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Introduction: The endocannabinoid (eCB) system is named after the 
discovery that endogenous cannabinoids bind to the same receptors as 
the phytochemical compounds found in Cannabis. While endogenous 
cannabinoids include anandamide (AEA) and 2-arachidonoylglycerol (2-AG), 
exogenous phytocannabinoids include Δ-9 tetrahydrocannabinol (THC) and 
cannabidiol (CBD). These compounds finely tune neurotransmission following 
synapse activation, via retrograde signaling that activates cannabinoid receptor 
1 (CB1R) and/or transient receptor potential cation channel subfamily V member 
1 (TRPV1). Recently, the eCB system has been linked to several neurological 
diseases, such as neuro-ocular abnormalities, pain insensitivity, migraine, 
epilepsy, addiction and neurodevelopmental disorders. In the current study, 
we aim to: (i) highlight a potential link between the eCB system and neurological 
disorders, (ii) assess if THC exposure alters the expression of eCB-related genes, 
and (iii) identify evolutionary-conserved residues in CB1R or TRPV1  in light of 
their function.

Methods: To address this, we  used several bioinformatic approaches, such 
as transcriptomic (Gene Expression Omnibus), protein–protein (STRING), 
phylogenic (BLASTP, MEGA) and structural (Phyre2, AutoDock, Vina, PyMol) 
analyzes.

Results: Using RNA sequencing datasets, we did not observe any dysregulation 
of eCB-related transcripts in major depressive disorders, bipolar disorder 
or schizophrenia in the anterior cingulate cortex, nucleus accumbens or 
dorsolateral striatum. Following in vivo THC exposure in adolescent mice, 
GPR55 was significantly upregulated in neurons from the ventral tegmental area, 
while other transcripts involved in the eCB system were not affected by THC 
exposure. Our results also suggest that THC likely induces neuroinflammation 
following in vitro application on mice microglia. Significant downregulation of 
TPRV1 occurred in the hippocampi of mice in which a model of temporal lobe 
epilepsy was induced, confirming previous observations. In addition, several 
transcriptomic dysregulations were observed in neurons of both epileptic mice 
and humans, which included transcripts involved in neuronal death. When 
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scanning known interactions for transcripts involved in the eCB system (n  =  13), 
we observed branching between the eCB system and neurophysiology, including 
proteins involved in the dopaminergic system. Our protein phylogenic analyzes 
revealed that CB1R forms a clade with CB2R, which is distinct from related 
paralogues such as sphingosine-1-phosphate, receptors, lysophosphatidic acid 
receptors and melanocortin receptors. As expected, several conserved residues 
were identified, which are crucial for CB1R receptor function. The anandamide-
binding pocket seems to have appeared later in evolution. Similar results were 
observed for TRPV1, with conserved residues involved in receptor activation.

Conclusion: The current study found that GPR55 is upregulated in neurons 
following THC exposure, while TRPV1 is downregulated in temporal lobe epilepsy. 
Caution is advised when interpreting the present results, as we have employed 
secondary analyzes. Common ancestors for CB1R and TRPV1 diverged from 
jawless vertebrates during the late Ordovician, 450 million years ago. Conserved 
residues are identified, which mediate crucial receptor functions.

KEYWORDS

CB1R, TRPV1, endocannabinoid system, evolution, protein structure, phylogenetic 
tree, transcriptomics, bioinformatics

1 Introduction

The endocannabinoid (eCB) system acts as a regulator during 
neurotransmission. Indeed, following synaptic activation, eCBs will 
be released in the post-synapse, which, in turn, will decrease neuronal 
activation (Lu and Mackie, 2016). Historically, anandamide (AEA) 
and 2-arachidonoylglycerol (2-AG) were discovered first and named 
after the receptors they involve, mimicking the effects observed after 
“cannabis” exposure (Lu and Mackie, 2016). Expression of the 
cannabinoid receptor type 1 (CB1R) is mostly confined to the central 
nervous system (Matsuda et  al., 1990), while CB2R expression is 
considered to be mainly located at the periphery (Munro et al., 1993), 
although potential clinical applications of targeting CB2R in 
neurological disorders have been highlighted recently (Kibret et al., 
2022), likely due to microglial expression of CB2R (Tanaka et al., 
2020). Other known eCB receptors include transient receptor 
potential vanilloid 1 (TRPV1) and G protein-coupled receptor 55 
(GPR55) (Kano et al., 2009). Furthermore, GPR18 (McHugh et al., 
2010), GPR119 (Overton et al., 2006) and some PPARs [peroxisome 
proliferator-activated receptors, reviewed in 2016 (O’Sullivan, 2016)] 
have also been identified as potential eCB receptors.

Derived from the omega-6 arachidonic acid (C20:4 n-6), both 
AEA and 2-AG are endogenous ligands of CB1R and induce decreased 
neuronal excitation (Ameri et  al., 1999; Wilson and Nicoll, 2001; 
Straiker et al., 2023). Both molecules seem to involve a retrograde 
mechanism, whereby synthesis of AEA or 2-AG is located in the post-
synapse, followed by diffusion in the synaptic cleft to then act on 
pre-synaptic vesicular fusion (Wilson and Nicoll, 2001). However, 
non-retrograde signaling has also been observed, as well as neuron-
astrocyte communication (Castillo et al., 2012). The biosynthesis of 
AEA involves activation of N-acyltransferase (NAT) and 
N-acylphosphatidylethanolamine-hydrolyzing phospholipase D 
(NAPE-PLD), while 2-AG requires both phospholipase C (PLC) and 
diacylglycerol lipase (DAGL) (Kano et al., 2009). Degradation of AEA 
is performed by activation of fatty acid amide hydrolase (FAAH) and 

2-AG is broken down by monoacyl-glycerol lipase (MAGL) (Kano 
et al., 2009). Interestingly, other degradation pathways can be triggered 
through two other enzymes: cyclooxygenase and lipoxygenase (Kano 
et al., 2009). The biological activity and regional distributions of these 
enzymes, at both the organ- and cell-specific levels, have been 
summarized previously (Basavarajappa, 2007).

Recent evidence has pinpointed that dysfunctions of the eCB 
system may cause neuro-ocular abnormalities (Bainbridge et  al., 
2022), pain insensitivity (Habib et al., 2019), migraine (Juhasz et al., 
2009), epilepsy (Ludányi et al., 2008), addiction (Herman et al., 2006; 
Agrawal et al., 2009; Proudnikov et al., 2010), metabolic disease (de 
Miguel-Yanes et  al., 2011), obesity (Russo et  al., 2007) and 
neurodevelopmental disorders (Lu et  al., 2008; Jung et  al., 2012; 
Siniscalco et al., 2013; Gomis-González et al., 2016; Servadio et al., 
2016; Wei et  al., 2016; Barchel et  al., 2018; Karhson et  al., 2018; 
Melancia et al., 2018; Aran et al., 2019; Zamberletti et al., 2019; Wu 
et al., 2020). Many clinical observations have been paralleled and 
explained by animal studies, often linking AEA and 
neurodevelopmental disorders. In a recent meta-analysis, medical 
cannabis, largely used in the form of either tetrahydrocannabinol 
(THC) or cannabidiol (CBD), was found to be  efficient for the 
treatment of several neurological diseases, such as chronic pain, 
spasticity, substance use disorder, epilepsy, Tourette’s syndrome and 
Parkinson’s Disease (Bilbao and Spanagel, 2022). Thus, activation of 
the eCB by natural or synthetic agonists provides efficient clinical 
benefits, which could be explained by the negative feedback role of the 
eCB system in neurotransmission.

