
TYPE Methods

PUBLISHED 12 February 2024

DOI 10.3389/fninf.2024.1156683

OPEN ACCESS

EDITED BY

Arnd Roth,

University College London, United Kingdom

REVIEWED BY

Mikael Djurfeldt,

Royal Institute of Technology, Sweden

David Phillip Nickerson,

The University of Auckland, New Zealand

*CORRESPONDENCE

Lionel Kusch

lionel.kusch@grenoble-inp.org

Viktor Jirsa

viktor.jirsa@univ-amu.fr

RECEIVED 01 February 2023

ACCEPTED 19 January 2024

PUBLISHED 12 February 2024

CITATION

Kusch L, Diaz-Pier S, Klijn W, Sontheimer K,

Bernard C, Morrison A and Jirsa V (2024)

Multiscale co-simulation design pattern for

neuroscience applications.

Front. Neuroinform. 18:1156683.

doi: 10.3389/fninf.2024.1156683

COPYRIGHT

© 2024 Kusch, Diaz-Pier, Klijn, Sontheimer,

Bernard, Morrison and Jirsa. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Multiscale co-simulation design
pattern for neuroscience
applications

Lionel Kusch1*, Sandra Diaz-Pier2, Wouter Klijn2,

Kim Sontheimer2, Christophe Bernard1, Abigail Morrison2,3,4 and

Viktor Jirsa1*

1Institut de Neurosciences des Systèmes (INS), UMR1106, Aix-Marseille Université, Marseilles, France,
2Simulation and Data Lab Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced

Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany, 3Forschungszentrum Jülich

GmbH, IAS-6/INM-6, JARA, Jülich, Germany, 4Computer Science 3 - Software Engineering, RWTH

Aachen University, Aachen, Germany

Integration of information across heterogeneous sources creates added

scientific value. Interoperability of data, tools and models is, however, di�cult

to accomplish across spatial and temporal scales. Here we introduce the

toolbox Parallel Co-Simulation, which enables the interoperation of simulators

operating at di�erent scales. We provide a software science co-design pattern

and illustrate its functioning along a neuroscience example, in which individual

regions of interest are simulated on the cellular level allowing us to study

detailedmechanisms, while the remaining network is e�ciently simulated on the

population level. A workflow is illustrated for the use case of The Virtual Brain and

NEST, in which the CA1 region of the cellular-level hippocampus of the mouse

is embedded into a full brain network involving micro and macro electrode

recordings. This new tool allows integrating knowledge across scales in the

same simulation framework and validating them against multiscale experiments,

thereby largely widening the explanatory power of computational models.
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1 Introduction

The brain is a complex system that includes billions of cells that interact with each

other in a nonlinear manner. As a result, even if we were able to measure what all

cells are doing simultaneously, we would not necessarily gain a deeper understanding

of how the brain works. It has been previously claimed that emergent properties can be

only understood through an integrated approach (Cilliers, 2008), ideally in a common

theoretical framework to give meaning to data at all scales (Frégnac, 2021). Such a

framework using theoretical models can account for nonlinearities and subsequently

explain emergent properties (Pillai and Jirsa, 2017; Jirsa and Sheheitli, 2022). Numerous

models have been developed to study the interactions of molecules within cells, cell

physiology, the activity of cell populations, full brain dynamics and human behavior

(Finkelstein et al., 2004; Huys et al., 2014; Einevoll et al., 2019). It is currently impossible

to model the brain with all its cellular and molecular constituents due to limitations in

resolution, computational resources, or available data from measurements. As a result,

even if a given physio/pathological process can be modeled at the macroscopic scale,

the lack of microscopic resolution at the molecular scale prevents obtaining mechanistic

insight (Meier-Schellersheim et al., 2009). It is, therefore, important to bridge different

scales, which is a challenge not unique to neuroscience. In material science, the study
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of composite materials requires the description of molecular

interactions of individual composites and a global description for

the analysis of the subsequent deformation of the composite plate

(Schlick et al., 2021). In biology, to understand the effect of drugs

on tumor growth, it is necessary to model the tissue of cells

around the tumor, the tumor cells, and the subcellular transduction

signaling pathways (Rejniak and Anderson, 2011; Rahman et al.,

2017). In neuroscience, synaptic plasticity uses mechanisms of

spike timing on the millisecond scale but leads to the formation

of long-term memory evolving on the scale of minutes, days and

weeks (Durstewitz et al., 2011).

Our current study aims to provide a methodology to address

the scientific and technical problems of multiscale co-simulation in

the brain. The main difficulty of multiscale simulation is to enable

the information exchange between models formulated at different

scales. Such communication can be interpreted as a coupling across

scales. For example, in the case of tumors, the tissue around the

tumors is represented by a continuum model (first scale), which

interacts with discrete tumor cells (second scale); while continuous

signaling pathways are modeled in cells (third scale). At present,

it is not possible to create a common coupling function amongst

these three scales and each scale can use a dedicated simulator

engine for optimizing the simulation. In the case of tumors, a

common approach is to use COMSOL Multiphysics (COMSOL,

2019) for the tissue simulation, and Matlab (MATLAB, 2017)

for the simulation at cellular and subcellular scales. Because the

interaction of simulator engines is not a commonly supported

feature, co-simulation of models at different scales and within

a common framework is challenging. Existing solutions for co-

simulation in physics (Gomes et al., 2018; Fish et al., 2021) or

in biology (Hetherington et al., 2007; Matthews and Marshall-

Coln, 2021) cannot be easily adapted in neuroscience due to the

specificity of simulators and models. There is a large number of

scale-specific simulators in neuroscience, e.g., for compartmental

neurons: Neuron (Carnevale and Hines, 2006), Arbor (Akar et al.,

2019), Genesis (Bower and Beeman, 1998); for point neurons:

NEST (Gewaltig and Diesmann, 2007), Brian (Stimberg et al.,

2019), ANNarchy (Vitay et al., 2015); for the brain network: The

Virtual Brain (TVB) (Sanz Leon et al., 2013), Neurolib (Cakan et al.,

2023). Most of these simulators can support multiscale simulation

to a limited degree, but they remain specialized and optimized for

supporting a specific model type; consequently, the usage of other

model types diminishes their optimal performance. The objective

of co-simulation is to remove this limitation by exploiting the

advantages of each simulator within the same simulation (Goddard

et al., 2001; Djurfeldt et al., 2010; Mitchinson et al., 2010; Falotico

et al., 2017).

