Average 0.906 0.970 0.914 0.981 0.972 0.988

Std 0.011 0.005 0.009 0.002 0.006 0.002

Max 0.926 0.975 0.944 0.983 0.980 0.992

Min 0.866 0.954 0.889 0.972 0.946 0.982
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FIGURE 8

Diffusion-weighted images (DWIs) with low resolution
(3.3 × 3.3 × 3.9 mm3) and high resolution (1.1 × 1.1 × 1.3 mm3).
High-resolution DWIs with multiple b-values (0, 1,000, 1,500, and
2,000 s/mm2) were reconstructed by the conventional bicubic
interpolation method and proposed super-resolution convolutional
neural network (SRCNN) method.

multilayer and small area convolution layer or train the model with
fewer training data.

5. Conclusion

In this work, we used a convolutional neural-network-based
architecture to achieve DWI super-resolution. SRCNN is a more
straightforward architecture that is less computationally intensive,
easy to understand, performs well on medical images and is
less prone to variations in hyperparameters. With this super-
resolution method, the reconstructed DWI result is closer to
the target image than that of the interpolation method. PSNR
and SSIM were also significantly improved. The diffusion indices
reconstructed by SRCNN DWI had higher performance indicators.
The ventricles and white matter regions were clear. In the
future, we do not need to take a long time to obtain high-
resolution images. This super-resolution method can assist in
postprocessing low-resolution images. We are eager to use this
method to clearly reconstruct the intersection structure in the
brain connectome.
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