The most probable evolutionary origin of the eCB system was 
explained in 2006 (McPartland et  al., 2006). In fact, different 
evolutionary origins have been discovered, depending on which eCB 
is scrutinized. TRPV1 and GPR55 arose rather recently, likely in 
mammals (McPartland et al., 2006). The oldest member of the eCB 
family, FAAH, was present in early eukaryotic cells, while NAPE-PLD 
arose in opisthokonts, which comprise both animals and fungi. Recent 
evidence has corroborated previous observations, as two FAAH 
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isoforms have been studied in the legume Medicago truncatula (Arias-
Gaguancela et al., 2023), in addition to the known expression in the 
angiosperm Arabidopsis thaliana (Haq and Kilaru, 2020). 
Furthermore, a duplication event likely induced the appearance of 
CB1R and CB2R in vertebrates from an invertebrate deuterostome 
ancestor (Elphick et al., 2003), in which the pre-CBR protein was 
responsible for axonal regulation (Egertová and Elphick, 2007).

In this article, we aim to:
(i) Assess the potential transcriptomic alterations of 13 specific 

eCB-related transcripts in epilepsy, major depressive disorder, bipolar 
disorder or schizophrenia.

(ii) Assess the impact of THC on these 13 specific 
eCB-related transcripts.

(iii) Identify paralogues of CB1R or TRPV1 to infer 
evolutionary ancestry.

(iv) Identify conserved residues in CB1R or TRPV1 that mediate 
receptor function.

2 Methods

2.1 In silico analysis of publicly available 
RNA sequencing datasets

Previously-published RNA sequencing datasets were retrieved from 
the Gene Expression Omnibus (GEO) repository (Edgar et al., 2002; 
Clough and Barrett, 2016). Briefly, GEO datasets were scanned for 
adequate output using specific search terms. Table  1 describes the 
datasets used in the current study, with corresponding accession links 
given in Supplementary Table S1. We focused on 13 specific genes from 
the eCB system (Supplementary Table S2). Supplementary material M1 
summarizes all DESeq2 results of the present study.

Differential gene expression analysis was performed in the 
freeware R Studio version 4.0.3 (R Core Team, 2013; RStudio Team, 
2020). Following the workflow described by Sanchis et al. (2021), 
we  first retrieved count data, using the GEOquery package. If 
necessary, count data were then normalized using the DESeq2 
package. Differential expression analyzes were performed using the 
DESeq2 package. Gene annotations were performed with either the 
org.Hs.eg.bd (Homo sapiens), org.Mm.eg.db (Mus musculus) or 
AnnotationDbi packages, as appropriate. Volcano plots were drawn 
with the EnhancedVolcano package. Gene ontology (over-
representation analysis, ORA) was performed with the GOplot 
package using Biological Processes. Gene set enrichment analysis 
(GSEA) was performed with clusterProfiler and enrichplot packages. 
Scatterplot graphs were drawn using the ggplot2 package. All of the 
above-mentioned packages are available under open access at the 
Comprehensive R Archive Network (CRAN) repository.1

2.2 Protein phylogenetics

Phylogenetic analyzes were performed in Mega X (Kumar et al., 
2018) following alignment of FASTA sequences. Evolutional analysis 

1 https://cran.r-project.org

was performed using the maximum likelihood method. Initial trees 
were obtained by applying Neighbor-Join (NJ) and BioNJ algorithms 
(Gascuel, 1997) to a matrix of pairwise distances estimated using the 
Jones-Taylor-Thornton (JTT)-based model (Jones et al., 1992). The 
final drawn trees are those with the highest log likelihoods. One 
hundred bootstraps (r = 100) were used to infer confidence in the 
output trees. BLASTP was used to scan different species with Homo 
sapiens as bait (reference sequence), available at the National Center 
for Biotechnology Information (NCBI).2

To search for conserved domains/residues, protein sequence 
(Homo sapiens) alignments was performed in Clustal Omega, available 
at the European Molecular Biology Laboratory – European 
Bioinformatics Institute (EMBL-EBI).3

2.3 Protein structural analyzes

Structural prediction of transmembrane protein topology 
(TMHMM, Transmembrane prediction using Hidden Markov 
Models) was performed from protein FASTA sequences using the 
platform provided by the Department of Health Technology at the 
Technical University of Denmark,4 which was made publicly available 
in 2001 (Krogh et al., 2001). Homology models were created using 
Phyre2 (Kelley and Sternberg, 2009; Kelley et al., 2015). For docking 
of anandamide into TRPV1, the Cryo-EM structure of human 
TRPV1 in complex with the analgesic drug SB-366791 (PDB: 8GFA) 
was used. The A chain of the multimer was used with ligand and 
phospholipids removed from the .pdb file. The anandamide ligand 
(CHEMBL15848) was retrieved from the ChEMBL webserver as a .csv 
file and converted to a .pdb file using the Online SMILES Translator 
and Structure File Generator and then to a .pdbqt file with merged 
non-polar hydrogens with AutoDockTools version 1.5.7. The ligand 
was docked into the receptor using AutoDock Vina 1.1.2 (Trott and 
Olson, 2010) with a docking grid 20 Å in length in the x, y, and z 
directions centered on the “tunnel” anandamide-binding pocket 
previously identified (Morales et al., 2022), flexible N438, Y555, Y554, 
Y487 and D708 side-chains and an exhaustiveness of 20. Structural 
analysis was performed by superposition in PyMol (Schrödinger and 
DeLano, 2020). A professional academic license was acquired 
for PyMol.

2.4 Protein–protein interaction networks

Protein–protein interaction networks (Szklarczyk et  al., 2019) 
were predicted using the STRING (Search Tool for the Retrieval of 
Interacting Genes) database server,5 which contains both known and 
predicted protein interactions. Queries were pasted with either a 
single protein name or multiple names (as appropriate). When 
relevant, outer networks were searched for by expanding the nodes on 
display, using the built-in database tool, to reflect the immediate, 
intermediate and extended protein interactomes. For protein 

2 https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins

3 https://www.ebi.ac.uk/Tools/msa/clustalo/

4 https://services.healthtech.dtu.dk/services/TMHMM-2.0/

5 https://string-db.org/
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TABLE 1 Detailed description of all RNA sequencing datasets retrieved for the present study.

Dataset Specie Publication Data type Norm 
needed?

Setting Tissue Regions Intervention group Control group Behavioral testing 
performed prior 
to RNA-seq

GSE80655 Hs Ramaker et al. (2017)
Raw aligned 

counts
Yes Post mortem Brain AntC, NAC, DLS MDD, BD or SCZ Healthy n/a

GSE189821 Mm Zuo et al. (2022)

Raw aligned 

counts Yes In vivo Brain
PFC, NAC, 

AntC, DLS, VTA

Intraperitoneal THC,

10 mg/kg/day for 21 days, 

P30-44 start, washout 14 days

Vehicle ethanol:tween:saline,

1:1:18
Yes

GSE116813 Mm
Jouroukhin et al. 

(2019)

Raw aligned 

counts yes In vivo brain HC

Subcutaneous THC,

8 mg/kg/day for 21 days, P30 

start, washout 21 days

Vehicle 

ethanol:cremaphor:saline,

1:1:18

Yes

GSE70689 Mm Juknat et al. (2013)
Raw aligned 

counts
No In vitro Microglia - THC, 10 μM, 2 h.

None, as final

[ethanol] ≤ 0.1%
n/a

GSE77578 Mm
Srivastava et al. 