Schirner et al. (2022) provide an overview of software

tools available for TVB in the European digital neuroscience

infrastructure EBRAINS. Two toolboxes for co-simulation are

introduced in EBRAINS, TVB-Multiscale and Parallel Co-

Simulation. The former toolbox focuses on rapid development

for scientific use cases, whereas the latter focuses on optimisation

of co-simulation performance and applies the co-simulation

design pattern presented in this study. An illustrative example

of co-simulation of multiscale models using TVB Multiscale co-

simulation is virtual deep brain stimulation (Meier et al., 2022;

Shaheen et al., 2022).

Here we present the methodology of the Parallel Co-Simulation

toolbox and illustrate its use along the example of combined

microscopic Local Field Potential (LFP) and neuronal firing

recordings, and macroscopic electro-COrticoGraphy (ECOG) in

mice (Renz et al., 2020). This example aims to demonstrate

computational requirements for interpreting recorded multiscale

data using multiscale modeling (D’Angelo and Jirsa, 2022).

The method is based on a software science co-design pattern

(Dudkowski, 2009) that dictates the separation of science and

technical attributes, allowing these to be addressed in isolation

where possible. This separation is based on transformer modules,

which synchronize and connect simulators and include the

function for transforming data between scales. A multiscale model

is built from experimental data obtained in the mouse brain with

ECOG cortical signals and LFP signals in the CA1 region of the

hippocampus.We co-simulate the model using the simulators TVB

and NEST and demonstrate the performance and limitations of

the approach along three concrete examples of multiscale network

dynamics. The following sections describe the technical details and

the optimisation for co-simulation.

2 Results

The multiscale co-simulation software science co-design

pattern formalizes the interactions between parallel simulations at

different scales. The data transformation among scales is performed

during their transfer among simulators. This design pattern

comprises five modules (Figure 1A): one launcher, two simulators,

and two transfer modules. Each transfer module contains three

components: one interface for receiving data, one interface for

sending data and a transformation process. The launcher starts and

handles the coordination of simulation parameters. The simulators

perform scale-specific simulations. The transfer modules transfer

the data from one simulator to another. During the transfer,

the transformation process transforms the incoming data for the

simulator on the receiver side.

This study applies the multiscale co-simulation design pattern

to a virtual experiment workflow between the in-silico mouse

whole-brain dynamics and the in-silico micro-scale network

dynamics of the hippocampus CA1 region. The recording sites

of the virtual CA1 and virtual mouse brain are located at similar

positions (Renz et al., 2020) (see Figure 1B). The Virtual Brain

(TVB) (Sanz Leon et al., 2013), an open-source platform, has been

used to simulate the mouse whole-brain network activity, while

NEST (Hahne et al., 2021), another open-source platform, has

been employed for the simulation of the CA1 neuronal network

dynamics. This specific application illustrates this novel design

pattern’s technical limitations and demonstrates the potential for

a wider range of applications.

2.1 Virtual experiment of hippocampal CA1
embedded in a full mouse brain

The virtual experiment of the mouse brain is composed of

a brain network model, regional neuronal network models and

electrophysiological sensor models. The whole-brain animal model
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FIGURE 1

Multiscale co-simulation design pattern and example of an application in neuroscience. (A) Multiscale co-simulation design pattern between two

simulators using transfer modules to transform and transfer data between scales. (B) Application of the co-simulation pattern for a neuroscience use

case focusing on the CA1 region of a mouse brain. Left shows a rendering of the mouse brain from Allen Institute (Lein et al., 2007). Blue spheres

mark the centers of mouse brain regions, and the red spheres are a subset of neurons of the CA1. Right illustrates the co-simulation data flow

between TVB (Sanz Leon et al., 2013) and NEST (Hahne et al., 2021), showing the di�erent functional modules. The four corners’ plots illustrate the

data type exchanged in respective information channels. The transfer modules exchange mean firing rate data with TVB (module on the right) and

exchange spike times with NEST (module on the left). Each population has a specific module enabling data transfer between populations in di�erent

scales.

is a network comprised of nodes and edges, where each node

contains a neural mass model to simulate the activity of each region

and where edges represent the anatomical connections among the

regions. The anatomical connections are defined by track lengths

and an adjacency matrix representing the coupling strengths of

connections between the regions of the network, the “connectome”,

which are extracted from tracer data from the Allen Institute (Oh

et al., 2014) (Figures 2F, G). The dynamic activity of each brain

region is obtained with the neural mass model described by di Volo

et al. (2019) (see Section 3). The neuroinformatics platform The

Virtual Brain (TVB) (Sanz Leon et al., 2013) performs the animal

whole-brain simulation by considering both the chosen neuralmass

model and specific “connectome”.

The dynamics of the two main brain regions of interest, the

left and right hippocampus CA1 (Figure 2), are modeled as a

separate neural network composed of point neurons connected

with static synapses. Each network comprises one inhibitory, and

one excitatory homogeneous population of adaptive exponential

integrate and fire neurons (Brette and Gerstner, 2005) (see

Section 3). In each microcircuit, the populations of point neurons

are taken to be homogeneous; that is, neurons of the same

population have the same parameter values. The neuroinformatics

platform NEST (Hahne et al., 2021) is able to perform the regional

neuronal network simulation using the aforementioned description

of the microcircuit of point neurons.

To compare the simulations with empirical data, the virtual

experiment contains two models of electrophysiology sensors for

probing neural activity. The electrophysiological sensor models

are two surface grids of 8-channel electrocorticography arrays and

two penetrating multi-electrode arrays of 32 recording sites each.