(2018)

Raw aligned 

counts no In vivo Brain HC

EP induced by single 

intraperitoneal pilocarpine 

injection

Non-epileptic (pilocarpine-

naïve)
No

GSE190451 Hs Chen et al. (2023)

Raw aligned 

counts Yes Post mortem Brain NeoC EP (temporal lobe)

Non-epileptic patients 

(undergoing benign brain tumor 

surgery, healthy tissue collected)

n/a

GSE74150 Rn
Damasceno et al. 

(2020)

Raw aligned 

counts
Yes In vivo Brain

Inferior 

colliculus
EP (audiogenic) Non-epileptic No

GSE, GEO (gene expression omnibus) series experient; Hs, Homo sapiens; Mm, Mus musculus; Rn, Rattus norvegicus; NAC, nucleus accumbens, AntC, anterior cingulate; DLS, dorsolateral striatum; HC, hippocampus; NeoC, neocortex; PFC, prefrontal cortex; VTA, 
ventral tegmental area; MDD, major depressive disorder; BD, bipolar disorder; SCZ, schizophrenia; EP, epilepsy; THC, tetrahydrocannabinol; Norm, normalization; n/a, non-applicable. Please see Supplementary Table S1 for accession links.
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clustering within the networks, k mean clustering (based on centroids) 
was applied (Dalmaijer et al., 2022) directly in the server.

3 Results

3.1 Neurodevelopmental disorders and the 
eCB system: no change for 13 selected 
transcripts

We first examined dataset GSE80655 (Ramaker et al., 2017), 
which contains RNA sequencing of 281 postmortem samples 
extracted from patients with either major depressive disorder (MDD, 
n = 69), bipolar disorder (BP, n = 71), schizophrenia (SCZ, n = 71) or 
controls (n = 70), in an attempt to decipher the potential role of the 
eCB system in these pathologies (Table 1). Out of 13 transcripts of 
interest (CNR1, CNR2, GPR55, GPR110, TRPV1, MGLL, DAGLA, 
PLCB1, NAPEPLD, FAAH, ABHD6, PLA2G4A and ALOX8, 
Supplementary Table S2), none were considered significantly up- or 
down-regulated in MDD (Figure  1A), respectively defined as 
log2(fold change) >1 or < −1 and -log10(p) ≥ 1.3 (p = 0.05). Similar 
results were observed with BP (Figure 1B) and SCZ (Figure 1C). 
These results indicate that our 13 transcripts of interest are not 
dysregulated under these conditions.

3.2 Chronic THC induces significant 
up-regulation of GPR55 in the ventral 
tegmental area of mice

Next, we  investigated whether we could detect transcriptional 
changes in our 13 transcripts of interest following acute or chronic 
THC exposure. To that end, we used GSE189821, GSE116813 and 
GSE70689 (Table 1). In GSE189821, 119 samples were analyzed from 
adolescent mice chronically exposed to THC (3 weeks at 10 mg/kg/
day) or not (vehicle) and following a 14-day washout period, 
mimicking human behavior. In accordance with previous observations 
(Zuo et al., 2022), we found only minor transcriptomic dysregulations 
of our 13 eCB-related transcripts of interest following THC exposure 
in these mice (males and females pooled). This might be due to the 
long washout period that was applied. However, we  noted 31 
differentially expressed genes, with 13 transcripts down-regulated and 
18 transcripts up-regulated, outside of our list of interest, when 
pooling all different brain regions together (Figure 2A). In the ventral 
tegmental area, GPR55 was found to be significantly upregulated after 
THC exposure, the only one from our list of interest and out of all 
brain regions examined. In GSE116813, 12 hippocampal samples were 
sequenced from mice exposed to chronic THC (21 days at 8 mg/kg/
day) or not (Jouroukhin et al., 2019) and after 21 days of washout. 
After subsetting the dataset to only include wild-type mice, 

FIGURE 1

The eCB system in postmortem tissues from patients with major depressive disorders (MDD), bipolar disorder (BD) or schizophrenia (SCZ). Volcano 
plots of the RNA sequencing dataset GSE80655 (Ramaker et al., 2017), performed on neurons in the anterior cingulate cortex, nucleus accumbens and 
dorsolateral striatum comparing control patients to patients with clinically-determined MDD (A), BD (B) or SCZ (C). Twelve transcripts of interest, 
involved in the eCB system, were extracted from the GSE80655 dataset. The horizontal and vertical bars represent the significant threshold, set at 
p  =  0.05 (−log10(p)  =  1.3) and log2(fold change) >1 or  <  −1, respectively.
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we observed 134 differentially expressed transcripts, 38 up-regulated 
and 96 down-regulated (Figure 2B). As observed with the previous 
dataset, none of these differentially-expressed transcripts were linked 
to our list of interest. The next dataset, GSE70689, was used to observe 
acute transcriptional changes in mice microglia exposed to in vitro 
THC (10 μM for 2 h) (Juknat et  al., 2013). Here, we  performed 
subsetting of microglia exposed to either THC or vehicle, excluding 
samples exposed to cannabidiol. Using such a method, 60 transcripts 
were found to be significantly differentially expressed, 2 up-regulated 
and 58 downregulated (Figure 2C). None of our transcripts of interest 
were found to be significantly dysregulated in such a dataset. A further 
analysis revealed that none of the previously differentially expressed 
genes (outside our 13 transcripts of interest) overlapped in the three 

datasets (Venn diagram in Figure  2D). In addition to these 
observations, we also ran ORA Gene Ontology (GO) analyzes for each 
dataset. GSE189821 and GSE116813 returned no GO enrichment, 
while GSE70689 revealed many GO enrichments. These included 
transcripts involved in immune response, such as T cell activation, 
lymphocyte migration, cytokine-mediated signaling and ERK 
(extracellular signal-regulated kinases) cascades (Figure 2D). These 
surprising results indicate that our 13 transcripts of interest are only 
minimally involved in the response to in vivo THC exposure, at least 
in mice. However, in vitro exposure to THC likely activates microglia, 
in an attempt to prevent THC-induced inflammation. Representations 
of the three datasets (GSE189821, GSE116813 and GSE70689) and our 
13 transcripts of interest can be found on Figure 2E. Note that GPR55 

FIGURE 2

GPR55 is significantly upregulated in the ventral tegmental area of adolescent mice following chronic in vivo THC exposure. (A) Volcano plot 
comparing transcript expression in adolescent mice chronically treated (3  weeks) with vehicle to THC (10  mg/kg/day), extracted from the GSE189821 
dataset (Zuo et al., 2022). (B) Volcano plot comparing transcript expression in adolescent mice chronically treated (3  weeks) with vehicle to THC (8  mg/
kg/day), extracted from the GSE116813 dataset (Jouroukhin et al., 2019). (C) Volcano plot comparing transcript expression in mice microglia treated in 
vitro with THC (10  μM for 2  h) or control (untreated), extracted from the GSE70689 dataset (Juknat et al., 2013). Red dots indicate significantly up- or 
down-regulated transcripts. Horizontal bars represent the significant threshold, set at p  =  0.05 (−log10(p)  =  1.3). vertical bars represent the threshold for 
significant differences in transcript expression, with either down- (<−1) or up- (>1) regulated transcripts. (D) Histograms (left), Venn diagram (middle) 
and gene ontology (biological processes) plots (right) showing no overlap between the significantly differentially expressed transcripts for the three 
datasets. In both GSE186821 and GSE116813, no biological processes were returned. However, in GSE70689, gene ontology (GO) analysis revealed 
several biological processes that are affected by THC exposure. Of interest, transcripts involved in neuro-inflammation and neurophysiology. (E) Out of 
the 12 transcripts of interest involved in the eCB system, only GPR55 was significantly upregulated in the ventral tegmental area of adolescent mice 
exposed chronically to THC. Amyg, amygdala; DL Strm, dorsolateral striatum; NAcc, nucleus accumbens; PFC, prefrontal cortex; VTA, ventral 
tegmental area; GO, gene ontology; THC, Δ-9 tetrahydrocannabinol.
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is the only transcript of interest that was significantly upregulated after 
chronic in vivo THC exposure in mice, and only in the VTA 
(Figure 2E). This suggests that our 13 transcripts of interest were not 
affected by THC exposure, at least under these specific conditions, 
except for GPR55. GSEA analyzes did not reveal any biological 
processes of interest (not shown).