Their positions are illustrated in Figure 2A. Figure 2E shows the

position of the polytrodes in the mouse brain, while Figures 2B,

D depict the position of the left probes in a cross-section of the

left hemisphere and the position of the point of the polytrodes

in the population of neurons, respectively. Figure 2C displays the

polytrodes with the 32 recording sites. The simulated signal from

the ECOG sensor is computed using the model of a point dipole in

a homogeneous space as described by Sanz-Leon et al. (2015) (see

Section 3) and the hybridLFPy (Hagen et al., 2016) software is used

for computing the signal from the recording site of the implanted

probes (see Section 3). The latter software uses morphologies

and spatial position of neurons to generate the underlying local

field potential (LFP) for given spike trains of point neurons. The

morphology of neurons is taken from the presented morphology in
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FIGURE 2

The virtual mouse brain experiment. (A) Cross section of the mouse brain with the position of the left implanted electrode. (B) Position of the site

layout of a polytrode (Neuronexus 32 models from MEAutility library). (C) The probe position inside the neural network. The red neurons are

pyramidal neurons (Shuman et al., 2020) and the blue neurons are basket cells (Shuman et al., 2020). (D) Mouse brain of Allen Institute (Lein et al.,

2007) with the position of the two polytrodes and 16 ECOG electrodes. The ECOG electrodes measure the neural field from the surface of the

electrode in blue for the left hemisphere and yellow for the right hemisphere. Blue spheres mark the centers of mouse brain regions, and the red

spheres are a subset of neurons of the CA1. (E) Representation of the connectome of the mouse brain (Oh et al., 2014). The blue dots are brain

regions, and the red ones are CA1 regions, whose neurons are simulated with NEST. The gray links highlight the strongest anatomical connections.

(F) The weights of the anatomical links in graphic F are shown as an adjacency matrix. (G) The tract lengths associated with F are shown as an

adjacency matrix. The anatomical connections are extracted from tracer data of the Allen Institute (Oh et al., 2014). (H) Example of voltage recorded

from 10 excitatory and 10 inhibitory neurons. (I) Example of adaptation currents recorded from 10 inhibitory and 10 excitatory neurons. (J) Example

of spike trains recording from the left CA1. (K) Example of Local Field Potential recorded from the poly-electrode generated from the spike trains and

neuron morphologies. (L) Example of recording from the ECOG electrodes of the left hemisphere. (M) Example of mean firing rate of excitatory and

inhibitory populations for a subset of mouse brain regions.

Shuman et al. (2020). The excitatory morphology is based on the

pyramidal cell morphology, and inhibitory neurons are based on

the basket cell morphology (Shuman et al., 2020).

2.2 Output signal from the virtual
experiment

This section describes the co-simulation results at different

scales by describing the possible recordings of physiological signals

from the simulation of CA1 embedded in a whole mouse brain. The

Discussion section will provide an interpretation of these results

to describe the advantages and the limitations of the multiscale

co-simulation design pattern. As described in Figure 2, the output

modalities of one virtual experiment have direcly corresponding

measures in the real world such as the local field potential measure

at every thirty-two sites of each polytrode electrode (Figure 2J) and

from the sixteen electrocorticography channels of each hemisphere

(Figure 2K). Moreover, the simulation gives access directly to the

voltage membranes of the CA1 neurons (Figure 2H), adaptive

current of the CA1 neurons (Figure 2G), spike times (Figure 2I)

and the mean firing rate of the different regions of the mouse brain

(Figure 2M). To illustrate the variability of the measures and some

limitations of the coupling model of different scales, we choose

three sets of different parameters for CA1 and neural masses. Each

set of parameters represents one of three dynamic regimes of the

CA1. These results are separated between micro (Figure 3) and

macro (Figure 4) scales, but they are the output of the simulation

workflow between TVB and NEST. In particular, Figure 3 reports
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the mean voltage membrane, mean adaptive current, instantaneous

firing rate and the signal of 12 central sites from the 32 electrode

sites of the specific CA1 network. Figure 4 displays the results on

the whole brain level: the mean firing rate of each brain region, the

signal of the 16 electrocorticography channels and the mean firing

rate from the spiking neural network.

To illustrate the basic dynamic features of the network,

we define three operating regimes corresponding to irregular

asynchronous and synchronous activity, and regular bursting.

The Figures 3, 4 are separated into three different panels, which

correspond to the three dynamic regimes and corresponding

parameters representative of the different types of dynamics

exhibited by spiking neural networks (see Section 3 for the choice

of these parameters). Panel A represents an asynchronous (A)

state, which is characterized by a constant (flat line) the mean

firing rate (see Figure 3A top-right and Figure 4A top-left). Panel

B represents an irregular synchronous (IS) state, which reflects a

large irregular variation of the mean firing rate (see Figure 3B top-

right and Figure 4B top-left). Panel C represents regular bursting

(RB) reflecting regular oscillations (see Figure 3C top-right and

Figure 4C top-left) and a second dominant high frequency (see

Figure 3C bottom-right).

2.2.1 Results at microscale
The top left of Figures 3A–C show the membrane voltages

for ten excitatory neurons (thin red curves) and ten inhibitory

neurons (thin blue curves) and mean membrane voltage of these

neurons (thick curves). The middle left of Figures 3A–C represent

the adaptive currents from the same ensemble of neurons (thin

curves) and the mean adaptive current of these neurons (thick

curves). The third biological observable from the simulation is

the Local Field Potential which differs among panels (see bottom

left of Figures 3A–C). The top right of Figures 3A–C display

spike raster plots of the excitatory population, in red, and the

inhibitory population, in blue, of the left CA1. The spiking activity

is homogeneously distributed between neurons and time frames for

the A state, while the other two states show co-activation of neurons

with different periods. The associated instantaneous firing rate is

shown in the middle right of Figures 3A–C. The spectral analysis of

the instantaneous firing rate displays a peak around 3 Hz for the IS

state (bottom left of Figure 3B), no peaks for the A state (bottom

left of Figure 3A), and two peaks (around 6 Hz and 160 Hz) for the

RB state (bottom left of Figure 3C). For the RS state, the frequency

of the first peak, 6Hz, is also present in the mean of the adaptive

currents, while the second peak is associated with the burst time, as

shown in further detailed in Supplementary Figure 1.

2.2.2 Results at macroscale
The top left of Figures 4A–C display the instantaneous firing

rate (light red) of the spiking neural network with the associated

transferred mean firing rate of the left region of CA1 (thick red

line). The neural network’s different states affect the ECOG signals,

as shown in the bottom left of Figures 4A–C. The mean firing rate

of excitatory (blue) and inhibitory (red) populations of each brain

region are plotted in the graph on the right part of Figures 4A–C

and Supplementary Figures 2–4.

2.3 Workflow between NEST and TVB

The previous multiscale example uses the workflow between

TVB and NEST for the co-simulation. As an implementation

of the design pattern, this workflow comprises five modules:

two simulators (TVB and NEST), one launcher and two

transfer modules. All these modules are built with the capability

to be repurposed or replaced, allowing for adjustments of

components of transfer modules or communication protocols (see

Discussion). Two additional proofs of concept were implemented

to demonstrate the possibility of the reusability of the components.

The first example replaces NEST with NEURON, and the

second replaces TVB with Neurolib (see Supplementary Figure 25).

Moreover, without extra development, we get a proof of concept of

co-simulation between NEURON and Neurolib.

The simulators perform the actual integration of the dynamics

in time and require two properties to be integrated within one

optimized and coherent workflow. The first property is time

delay equation management, essential for reducing data transfer

overhead. The second property is the presence of a high bandwidth

Input/Output (I/O) interface that facilitates the efficient exchange

of data and parallel execution of the simulators. Since TVB

and NEST did not have generic high bandwidth I/O interfaces

by default, these had to be implemented for each simulator.

Details of how these I/O interfaces were created are reported in

Supplementary File 1. Briefly, the NEST interface uses the device

nodes with a specific back-end, while TVB uses proxy nodes which

are the interface with the external software.

The launcher prepares the environment for the simulation

and initiates all the other modules, as shown in Figure 5A (see

details in the Supplementary Figure 5). The preparation consists of

creating folders for the different modules, the logger files, and the

common file with all the parameters of the co-simulation. Creating

the parameters file provides the functionality to enforce consistent

constraints on the parameters to be shared between the modules,

such as ensuring the same integration step in both simulators,

which is needed for correct synchronization between modules.

The transfer modules connect simulators by transferring

data between scales and adapting the communication delay

throughout the simulation. Each module is comprised of

three components: two interfaces and one transformer (see

Figure 1A, Supplementary Figure 14). These components are

implemented in different files for reusability and modularity

and are tested independently to ensure robustness (see

Supplementary Figure 12). The interfaces are specific to each

simulator, while the transformation can be extended, modified or

reused since the transformation function is implemented as an

independent process (see Supplementary File 2).

The components exchange data using a simple Application

Programming Interface (API). The API is based on four

functions and assumes that the connections are already established.

The functions are “check if ready to get or send data”,

“transfer data”, “end the transfer” and “release the connection”

(see Supplementary File 2, Supplementary Figure 15). The API is

implemented with two different technologies depending on the

nature of the parallelisation of the components (multiprocessing or

multithreading). In the case of multiprocessing, each component

runs in an individual process, and a Message Passing Interface
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FIGURE 3

Spiking neural network in three di�erent states of the left CA1. The parameterization of the spiking neural network of CA1 is chosen such that the

dynamics are in an asynchronous state (A), irregular synchronization state (B), and regular bursting (C). Top-left: Voltage membrane of 20 adaptive

exponential leaky and integrator neurons and their mean in a thick line. The red (blue) lines are excitatory (inhibitory) neurons. Middle-left: The

adaptation currents of 10 neurons and their mean in a thick line. Bottom-left: Local field potential from the 12 sites in the middle line of the left

polytrode. The local field potential is computed from the spike trains of all neurons by the software HybridLFPY (Kuhn et al., 2003). Top-right: Spike

trains of 10,000 neurons for 11s. Middle-right: instantaneous firing rate of the excitatory (inhibitory) population above in red (blue). Bottom-right:

Spectrogram and power spectrum example of the instantaneous firing rate for 10s.

(MPI) is used to transfer data. In the case of multithreading, each

component runs in an individual thread in a shared process, and

the data is transferred using shared memory. Multithreading uses

fewer computational resources (see Supplementary Figure 20). The

transformation function provides neural mass firing rate values

by using a sliding window, shown in Figure 5E. The panel also

illustrates the inverse transformation from the mean firing rates to

spike trains using a multiple interaction process (Kuhn et al., 2003).

The modular workflow execution is composed of three main

blocks: start-up, simulation-loop and termination (see Figure 5A

and details in the Supplementary Figure 5).

The start-up procedure allocates a logger for each component,

facilitating debugging of the co-simulation. Subsequently, the

modules and their communication channels are configured

according to the parameter file. At this stage, several initialisation

files are generated with simulation parameters only available after

instantiation of the model (e.g. id of NEST devices and MPI

port description). The details of the generation of these files are

described in Section 3.2.1.

Once the simulation is launched, the simulator time clocks

are synchronized using asynchronous message passing: At each

multi-simulator synchronization step, the simulator receives input
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FIGURE 4

Three di�erent states of CA1 in mouse brain. The parameterization of the CA1 spiking neural network is defined to obtain an asynchronous state (A),

an irregular synchronization state (B), and a regular bursting (C). Top-left: Instantaneous firing rate of spiking neural networks in light red for 11 s. The

thick line shows the sliding window mean firing rate. Bottom-left: (bottom-right) Signal from ECOG sensors, the figure represents the recording of

the 8 electrodes on the top of the left (right) hemisphere. Right part: Subset of region overview of the mean firing rates of excitatory, in red, and

inhibitory, in blue, population from the model of Mean Adaptive Exponential. The two black curves are the mean firing rate of the two populations of

excitatory neurons simulated with NEST (Hahne et al., 2021).

data via an asynchronous message in MPI, after which the next

step is simulated. The transfer modules can buffer data for one

synchronization step until the receiving simulator is available for

receiving. Each simulator requires an initial condition (NEST:

initial voltage membrane and adaptation current and TVB: state of

the node during the previous seconds) and an initial message. For

TVB, this initial message is sent by the transformer processes while,

for NEST, it is produced by transforming the initial condition of

TVB.

Ultimately, the termination occurs at the end of the simulation

by the simulators themselves (see Section 3 for details).

2.4 Performance

The evaluation of the performance is made against a

fictitious workflow with optimal performance, a co-simulation

with instantaneous communications between simulators. As all the

modules are designed to run in parallel, the co-simulation time

for each module is identical and equal to the total running time.