3.3 TPRV1 is significantly downregulated in 
the epileptic tissue of patients with 
temporal lobe epilepsy

Our next step was to investigate the eCB system with regard to 
temporal lobe epilepsy, in light of extensive evidence of the links 
between the two (Alger, 2004; Kwan Cheung et al., 2019; Bilbao and 
Spanagel, 2022; Martínez-Aguirre et  al., 2022; Sugaya and Kano, 
2022). Three datasets were thus investigated: GSE77578 (Srivastava 
et  al., 2018), GSE190451 (Chen et  al., 2023) and GSE74150 
(Damasceno et al., 2020). In GSE77578, 56 hippocampal samples were 
compared from epileptic or control mice. Here, we only compared 
control mice to epileptic mice (temporal lobe epilepsy), excluding 
mice treated with an antiepileptic drug. We found 129 differentially 

expressed transcripts in such a model of temporal lobe epilepsy, with 
43 transcripts up-regulated and 86 down-regulated (Figure 3A). In 
GSE190451, 6 neocortical samples were compared between patients 
with temporal lobe epilepsy (n = 3) and aged-matched non-epileptic 
controls (n = 3), an analysis that differs slightly from the published 
article, in which the authors analyzed a total of 8 samples (Chen et al., 
2023). We found a total of 1873 differentially expressed transcripts in 
temporal lobe epilepsy, 833 up-regulated and 1,040 down-regulated 
(Figure 3B). In GSE74150, an animal model of genetic epilepsy was 
used (Wistar audiogenic rat). Here, we  found 67 differentially 
expressed transcripts, 53 down-regulated and 14 up-regulated 
(Figure 3C). Up- and down-regulated transcripts in the three datasets 
presented some overlap (Figure 3D, Supplementary Table S3), showing 
that transcripts involved in, or responding to, epilepsy seem to 
be  found across species and models. Several gene ontology 
enrichments (ORA) were detected in the first two datasets, ranging 
from regulation of neurophysiology to neuronal death. Interestingly, 
37 biological process terms were found to be common across the two 
first datasets (Supplementary Table S4), such as synapse organization, 
neuron death, myelination and plasma membrane organization 
(Figure 3C). GSEA analyzes did not reveal any biological processes of 
interest (not shown). Out of our 13 transcripts of interest, TRPV1 was 

FIGURE 3

TRPV1 is significantly downregulated in temporal lobe epilepsy. (A) Volcano plot comparing transcript expression in control mice to mice with temporal 
lobe epilepsy (pilocarpine model), extracted from the GSE77578 dataset (Srivastava et al., 2018). (B) Volcano plot comparing transcript expression in 
tissue samples from control patients to fresh tissue samples extracted from the epileptogenic foci from patients with temporal lobe epilepsy 
[GSE190451 dataset (Chen et al., 2023)]. (C) Volcano plot comparing transcript expression in control rats to a genetic model of epilepsy [Wistar 
audiogenic rat, Damasceno et al., 2020]. Red dots indicate significantly up- or down-regulated transcripts. Horizontal bars represent the significant 
threshold, set at p  =  0.05 (−log10(p)  =  1.3). Vertical bars represent the threshold for significant differences in transcript expression, with either down- 
(<−1) or up- (>1) regulated transcripts. (D) Histograms (left), Venn diagram (middle) and gene ontology plots (right) showing small overlap between the 
significantly up- or down-regulated transcripts in the three datasets. On gene ontology plots, several biological processes are found dysregulated in 
both datasets, including neurophysiology and neuronal death. TRPV1 (bottom, blue arrow) is significantly down-regulated in epilepsy (human, 
GSE190451). GO, gene ontology; TLE, temporal lobe epilepsy.
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found to be significantly down-regulated in the neocortex of patients 
with temporal lobe epilepsy (Figure 3D). These results confirm, once 
again, that TRPV1 plays an important role in the pathophysiology of 
epilepsy, as observed previously (Jia et al., 2015; Saffarzadeh et al., 
2015; Kong et al., 2019; Wang et al., 2019; Lazarini-Lopes et al., 2022).

3.4 The eCB system interactome

Using the STRING database (Szklarczyk et al., 2019), containing 
both known and predicted protein interactions, we first fed into the 

database single protein names (from our list of 13 transcripts/
proteins). Analysis of the immediate interactomes revealed great 
disparities in terms of protein overlap in pair-wise comparisons 
(Figure 4A). Interestingly, great overlap was observed with CB1R, 
CB2R and ADGRF1 (GPR110). We also noted great protein overlap 
in the interactomes of DAGLA, NAPE-PLD and ABHD6. As 
we  expanded the interactome searches, similar conclusions were 
reached (Figure 4A). Surprisingly, TRPV1 and ALOX15B presented 
the lowest overlap in all levels, whether immediate, intermediated or 
extended interactomes (Figure 4A). We next scanned the database 
using our 13 proteins of interest by bulk feeding all 13 proteins into 

FIGURE 4

Endocannabinoid protein interactomes. (A) Pair-wise matrix comparisons of immediate, intermediate or extended protein interactomes overlap, using 
single proteins as input into the STRING database, from our list of 13 proteins of interest (based on the 13 transcripts of interest). Note the high interactome 
overlap with CB1R, CB2R, GPR55, ADGFR1 (GPR110) on one side and NAPE-PLD, DAGLA and ABHD6 on the other. The interactome of ALOX15B appears 
to not overlap with the other 12 proteins of interest, except PLA2G4A (14.3–18.2%). (B) Protein interactomes at an immediate, intermediate or extended 
level. (C) K means clustering (k = 3) was applied to identify segregation groups within the extended endocannabinoid protein interactome.
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the search equation. When examining the immediate interactome of 
these 13 proteins, only the same 13 proteins were returned (Figure 4B), 
providing no additional information of interest. However, when the 
interactome search was expanded to an intermediate level, new 
proteins appeared, including GNAI1, GNAI2, GNAQ, and TRMP8 
(Figure 4B). When the search was expanded to another level (extended 
interactome), new protein interactions arose, such as CALM3, 
CALML3, CALML5, CALML6 and TRPA1 (Figure 4B). Our final step 
was to apply k means clustering using a fixed number of clusters 
(k = 3). Very surprisingly, 4 proteins clustered outside of the main 
cluster containing the proteins of interest: TRPV1, PLC1B, ALOX15B 
and PLA2G4A (Figure 4C). We also noted that TRPM8 and GATB 
clustered with the majority of our proteins of interest, via FAAH, 
acting as a link within the extended interactome (Figure 4C).