The focus is only on the simulator timers because the time of

the transformer components is dominated by the waiting time of

data (see Supplementary Figure 5). The total running time of the

simulators is divided into five parts. The “initialisation” time is
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FIGURE 5

Architecture and performance of the co-simulation. (A) The interaction among the modules and data exchanges during co-simulation execution.

The boxes in yellow mark start-up: initialization and configuration, the boxes in red for the termination of the simulation and the boxes in white for

the simulation phase. (B–D) Performance of the workflow is obtained for 1 s of simulated time (see Section 3 for more details). The reference

implementation use 1 MPI process, 6 virtual processes/threads, a synchronization time step of 2.0 ms, and simulates 20,000 neurons. (B) The wall

clock time of the simulators as a function of the number of neurons. The total time of the co-simulation is represented in yellow. The “wait”,

“simulation”, and “IO” times of NEST are represented in red surface with respectively hatches with big circles, small circles and points. The

“simulation” and “IO” times of TVB (Sanz Leon et al., 2013) are represented in the blue surface with respectively hatches horizontal lines and oblique

lines. (C) Simulation time depending on the synchronized time between simulator. The color code is the same as the (B). (D) Wall clock time

depending on the number of virtual process used by NEST (Hahne et al., 2021). The green, blue, purple, red curves are associated with di�erent

parallelization strategy of NEST, respectively, only multithreading, 2 MPI processes with threads, 4 MPI processes with thread, and only MPI

processes. The vertical blue line represents the number of cores of the computer. (E) The “transform between spikes to rate” and “transform between

rates to spikes” blocks are displayed with the di�erent steps for transformation of data between TVB and NEST.

the time of configuring the simulators and creating connections.

The “ending” time is the time of closing the connections, stopping

the simulator engine and terminating processes. The “simulation”

time is the total time of the internal computation of simulator

engines. The “wait” time is the total duration of waiting time

for access to the data to transfer by the simulator interface of

the transformer module. The “IO” time is the total duration of

functions for exchanging data between simulators and the transfer

modules minus the “wait” time.

A perfect co-simulator has the time of the slowest simulator

X; thus, “wait” and “IO” times equal zero. From Figure 5B and

the Supplementary Figure 17, the actual implementation is close to

ideal when the number of neurons simulated by NEST is lower than

1000. In this case, TVB is the slower simulator, and NEST spends

most of the time waiting for data from TVB.

When the number of simulated neurons is between 1, 000 and

20, 000 neurons, “simulation” time of TVB is approximately the

same as the sum of “simulation” time and “IO” time of NEST. In

this condition, each simulator is waiting for the transformation of

the data among scales.

When the number of simulated neurons is higher than 20,000,

NEST is the slowest simulator. In this case, the co-simulation time

is determined by the “simulation” time and the “IO” of NEST.

The “wait” time is zeros, and the “IO” time is higher than the

“simulation” time (see Supplementary Figures 17, 21). The two

principal causes are that the communication between modules is

slower than inside the modules and the increased dimensionality

of the input to NEST (Weidel et al., 2016) (the increase of the

number of neurons increasing the size of the neural spike data

because each neuron in NEST receives an individual spike train).
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A closer look at the performance shows that the communication

spends most of the time sending individual spike trains to NEST

(see Supplementary Figure 24). However, the data size is related to

the model chosen and can be reduced.

As shown by Figures 5C, D, some optimisations can

be implemented to reduce the problem of overhead time

of communication (Weidel et al., 2016). Figure 5C and

Supplementary Figure 18 represents the time delay between

brain regions when delayed data is aggregated to reduce the “IO”

time and, hence, the co-simulation time. In this case, the simulators

are not synchronized at each time step but at n time steps (limited

by the model of connection). This aggregation can reduce co-

simulation time by a factor of 6 (see Supplementary Figures 18, 22).

Figure 5D and Supplementary Figure 19 represent a reduction in

co-simulation time by reducing the “simulation” time of the longest

simulator. The increase in NEST’s resources does not modify the

“IO” time until the resource is available. Since the tests are running

on one computer, increasing resources for NEST increases the

“simulation” time of TVB and reduces the “simulation” time of

NEST. However, by deploying the workflow on high-performance

computing facilities, the latter result does not replicate, and the

simulation time gives similar a result with an increase in “IO” and

“simulation” time because the communication between nodes is

slower (see Supplementary Figure 23). The second reason for this

difference is the usage of multiprocessing for the transfer modules

(see Supplementary Figure 20). In your implementation in Python,

the multithreading is unstable on a supercomputer due to the

global interpreter lock of Python (for more details, see the Section

3.4.1). Additionally, multiprocessing compared to multithreading,

has the potential to distribute the different components of the

transfer modules on different nodes.

3 Materials and methods

The simulation details and models’ parametrisation are in

Supplementary Table 1. The format of this table is drawn from the

proposition of Nordlie et al. (2009) for spiking neural networks.

This new format includes the description of brain network

modeling, the description of the coupling between scales and the

description of the measurements of the simulation. This format

contains more details than the proposition of Nordlie et al. because

it contains all the parameters for the co-simulations.

The following text provides an overview of the models,

communication between modules, details of the performance tests

and implementation details.

3.1 Models

3.1.1 CA1 model
The spiking neural network of CA1 comprises two regions

(left and right), which contains two populations, 8,000 excitatory

neurons and 2000 inhibitory neurons. This network is simulated

by NEST (Hahne et al., 2021), a neuro-informatics platform

for spiking neural networks. The adaptive exponential integrate

and fire neurons (Brette and Gerstner, 2005) are connected

by exponential conductance-based synapses with a connection

probability of 5% inside the region. The excitatory population

establishes normalized weighted connections with the other regions

defined by the mouse connectivity atlas. Additionally, we assume

that each neuron has the same unique number of synaptic

connections from other brain regions; the mouse connectome

defines the repartition of these synapses. Transmission delay

between regions is defined as the ratio of the distance between the

regions and the transmission speed. Calculating these ratios is part

of the configuration of The Virtual Brain (TVB) (Sanz Leon et al.,

2013) because the data required by TVB is the track lengths between

regions and the speed of the transmission. Within a region, the

synaptic transmission delay is instantaneous, which is implemented

in NEST by setting the delay to the smallest transmission delay

supported. In addition, the neurons can receive external noise input

modeled as an independent Poisson process in addition to the

external stimuli received from other regions through the transfer

of mean firing rates as transformed spike trains.

3.1.2 Mouse brain model
The mouse brain model is simulated using The Virtual Brain

(Sanz Leon et al., 2013; Melozzi et al., 2017), a neuro-informatics

platform for connectome-based whole-brain network modeling.

The “connectome” used here is extracted from Allen Mouse Brain

Connectivity Atlas (Oh et al., 2014) in 2017. The large-scale brain

network is comprised of linearly coupled neural mass models.

Specifically, the model representing each region is a second-

order Mean Ad Ex model (di Volo et al., 2019) with adaptation,

representing the mean firing rate for an ensemble of one excitatory

and one inhibitory neuronal population.

3.1.3 Electrophysiological monitoring model
The electrophysiological monitoring variables are computed

using two models representing the cortical and implanted sensors.

The electrocorticography model is a simple forward solution of a

dipole at the region level. The electric field recorded by the virtual

sensors at the brain level is based on two assumptions: considering

the brain as a homogeneous space, and the field is generated

only from excitatory populations. With these assumptions, the

recorded field is the sum of excitatory population activities, i.e.

the mean excitatory firing rate weighted by the distance between

the sensors and the region’s center (Sanz-Leon et al., 2015).

The implanted sensors’ signals are computed from point-neuron

activities using a hybrid scheme for modeling local field potentials

(LFP). Specifically, each potential is simulated using hybridLFPy

(Hagen et al., 2016), which incorporates the recorded spike from

the network and the morphology of the pyramidal and basket cells.

3.1.4 Choice of three sets of parameters
Three parameter regimes were implemented to simulate

well-known characteristic neural network dynamics: irregular

synchronous, irregular asynchronous, and regular bursting.

The parameters for Irregular Synchronous state follow the work

of di Volo et al. (2019). The coupling between regions and the noise

is tuned manually to the regime of fluctuations of the firing rate

in each region. The Asynchronous state was realized by reducing
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the degree of fluctuations. The result is a reduction of the spike-

triggered adaptation of the excitatory neurons, a reduction of the

number of connections between the regions, an augmentation of

the inhibitory synaptic weights, a reduction of the variance of

the noise and the addition of a Poisson generator for the spiking

neural network. The Regular Bursting state is obtained when

changing the voltage reset of the membrane and the leak of the

reversal potential of the excitatory and inhibitory neurons, the

spike-triggered adaptation and the time constant of the adaptation

current of excitatory neurons. An empirical exploration of the

models is done to get a balanced spiking neural network and

the desired brain dynamic. The result of this exploration is a

reduction of the connection between regions and a reduction

of the connection between excitatory and inhibitory neurons, a

reduction of the number of connections between brain regions and

a reduction of the noise variance.

All the numerical values of the parameters are in

Supplementary Table 1.

3.2 Communication between modules

3.2.1 Initialization of communication
During the initialization of the simulation, the launcher creates

a specific folder for each module and an extra folder for the logger

file of all components. Subsequently, the launcher creates user-

defined relationships between parameters, such as copying one

parameter into another to have the same values or the result of

linear functions of parameters. All these parameters are saved in

a file and organized in sections dedicated to a module or part of the

co-simulation. The launcher also saves the initial message sent to

TVB.

Once each module is launched, they will create some files in the

folders generated by the launcher to initialize the communication.

NEST will create two files with the ids of devices for recording

and generating spikes, which are used by the transformer modules

for sending and receiving spikes to the right devices. Transformer

modules will create files containing the MPI port description which

are used by NEST and the wrapper of TVB for connecting to them.

TVB saves its initial conditions to allow possible reproducibility of

the co-simulation.

3.2.2 Synchronization between modules
The transfer modules synchronize the simulation by managing

the access to its internal buffer and receiving status messages

from the simulators. The receiver process receives the data and

aggregates them in a buffer. Rate data do not need to be

buffered when usingMPI communication, they are sent or received

directly to the transformer process. The data is transferred to the

transformation function when the data of the preceding step are

transformed and transferred to the sender process. The sender

process gets the data after sending the data of the preceding step

to the simulator. It can only send the data to the simulator when

it is ready. In addition, the simulator needs to await data for the

next step of the simulation. Given all these constraints, the transfer

module assures correct transport and keeps the components

synchronized. If needed the transfer module buffers data for a

simulation step. The transfer module can receive and send data

concurrently and translation can be performed while waiting for

the slowest simulator.

3.3 Performance tests

The performance tests are realized with time recorders

integrated at specific places in the code. These times are aggregated

durations to evaluate the running time of the co-simulation in

each section. This allows evaluating the time of “simulation”,

“IO” and “wait” time. Each test is done for 10 trials of 1

second of simulated time for asynchronous configurations with

one or two parameters (number of neurons, synchronization

step, number of virtual processes of NEST, number of processes

dedicated to NEST and number of nodes used by NEST) which

vary per test. The results of the trials are averaged to reduce

the variability of the measurements. The varied parameters of

the tests are the number of spiking neurons, synchronized time

between simulators and the configuration of MPI and thread

of NEST. Figure 5 and Supplementary Figures 17–19 show the

result of the performance test done on DELL Precision-7540

[Intel Xeon(R) E-2286M CPU 2.40 GHz * 8 cores * 2 threads,

64 GB of Ram with Ubuntu 18.04.5]. The communication

between components in the transfer module was performed

with the multithreading approach. Supplementary Figures 21–23

are generated using the Jusuf system (https://apps.fz-juelich.de/

jsc/hps/jusuf/cluster/configuration.html) which is composed of

nodes with 2 AMD EPYC 7742 2.25 GHz * 64 cores * 2

threads, 256 (16x16) GB DDR4 with 3,200 MHz, connected

by InfiniBand HDR100 (Connect-X6). In this second case, the

transfer module uses MPI protocol to communicate between

components.

3.4 Implementation details

The source code of the co-simulation is open-source and

contains Python script and C++ files. A singularity and a

docker image are also available on singularity-hubs to replicate

the figures as in the performance test. The activity diagram

(see Supplementary Figure 5) describes in detail the interaction

between each module and components for this specific virtual

experimentation.