3.5 Paralogues of human CBRs

Our next step was to try to determine how CB1R (the protein 
produced from the CNR1 gene) evolved within the human proteome. 
Using GeneCards (Stelzer et al., 2016) with Homo sapiens CB1R as 
input, 18 paralogues were returned. As expected, the closest paralogue 
was CNR2 (Figure 5A). CNR1 and CNR2 formed a distinct clade, with 
the next most closely related G-coupled protein receptors (GPCRs) 
being lysophosphatidic acid receptors (LPARs) and sphingosine-1-
phosphate receptors (S1PRs). The furthest clade included 
melanocortin receptors 1–4 (MCRs) and GPR119. Inspection of the 
sequences revealed three conserved regions (Figure 5B), which could 
be divided into residues conserved within the clade containing CNR, 
LPAR and S1PR families (Figure 5B, blue) and residues only conserved 
within the CNR clade (Figure 5B, orange). Three conserved motifs 
(CMs) were identified: CM1, CM2 and CM3 are located within 
transmembrane (TM) 2, 3 and 7, respectively (Figure 5C). We then 
examined the location and function of these residues in the Homo 
sapiens CB1R structure bound to an anandamide analog (Krishna 
Kumar et al., 2023) and in the lysophosphatidic acid receptor structure 
bound to its native lysophosphatidic acid ligand (PDB: 7TD1) (Liu 
et al., 2022). The residues conserved within all three CNR, LPAR and 
S1PR families are largely found in the lower part of the receptor and 
include five of the six residues identified as being important in 
receptor activation (Figure 5D), as observed before (Hua et al., 2020). 
The ligand binding pocket in both receptors is formed by a large 
pocket of hydrophobic residues. Most of the residues conserved only 
within the CNR clade are located in this area and include some 
hydrophobic residues and H178 which forms a hydrogen bond with 
the terminal hydroxyl of the ligand (Figures 5D,E).

Out of 13 deuterostome species spanning from mammals to 
echinoderms (plus insects as protostomes), CB1R orthologues were 
found in placental mammals, marsupials, monotremes, birds, reptiles, 
amphibians, teleosts, elasmobranchs and Agnatha 
(Supplementary Table S5), but absent in cephalochordates, tunicates, 
echinoderms and insects. Furthermore, CB1R orthologues were also 
not found in plants, bacteria, Cnidaria and Porifera, except in 
Klebsiella (gram-negative bacteria) which presented 100% homology 
with the bird CB1R sequence (not shown), thus likely accounting for 
a database error in GenBank. When the same experiment was 
conducted with CB2R, we observed the presence of orthologues in 
placental mammals, marsupials, monotremes, birds, reptiles, 

amphibians and teleosts, the latter presenting two orthologues 
(Supplementary Table S5). Within the BLASTP database, unknown 
CBRs were found in cephalochordates and tunicates. These results 
suggest that the classical endocannabinoid receptors (CB1R and 
CB2R) are confined to a subgroup of deuterostomes, containing 
urochordates, cephalochordates and chordates, but absent from other 
deuterostomes, other animals, plants and prokaryotes, thus partly 
corroborating previous observations (McPartland et al., 2006; Elphick, 
2012). Furthermore, it is suggested that a duplication event has 
occurred in teleosts since they diverged from other chordates. A 
further phylogenetic analysis revealed a clear division between CB1R 
and CB2R into two distinct clades (Figure 6A). We noted that most 
taxa presented copies of both proteins. There are two explanations for 
the lack of CNR2 paralogues in agnathans and elasmobranchs: (i) a 
duplication may have occurred since the divergence of other chordates 
and elasmobranchs or (ii) CNR2 paralogues were lost by both 
agnathans and elasmobranchs, the first scenario being by far the more 
likely explanation. Finally, we noted that the CBRs of Cephalochordates 
and Tunicates are very different, making it difficult to distinguish these 
two proteins from other related GPCRs. To address this, we performed 
multiple alignments with CB1R and CB2R protein sequences from the 
above-mentioned species. Our first alignment included 
cephalochordates and tunicates and led to great disruptions of the 
CMs (Figure  6B). The second alignment, which was performed 
without cephalochordates and tunicates, produced more defined, but 
yet not optimal, CMs (not shown). Our final alignment was performed 
without cephalochordates, tunicates and Danio rerio. This final 
approach produced robust identification of the three CMs (Figure 6C), 
thus corroborating the above results. Subsequently, we  created 
homology models of the agnathan CB1R and cephalochordate 
unclassified CBR. Both the agnathan (Petromyzon marinus: 
ModelArchive ma-yvfgy) and cephalochordate (Branchiostoma 
floridae: ModelArchive ma-mi5fb) receptors contain the six residues 
important for receptor activation. However, the cephalochordate 
receptor lacks the majority of the residues involved in the AEA-binding 
pocket, including a histidine equivalent (H178) needed for hydrogen-
bond formation with the terminal hydroxyl (Figures 6D,E).

3.6 Paralogues of human TRPVs

Our final analyzes focused on TRPV1, as this is the second eCB 
receptor in the central nervous system (together with CB1R). Using 
similar approaches, we first determined the phylogeny of the six 
Homo sapiens paralogues, using TRPV1 as the reference sequence. 
We observed that TRPV1 and TRPV2 diverged recently, which arose 
from a duplication event (Figure  7A). Likewise, divergence of 
TPRV3, TRPV5 and TRPV6 arose earlier, with TPRV5 and TRPV6 
being the most recent split (Figure 7A). Two small CMs were noted 
throughout those 6 different proteins, including Y375-G376-P377, 
L382-Y383-D384-L385, L547-G548-W549 and R557-G558 
(Figure 7B). Using Homo sapiens TRPV1 sequence as bait, we found 
that TPRV5 or TRPV6 were present across the most diverse range of 
taxa (Supplementary Table S6). These receptors are present in 
Bilatera but absent from Porifera, the latter presenting weak protein 
homology. These observations suggest that the TRPV family is 
specific to the Bilatera. Furthermore, TPRV1 and TRPV2 resulted 
from later duplication events in the common ancestor of jawed 
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FIGURE 5

Paralogues of CNR1 in Homo sapiens and evolution of CB1R structure. (A) Phylogenic relationships of cannabinoid receptor 1 (CNR1) and the eighteen 
CNR1 paralogues listed in Genecards. The evolutionary history was inferred by using the Maximum Likelihood method and Jones-Taylor-Thornton 
matrix-based model (Jones et al., 1992). The tree with the highest log likelihood (−13679.67) is shown. The percentage of trees in which the associated 
taxa clustered together is shown next to the branches (orange, from 100 bootstraps). Initial trees for the heuristic search were obtained automatically 
by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the JTT model, and then selecting the topology 
with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites [3 categories (+G, 
parameter  =  1.3423)]. This analysis involved 19 amino acid sequences. There were a total of 504 positions in the final dataset. Blue values indicate 
branches length. (B) Clustal Omega alignment of Homo sapiens (Hs) CNR1 and CNR2. Runs (≥ 3 amino acids or longer runs with >80% identity) that 

(Continued)
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are present in CNR1/2 but absent in other Hs GPCR paralogues are highlighted in blue with unique CNR amino acids (compared to S1PR and LPAR) in 
orange on CNR1 sequence. Three areas of interest are identified, conserved motif (CM) 1 (residues 151–181 in CNR1), CM2 (200–216) and CM3 (379–
401). (C) Transmembrane Helices Hidden Markov Models scan of CNR1. CM1 is located in TM (transmembrane) 2, CM2 in TM3 and CM3 in TM7. 
(D) Homo sapiens cannabinoid receptor type 1 (PDB: 8GHV) bound to anandamide analog AMG315 (dark blue). Residues conserved in CNR, LPAR and 
S1PR clades are colored blue and those conserved in only the CNR clade are colored orange. Residues critical for receptor activation are shown as 
cyan sticks and additional, non-conserved residues in the anandamide binding pocket are colored yellow. Axes colored X red, Y green, Z blue. 
(E) Comparison of Homo sapiens cannabinoid receptor type 1 (left) and Homo sapiens lysophosphatidic acid receptor (right, PDB: 7TD1) binding 
pockets. Axes colored X red, Y green, Z blue. Color scheme as in (D) with lysophosphatidic acid show in magenta.