The implementation of Input and Output for NEST used

the existing simulator’s architecture and parallelization strategy.

NEST has different back-ends for the input and output data, the

creation of a new back-end for the communication of the data

was enough for integration in the co-simulation design pattern (for

more details see Supplementary File 1). For more technical details

about the communication with NEST, an activity diagram (see

Supplementary Figure 6) describes the communication protocol

with NEST back-end. For this specific example, the states of

the wrapper of NEST and the states of transfer components

which communicate with NEST are described respectively by the

Supplementary Figures 7, 8.
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The implementation of Input and Output for TVB is different

because TVB doesn’t use MPI for its parallelization and it

doesn’t have an interface for exchanging data outside of the

simulator. The creation of the interface required a modification

of the simulator engine during its configuration for integrating

the functions to exchange data with the transformer and a

wrapper for communication with the transformer modules (for

more details see Supplementary File 1). For more technical details

about the communication with TVB, an activity diagram (see

Supplementary Figure 9) describes the communication protocol

with the TVB wrapper. For this specific example, the states of

the wrapper of TVB and the states of transfer components which

communicate with the wrapper of TVB are described respectively

by the Supplementary Figures 10, 11.

The description of the transfer modules is partially described

in Supplementary File 2 which focuses only on the interface with

simulators. In addition to this note, the state of the different

components are described in the Supplementary Figures 8, 11,

13. To better understand different instances and classes in this

module, Supplementary Figure 14 describes all the instances and

their role and Supplementary Figure 15 describes the composition

of the abstract class and the simple API for communication.

The communication protocol for data exchange between

transfer module components differs depending on whether the

parallelization strategy is multithreading or multiprocessing. In the

case of multiprocessing, MPI protocol is used for data exchange.

The communication protocol differs depending on the data type,

as shown by Supplementary Figure 16. The spike trains are variable

and large data (they can go from a few Kilobytes to more than one

Megabyte depending on the firing rates). According to it, we choose

to use shared memory for transferring data. For the mean rate

data, the data size is constant and small (a few Kilobytes depending

on the number of regions). According to it, we choose to use the

functions Send and Receive of MPI protocol for transferring the

data. In the case of multithreading, only a shared buffer is used

between threads.

3.4.1 Deadlock due to global interpreter of
python

In the case of multithreading for internal communication in

the transfer modules, the program may be in a deadlock because

the interface with a simulator does not receive the information

of receiving data. As it is explained in the global interpreter lock

documentation, “The GIL (global interpreter lock) can cause I/O-

bound threads to be scheduled ahead of CPU-bound threads,

and it prevents signals from being delivered” (https://wiki.python.

org/moin/GlobalInterpreterLock). The consequence is that some

signals used by MPI are not delivered, which creates a situation

where a simulator and a transformer are waiting for an MPI

message from the other one, but these messages will never arrive.

4 Discussion

The Parallel Co-simulation toolbox presented here provides

co-simulation technology linking two simulators operating at two

different scales with the only two requirements that the simulator

simulates time delay equations and has an interface for sending

and receiving data from outside of itself. In our application,

the simulator needs to use MPI to send and receive data. This

workflow is based on the cyclic coupling topology of modules

(Chopard et al., 2014), i.e each module regularly receives new

inputs during the simulation. The two scale-specific simulators

are interchangeable due to the genericity of the transfer function,

as well as the modularity and design of the transfer module (for

more characterization of the workflow, see Supplementary File 3).

The interfaces of the simulators and other modules serve as a

software science co-design pattern and can be reused in other

studies involving co-simulations.

Our approach separates the theoretical challenge of coupling

models at different scales from the technical challenge of coupling

the corresponding simulators. The simplicity of the design pattern

allows the scientific community to advance their research project

without being hindered by technical details. Best practices are

advised on carrying out a task or implementing the design pattern.

These challenges are not unique to using the Parellel Co-simulation

toolbox, but apply to most technical implementations of multiscale

modeling software. On the technical side, the design pattern

does not provide guidelines for the co-simulation’s robustness,

management and maintenance, similar to the closely related

staged deployment and support software for multiscale simulations

developed in EBRAINS (https://juser.fz-juelich.de/record/850819).

On the conceptual side, for proper use of co-simulation technology,

a profound understanding of the involved models is necessary to

avoid operating the models outside of their valid parameter ranges.

For instance, the neural mass model used in this paper cannot

capture the fast scale dynamics, especially the fast regimes of regular

burst state (RS) (Boustani and Destexhe, 2009). In the neural mass

model’s derivation, the input firing rate of the neurons is assumed to

be an adiabatic process, which is valid in some parameter regimes,

but violated for the irregular synchronous state (IS), in which

rapid transitions between low and high firing rates occur. As co-

simulation requires an understanding of models typically used in at

least two different and non-overlapping fields, particular attention

should be paid to the responsible use of multiscale models. Such

caution should also be applied here when interpreting the results

of the CA1 model and the full brain network model used in

this paper. Numerical errors constitute another issue. As these

errors cannot be estimated analytically, the alternative solution is

to perform a sensitivity analysis or uncertainty quantification to

determine whether or not the simulation result is reliable (Coveney

and Highfield, 2021; Coveney et al., 2021).

For the validation of the co-simulation, it is essential to generate

data that can be related to real-world observations, as is the case

here with the model of the two types of electrodes. A critical

issue is the repeatability and reproducibility of the simulations.

Repeatability is ensured by managing all the random generators

in each simulator and using a single parameter file for the co-

simulation setup. For reproducibility, due to the complexity of

the network, a table is proposed where the configuration of each

simulator is reported with their version and also the description

of the transformation modules (see Supplementary Table 1). A

notable property of this design pattern is the independence of

its modules and components. This independence allows unit

testing for each of them. Our design pattern also requires the
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implementation of a minimal reusable simulator interface for

interaction between simulators. In a possible second stage, this

interface can be adapted to a standard to increase the possibility

of interaction with other simulators.