FIGURE 5 (Continued)

FIGURE 6

Evolutionary analysis of CNR1/CB1R in different taxa and structural comparisons. (A) Maximum Likelihood analysis using a neighbor joining method. 
Sequences aligned with Clustal W and phylogenetic analysis carried out using JTT  +  G with 100 bootstraps (orange values). Sphingosine-1-phosphate 
receptor 1 (S1PR1) was used to root the tree (blue branch). (B) Alignment of all CNR proteins. The three motifs identified earlier are highlighted in blue. 
Sequence not containing the conserved motifs were removed from the figure. (C) Alignment of CNR proteins identified in chordates (with the removal 
of Teleost CNR2). Sequence not containing the motifs removed from the figure. Blue highlighting are residues that were identified earlier as conserved 
(from CM1, CM2 and CM3). (D) Homology models of Petromyzon marinus CB1R superposed onto the anandamide analog AMG315 (dark blue) (left) 
and Branchiostoma floridae cannabinoid receptor of unknown type (right). Residues conserved in CNR, LPAR and S1PR clades are colored blue and 
those conserved in only the CNR clade are colored orange. Residues critical for receptor activation are shown as cyan sticks and additional, non-
conserved residues in the anandamide binding pocket are colored yellow. Axes colored X red, Y green, Z blue. (E) Petromyzon marinus CB1R 
superposed to the anandamide analog binding pocket. Axes colored X red, Y green, Z blue. Color scheme as in (D).
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FIGURE 7

Phylogeny of TRPVs and conserved residues. (A) Simple phylogeny illustrating the relationships of the six TRPVs human paralogues. (B) Clustal 
alignment of the six Homo sapiens TRPVs. Two small fully conserved motif highlighted in blue. (C) Minimum Evolution Tree of Chordate TRPV family. 
Aligned using ClustalW, and ME tree (JTT  +  G) with 500 bootstraps. DmInactive (proteostome TRPV protein) is used to root the tree (blue branch). 
(D) Alignment of TRPV1 and TRPV2 showing conservation of sites. In each case, highlighted residues are either fully conserved or with conservative 
substitutions. (E) Comparison of TRPV1 and TRPV5, aligned using ClustalW.
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vertebrates and amniotes, respectively (Figure 7C). In addition, our 
phylogenetic analysis highlighted that eCB-binding receptors 
(TRPV1 and TRPV2) form one clade, which includes taxa from 
elasmobranchs onwards, with a more recent duplication forming 
TRPV2, found in amniotes only (Figure 7C), as suggested above 
(Supplementary Table S6). Alignments of TPRV1 and TRPV2 from 
these species correctly identified conserved residues involved in 
channel gating and selectivity, as well as ligand binding [anandamide, 
vanilloid, double-knot toxin (DkTx), Figure  7D]. Conserved 
residues were often found throughout species, indicative of the 
importance of these residues for TRPVs function. Finally, out of 
these 28 functional residues in TRPV1, only 8 were conserved in 
TRPV5, whether fully conserved or present with conservative 
substitutions (Figure 7E). Taken together, these results pinpoint a 
divergence of eCB receptors between jawed and jawless vertebrates, 
around 450 million years ago during the late Ordovician. These 
observations are consistent with previous studies (Elphick et al., 
2003; McPartland, 2004; McPartland et al., 2006).

We examined the structures of TRPV1 and TRPV4 to identify 
residues important for ligand binding. TRPV1 can be activated by 
endogenous ligands such as AEA and exogenous ligands such as 
capsaicin, the component of chili peppers which creates a sensation of 
burning (Lam et  al., 2005). Structural studies have identified the 
capsaicin binding site, known as the vanilloid-binding pocket 
(Nadezhdin et al., 2021; Kwon et al., 2022). There are no experimentally 
determined structures of the TRPV1 receptor bound to AEA. However, 
using a model of human TRPV1 based on the experimental rat 
structure, molecular dynamics and docking studies have identified 
two possible binding sites for anandamide (Muller et al., 2020; Morales 
et al., 2022), represented in Figure 8A. One site was the vanilloid-
binding pocket (VBP) but the preferred site was a tunnel (AEA 
tunnel) involving interactions with Y554, Y555, Y487, D708, and 
N438. We  docked AEA into the AEA tunnel using the recently 
experimentally determined structure of human TRPV1 (PDB: 8GFA) 
(Neuberger et al., 2023). One of nine docking solutions had a similar 
orientation to that shown in Morales et alia (Morales et al., 2022), with 
Y555, N438 and Y554 forming hydrogen bonds with the amide group 
hydrogen and the terminal hydroxyl group oxygen (Figure  8B, 
ModelArchive ma-dol4y). The five interacting residues are well 
conserved across species in TRPV1 and TRPV2. AEA itself does not 
directly bind to TPRV4, however this receptor is activated by an AEA 
metabolite 5′,6′-epoxyeicosatrienoic acid (5′,6′-EET) (Watanabe et al., 
2003). Homo sapiens TRPV4 (PDB: 8TD1) (Nadezhdin et al., 2021) is 
missing equivalents to TRPV1 Y847 and Y555 which stabilize AEA 
with hydrogen bonds in the AEA tunnel. Simulations have suggested 
that residues K535, F549, Q550, Y591 and R594 of TRPV4 form the 
5′,6′-EET binding pocket (Berna-Erro et al., 2017), as displayed in 
Figure 8C. Of these, Y591 is equivalent to Y554 in TRPV1 which 
forms a hydrogen bond with the terminal hydroxyl of AEA, but the 
remaining pocket is very different. We also examined differences in 
the vanilloid-binding pocket by superimposing capsaicin from the rat 
(Rattus norvegicus) TRPV2 complex structure (PDB: 8SLY) (Gochman 
et al., 2023) onto the Homo sapiens TRPV1 receptor (PDB: 8GFA). 
Whilst some important hydrophobic residues are conserved in the 
equivalent pocket in TRPV4, there are no equivalent residues for the 
hydrogen-bonding Y511 and T550 which were previously observed to 
be involved in propagating ligand-activated conformational changes 
(Figure 8D) (Kwon et al., 2022).

FIGURE 8

Structural comparisons of Homo sapiens TRPV1 and TRPV4. (A) Homo 
sapiens TRPV1 (PDB: 8GFA) showing one of four monomers in detail. 
Anandamide (AEA) tunnel residues shown in dark blue and vanilloid-
binding pocket residues shown in pink. (B) Comparison of residues in 
the AEA tunnel for TRVP1 (white sticks with residue labels) and TRPV4 
(green sticks, PDB: 8TD1). AEA is shown in blue sticks. (C) Comparison 
of residues in the AEA tunnel for TRVP1 (white sticks) and the 5′,6′-EET 
pocket for TRPV4 (green sticks with residue labels). AEA is shown in 
blue sticks. (D) Comparison of residues in the vanilloid-binding pocket 
for TRVP1 (white sticks with residue labels) and TRPV4 (green sticks). 
Capsaicin (natural phytochemical ligand) is shown in magenta.
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4 Discussion

The location of CB1Rs is restricted to pre-synaptic terminals of 
both excitatory and inhibitory neurons (Mátyás et  al., 2008). The 
physiological roles of CB1R are to mediate mood (Sbarski and Akirav, 
2018), memory (Borgan et al., 2019a), stress (Arévalo et al., 2001; 
Barna et al., 2004) and locomotion (Han et al., 2023). These functions 
were reviewed in 2020 (Cristino et al., 2020). Activation of CB1Rs 
induces synaptic plasticity via long-term depression (Wu et al., 2015). 
Indeed, following synaptic activation, endogenous endocannabinoids 
(AEA and 2-AG) will be released from the post-synaptic element to 
then diffuse to the pre-synaptic element, where both molecules will 
act as agonists at CB1 receptors. Such activation of CB1 receptors will 
reduce neurotransmitter release, ending the cycle of synapse 
activation. This mechanism is often referred to as endocannabinoid-
mediated negative feedback. Interestingly, CB1Rs were found to 
be expressed in the nucleus accumbens of vervet monkeys (Kucera 
et al., 2018), thus highlighting the role of these receptors in the reward 
circuitry (Méndez-Díaz et  al., 2019; Braunscheidel et  al., 2022; 
Ceccarini et al., 2022; Han et al., 2023). Dysfunction of CB1Rs has 
been linked to a wide array of neurological disorders such as 
Parkinson’s Disease, Alzheimer’s Disease, Huntington Disease and 
multiple sclerosis [reviewed in Cristino et al. (2020)].

In contrast to CB1R, TRPV1 is expressed in both presynaptic 
(Tominaga et al., 1998; Medvedeva et al., 2008) and postsynaptic (Bae 
et al., 2004; Grueter et al., 2010) elements. The physiological roles of 
TRPV1 intertwined those of CB1R, such as memory and locomotion, 
but also other functions, such as food intake (Cristino et al., 2020). 
Extensive evidence suggests that TRPV1 can be linked to epilepsy (Jia 
et al., 2015; Saffarzadeh et al., 2015; Kong et al., 2019; Wang et al., 
2019; Lazarini-Lopes et  al., 2022), although causal determination 
remains unclear. Indeed, in naïve rodents, chronic exposure to the 
TRPV1 agonist capsaicin induces spontaneous seizures (Jia et  al., 
2015). On the other hand, pre-treatment with the TRPV1 antagonist 
capsazepine decreased seizure severity and mortality in 
pentylenetetrazol-induced epilepsy (GABAA antagonist) (Jia et al., 
2015). Another study has observed altered electrophysiological 
properties in microglial cells following capsaicin, which was 
hypothesized as driving hyperthermia-induced seizures (Kong et al., 
2019), although direct experimental confirmation has not been 
performed. Increased expression of TRPV1 was also observed after 
the successful induction of temporal lope epilepsy through kindling 
(audiogenic epilepsy) in rats (Lazarini-Lopes et al., 2022). Similar 
results were observed in another study using a model based on 
pilocarpine exposure (Saffarzadeh et  al., 2015). Another elegant 
confirmation of the link between epilepsy and TRPV1 was observed 
in animals lacking TRPV1 (knock-out). Indeed, compared to wild-
type mice, mice lacking TRPV1 presented decreased seizure latency, 
duration and severity (Wang et al., 2019). In agreement with these 
observations, our current transcriptomic results report a 
downregulation of TPRV1 in temporal lobe epilepsy. Indeed, we found 
a significant downregulation of TRPV1 mRNA in the neocortex of 
patients with temporal lobe epilepsy compared to control tissues. As 
mentioned above, preclinical studies have shown that agonism of 
TRPV1, using capsaicin, can induce tonic–clonic seizures, while 
TPRV1 antagonism reduced mortality in animals in which seizures 
were induced (Jia et al., 2015). These results were also observed in 
knock-out animals for TRPV1 (Jia et al., 2015). However, contrasting 

results were observed in a 2020 study, in which capsaicin inhibited 
epileptiform activities in the prefrontal cortex (Pasierski and Szulczyk, 
2020). The same authors also witnessed decreased neuronal excitation, 
thus explaining the above-mentioned effects (Pasierski and Szulczyk, 
2020), which are mediated by decreased sodium currents. These were 
not isolated results, as other studies have also concluded that capsaicin 
possesses anti-convulsive properties in rats (Abdel-Salam et al., 2020) 
and mice (Lee et  al., 2011; Pezzoli et  al., 2014). Interestingly, 
hippocampal expression of CB1Rs was also found to be significantly 
decreased in patients suffering from epilepsy (Ludányi et al., 2008). 
Thus, in light of these previous results and those from the present 
study, TRPV1 could be of interest for developing new therapeutics for 
patients with refractory epilepsy.

The role of the eCB system in neurodevelopmental disorders has 
been described previously. Indeed, many studies observed a direct 
relationship between altered CB1R availability in schizophrenia (Dean 
et al., 2001; Zavitsanou et al., 2004; Newell et al., 2006; Eggan et al., 
2008; Urigüen et al., 2009; Wong et al., 2010; Dalton et al., 2011; Jenko 
et al., 2012; Ceccarini et al., 2013; Ranganathan et al., 2016; Muguruza 
et al., 2019; Bloch Priel et al., 2023) or during psychosis (Borgan et al., 
2019b, 2021), which is also corroborated by animal models of 
schizophrenia (Szűcs et al., 2016; Stark et al., 2022). Furthermore, a 
link between THC exposure and schizophrenia has been evidenced in 
humans (Hjorthøj et al., 2021) and animal models (Rodríguez et al., 
2017). Compared to control patients, levels of AEA are increased in 
the blood (De Marchi et  al., 2003; Ibarra-Lecue et  al., 2022) and 
cerebrospinal fluid (Giuffrida et  al., 2004; Leweke et  al., 2007; 
Minichino et al., 2019) in patients with schizophrenia. In addition, 
exposure to THC alters AEA levels (Leweke et al., 2007; Seillier et al., 
2020; Ibarra-Lecue et  al., 2022). Furthermore, lower brain FAAH 
availability was observed in adolescent chronic cannabis users 
(Jacobson et  al., 2021). Targeting FAAH has proven an efficient 
treatment to decrease cannabis use and withdrawal (D’Souza et al., 
2019). During psychosis, increased levels of DAGL and NAPE are 
reported in mononuclear cells (peripheral blood) compared to control 
patients (Bioque et  al., 2013), two enzymes controlling 
endocannabinoid production. In addition, such a study also reported 
increased FAAH levels during psychosis (Bioque et  al., 2013). 
Altogether, these studies provide ample evidence for a link between 
the eCB system and neurodevelopmental disorders. Recent studies 
reviewed the relationship of the eCB in several neurological 
pathologies such as depression (Gallego-Landin et  al., 2021), 
schizophrenia (Garani et  al., 2021), autism (Su et  al., 2021) and 
substance use disorder (Navarro et al., 2022). In the current study, our 
transcriptomic analysis found that GPR55 is upregulated in the ventral 
tegmental area of adolescent mice following THC exposure, even after 
a long washout period (2 weeks). These results can be explained by the 
fact that THC possesses psychoactive effects (Ameri et al., 1999) and 
that the ventral tegmental area is known to respond to THC (French 
et al., 1997; Lupica et al., 2004; Ostlund et al., 2022). However, what 
remains surprising is the fact that GPR55, and not CB1R, is 
upregulated after THC exposure, in light of two studies demonstrating 
loss of CB1R-dependent plasticity after chronic THC exposure (Friend 
et al., 2017; Ostlund et al., 2022). The answer appears to lie within the 
capacity of GPR55 to respond to THC (Ryberg et al., 2007; Lauckner 
et al., 2008), which has been the reason why GPR55 is classed as an 
endocannabinoid receptor. In fact, THC, AEA, methanandamide 
(stable metabolic analog of AEA) and JWH015 (cannabinoid agonist) 
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all seem to elicit intracellular responses in GPR55-transfected HEK 
cells (Lauckner et al., 2008), thus proving a link between GPR55 and 
THC. Furthermore, CBD is also known to abolish GPR55-mediated 
synaptic events (Sylantyev et al., 2013), highlighting again a strong 
interaction between GPR55 and the eCB system.