EBRAINS provides two solutions for co-simulation (Schirner

et al., 2022) using The Virtual Brain, that is TVB-Multiscale

tool and the here described Parallel Co-simulation toolbox. The

two tools implement conceptually and technically two different

solutions. The TVB Multiscale tool focuses on user convenience,

allowing for rapidly prototyping scientific use cases using a single

interface to configure all modules in the co-simulation. It is based

on serial approaches for the co-simulation, i.e., each module is run

one after the other. The Parallel Co-simulation tool, on the other

hand, focuses on optimizing performance. The detailed description,

benchmarking and validation of the Parallel Co-simulation toolbox

is the topic of the current manuscript. Consequently, the TVB-

Multiscale tool is slower. Performance tests show that the various

modules run in parallel and adapt to the slowest module (see

Section 2.4). The waiting time of the slowest modules is quasi-null,

which means there is no loss of time in the synchronization of

modules. Performance in co-simulation is an important criterion,

as the microscopic simulators are typically very high-dimensional

and hence computationally costly. The serial approaches can be

interesting when a computer does not have at least one CPU core

per module because, under this condition, modules need to share

resources which can slow the co-simulation. This was demonstrated

by the large increase of simulation time when the number of

virtual processes for NEST is higher than the number of physical

CPU cores. The other important distinguishing feature of the

two co-simulation toolboxes is the unique interface for multiscale

simulations. Similarly to TVB-Multiscale, multiscale simulators

have the advantage of having a unique interface for multiscale

simulations. This unique interface simplifies the simulation

configuration but also reduces the specificity of functionality for

each scale, which may be disadvantageous for some situations,

such as optimization. For example, in our application, spiking

neuron and brain region models require different integrators to

avoid numerical errors and enhance efficiency. The CA1 model is

a sparsely connected network of thousands of neurons using event

communications. The mouse brain is a fully connected network

of hundreds of regions based on continuous communications.

Consequently, the optimization strategy is different and requires

specificity.

Other existing frameworks to deploy and communicate

runtime data between simulators comparable to Parallel Co-

simulation include the Multi-Simulation Coordinator (MUSIC)

(Djurfeldt et al., 2010). By default, MUSIC does not include

modules that facilitate translation between scales, which is needed

when coupling simulators on different scales of abstraction. An

extension of MUSIC has been proposed in Jordan et al. (2019)

which proposes encoders and a decoder for transforming data

and adapters for connecting to other systems of communication,

such as ZeroMQ (Hintjens, 2013) and ROS (Quigley et al., 2009).

The design of this extension has some similarities to our design

pattern (Weidel et al., 2016) and allows easy extension to include

new methods in the future. However, the main difference with

this extension is the parallelization of modules. On a more

technical level, a second difference is how MUSIC uses the HPC

transport protocol Message Passing Interface (MPI) (Message

Passing Interface Forum, 2015). MUSIC takes ownership of the

highest level MPI environment (MPI_COMM_WORLD); this

can cause challenges when integrating MUSIC with simulators

that expect exclusive ownership of this highest level. Our

implementation does not touch this highest-level ownership.

We use MPIs client-server functionality to connect between

simulators, completely evading this challenge. This difference

in MPI usage also allows better use of the HPC scheduling

mechanisms as each simulator is deployed in isolation, facilitating

optimal workload placement on the hardware available. MUSIC

does support several features currently not implemented in our

implementation of the design pattern: multi-rate integration,

i.e., different frequencies of sending and receiving data from

simulators, generic configuration file and it prevents some

simulation errors by using the MPI error system. On the other

hand, our implementation of the design pattern allows for easy

extension with new simulators and better distribution on HPC

systems.

Outside of neuroscience, standards exist for co-simulation,

such as High Level Architecture (HLA) (Saunders, 2010) and

Functional Mock-up Interface (FMI) (Andreas Junghanns et al.,

2021). These standards include error management, multi-rate

integration, and datamanagement (Saunders, 2010; Blockwitz et al.,

2012). The main difference betweenMUSIC and our design pattern

with these two standards is the communication strategy between

simulators. FMI provides a standard for exchanging models and

for scheduled execution (Andreas Junghanns et al., 2021). Features

of FMI and MUSIC currently not implemented in our design

pattern are: Real-time hardware interactions (Moren et al., 2015;

Andreas Junghanns et al., 2021). Additionally, FMI supports signal

extrapolation for error reduction (Blockwitz et al., 2012), although

this could be added in the translation modules central in our

design pattern. FMI does not support concurrent execution of

the different simulators, although internally, the simulations can

be parallelized (Andreas Junghanns et al., 2021) and FMIGo

proposes a parallelization implementation of FMI (Lacoursire

and Hrdin, 2017). HLA is designed for distributed systems and

provides a standard for data exchange and time management

of simulators (Neema et al., 2014; Gutlein et al., 2020). HLA

facilitates the re-usability and interoperability of simulators and

models by describing each component’s roles and interactions. It

further formalizes the data exchange and coordination between

simulators and follows the publish/subscribe pattern. This standard

specifies the definition of information produced or required by

simulators. It provides a common data model for the reconciliation

of model definitions and interoperability of simulators including

during distributed runtime execution. Typically these services

are implemented with a centralized communication architecture

(Gutlein et al., 2020), sometimes described as a hub and spoke

model. BothMUSIC and our design pattern use direct, peer-to-peer

communication.

In addition to the simulator interfacing standard, there are

standardsmore focused on couplingmodels at different scales, such

as MUSCLE2 (Borgdorff et al., 2014), Yggdrasil (Lang, 2019) and

Vivarium (Agmon et al., 2022). This different standard provides
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solutions to the semantic and syntactic problems induced by multi-

scale issues that are not addressed by our design pattern. Our design

scheme is model-independent and delegates responsibility for the

consistency of multi-scale modeling to users. However, one of these

standards can be merged to provide a complete digital platform for

multi-scale co-simulation.

In summary, we have presented a new software science co-

design pattern of the Parallel Co-simulation tool for coupling

simulators with a transformation module. This design pattern

provides the first step for developing platforms using transitional

scaling models and structuring the future syntactic, semantic

and conceptual issues induced by multiscale problems. The

optimization for this workflow is based on the communication

delay between scales. It is not generalized for all cases but

recommended for models with transmission line element method

(Braun and Krus, 2016) or waveform relaxation method (Nguyen

et al., 2007).
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