The two phytocannabinoids THC and CBD are known to bind to 
CB1R (Jakowiecki and Filipek, 2016; Hua et al., 2017; Chung et al., 
2019), since the only chemical difference between these two 
compounds is a bond disconnection in CBD (Shao et  al., 2016). 
Functionally, CBD has a low affinity for the CB1R (McPartland et al., 
2007) and is described as an antagonist at CB1R (Thomas et al., 2007). 
However, evidence suggests that CBD rather behaves as a negative 
allosteric modulator of THC (Laprairie et  al., 2015; Chung et  al., 
2019). Interestingly, CBD also binds to TRPV1-4 channels, as 
observed recently (Costa et al., 2004; Qin et al., 2008; Iannotti et al., 
2014; Muller et al., 2019; Starkus et al., 2019; Galaj et al., 2020; Etemad 
et al., 2022; Landucci et al., 2022). These observations were also made 
outside of the central nervous system (De Petrocellis et  al., 2012; 
Nabissi et al., 2013; de la Harpe et al., 2022).

We also observed that the amino acid sequence of TRPV1  in 
Danio rerio is missing Y554 and Y555, which have been shown to 
allow AEA binding (Muller et al., 2020). Instead, TRPV1 in zebrafish 
possesses A554 and A555. The switch from polar amino acids (Tyr-
Tyr) to non-polar amino acids (Ala-Ala) in the TRPV1 orthologue of 
zebrafish does not seem to impact heat detection, which is the main 
function of TRPV1 (Zheng and Wen, 2019). Despite these amino acids 
substitutions, in vitro and in vivo observations confirmed that TRPV1 
is triggered above 25°C in zebrafish (Gau et al., 2013). In contrast, heat 
activation of TRPV1 in mammals occurs above 42°C (Caterina et al., 
1997), which could be  explained by slightly different structural 
conformations following amino acid substitutions. Interestingly, 
TRPV3 seems to possess opposite heat-detection functions between 
humans and reptiles (Xenopus tropicalis), as observed before (Saito 
et  al., 2011), with the receptor activated by cold temperatures (≤ 
16°C). Behaviorally, TRPA1 seems to be  the receptor mediating 
avoidance of dangerous temperatures in frogs (Saito et  al., 2022). 
Similar to our findings, Saito et alia also reported that, in vertebrates, 
TRPV channels form very distinct clades (Saito et  al., 2011). 
Furthermore, TRPV1 and TRPA1 seem to have been co-expressed in 
an early vertebrate common ancestor (Saito et al., 2012).

The link between TRPV1 and heat can be  experienced when 
eating hot chili peppers, which dose-dependently trigger receptor 
activation (Mohapatra and Nau, 2003; Voets et al., 2004; Neelands 
et al., 2005; Vetter et al., 2006; Vasquez et al., 2020; Matsuyama et al., 
2021). THC can bind TRPV2-4, TRPA1 and TRPM8, but not TRPV1 
(Muller et al., 2019). This seems very different from CBD, which has 
been shown to bind to TRPV1 (see above). What remains fascinating 
is the fact that TRPV channels are involved in sensory perception 
(chemical nociception, heat detection) in the peripheral nervous 
system, whilst TRPV1 in the central nervous system is involved in 
synaptic plasticity, neurite growth and signaling (Moran et al., 2004).

In terms of evolution, our results suggest that the eCB system 
appeared during the late Ordovician. McPartland and colleagues 
studied the evolution of all components of the eCB system in a study 
published in 2006 (McPartland et al., 2006). In their article, authors 
evidenced that TRPV1 and GPR55 are limited to mammals, whilst 
CB2R and DAGL were found amongst vertebrates (McPartland et al., 
2006). Other components, such as MAGL, are found in chordates, 

while all eukaryotes express FAAH (McPartland et al., 2006). Thus, it 
can be safely hypothesized that the origins of the eCB appeared in a 
common eukaryotic ancestor. Such a study also suggested that ligand-
metabolizing enzymes of the eCB system evolved prior to functional 
cannabinoid receptors (McPartland et al., 2006). In the absence of 
these receptors, such as CB1R, CB2R and TRPV1, endocannabinoids, 
acting as signaling molecules, such as AEA and 2-AG, might possess 
other functional properties (McPartland et  al., 2006). A likely 
explanation is modulating physiological excitability in the nervous 
system (McPartland, 2004). 2-AG is expressed in insects and, apart 
from signaling properties, 2-AG might serve as a deterrent to 
predators, such as vertebrates, who do express functional receptors to 
2-AG, such as TRPV1. This mechanism was likely driven by 
convergent evolution. Interestingly, this feeding-deterrent mechanism 
was also suggested for plants (McPartland et al., 2006), expressing 
endocannabinoid-like compounds but without eCB receptors. 
Intertwined evolution of receptors, enzymes and ligands of the eCB 
system was likely driven by convergence, divergence and parallel 
evolution (McPartland and Guy, 2004). To the best of our knowledge, 
pinpointing an exact timeframe for such mechanisms is currently 
impossible. However, appearance of the eCB in the late Ordovician 
seems to be the accepted consensus, and our current study further 
corroborates these previous suggestions.

Indeed, recent studies have observed brain-like structures in 
fossils from the Cambrian-Ordovician eras (Dong et al., 2022; Ortega-
Hernández et al., 2022; Pates et al., 2022), which seem to support the 
idea of an earlier origin of the nervous system, likely occurring before 
the appearance of annelids (Parry and Caron, 2019). This pinpoints to 
the nervous system originating just before 500 million years ago, with 
the eCB system likely appearing 50 million years after the former. 
Further evidence has been gathered in invertebrates (annelids and 
insects), in which observations of eCB-like receptors were discovered 
(Stefano et al., 1997; Elphick, 1998, 2012; McPartland et al., 2006). 
Some components of the eCB system have been found in species much 
older than annelids. Indeed, FAAH, which is responsible for 
metabolism of AEA, has been identified in the moss Physcomitrella 
patens, with a high catabolic activity for AEA (Haq and Kilaru, 2020). 
Furthermore, 9 paralogues were identified in this species, with some 
closely related to rat FAAH, while others closely related to plant FAAH 
(Haq and Kilaru, 2020). It is now accepted that the nervous system 
appeared in bilaterians ancestors. Recovered fossils suggest that the 
nervous system was already present 540 million years ago (McPartland 
and Guy, 2004; Budd, 2013; Heger et al., 2020). Furthermore, several 
studies confirmed the presence of a nervous system in bilaterians 
(Adey, 1951; Holland et al., 2013; Yang et al., 2013, 2016; Martín-
Durán et al., 2018), sponges (Leys, 2015; Musser et al., 2021; Yañez-
Guerra et al., 2022) or ctenophores (Jékely et al., 2015; Moroz, 2015; 
Burkhardt et  al., 2023). Interestingly, the oldest bilaterians fossils 
recovered so far range between 540 and 585 million years (Martin 
et al., 2000; Pecoits et al., 2012; Chen et al., 2019; Evans et al., 2020). 
Altogether, it can be safely assumed that the nervous system appeared 
before such a timeframe.

To conclude, we  provide here new evidence that GPR55 is 
upregulated in the ventral tegmental area of mice following THC 
exposure and that TPRV1 is downregulated in the epileptogenic focus 
of patients with temporal lobe epilepsy. These results further support 
previous observations linking the eCB system to epilepsy, cannabis 
and neurodevelopmental disorders. We also report here an updated 
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analysis of the evolution of CB1R and TRPV1, two major actors in the 
eCB system.
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