
TYPE Original Research

PUBLISHED 12 April 2024

DOI 10.3389/fninf.2024.1330875

OPEN ACCESS

EDITED BY

Tam Nguyen,

University of Dayton, United States

REVIEWED BY

Ulrich Rückert,

Bielefeld University, Germany

Manolis Sifalakis,

Imec, Netherlands

*CORRESPONDENCE

Christos Strydis

c.strydis@tudelft.nl

RECEIVED 31 October 2023

ACCEPTED 05 February 2024

PUBLISHED 12 April 2024

CITATION

Miedema R and Strydis C (2024) ExaFlexHH:

an exascale-ready, flexible multi-FPGA library

for biologically plausible brain simulations.

Front. Neuroinform. 18:1330875.

doi: 10.3389/fninf.2024.1330875

COPYRIGHT

© 2024 Miedema and Strydis. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

ExaFlexHH: an exascale-ready,
flexible multi-FPGA library for
biologically plausible brain
simulations

Rene Miedema1 and Christos Strydis1,2*

1Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands, 2Quantum and

Computer Engineering Department, Delft University of Technology, Delft, Netherlands

Introduction: In-silico simulations are a powerful tool in modern neuroscience

for enhancing our understanding of complex brain systems at various

physiological levels. To model biologically realistic and detailed systems, an

ideal simulation platform must possess: (1) high performance and performance

scalability, (2) flexibility, and (3) ease of use for non-technical users. However,

most existing platforms and libraries do not meet all three criteria, particularly

for complex models such as the Hodgkin-Huxley (HH) model or for complex

neuron-connectivity modeling such as gap junctions.

Methods: This work introduces ExaFlexHH, an exascale-ready, flexible library for

simulatingHHmodels onmulti-FPGAplatforms. Utilizing FPGA-basedData-Flow

Engines (DFEs) and the dataflow programming paradigm, ExaFlexHH addresses

all three requirements. The library is also parameterizable and compliant

with NeuroML, a prominent brain-description language in computational

neuroscience. We demonstrate the performance scalability of the platform by

implementing a highly demanding extended-Hodgkin-Huxley (eHH) model of

the Inferior Olive using ExaFlexHH.

Results: Model simulation results show linear scalability for unconnected

networks and near-linear scalability for networks with complex synaptic

plasticity, with a 1.99× performance increase using two FPGAs compared to a

single FPGA simulation, and 7.96× when using eight FPGAs in a scalable ring

topology. Notably, our results also reveal consistent performance e�ciency

in GFLOPS per watt, further facilitating exascale-ready computing speeds and

pushing the boundaries of future brain-simulation platforms.

Discussion: The ExaFlexHH library shows superior resource e�ciency, quantified

in FLOPS per hardware resources, benchmarked against other competitive

FPGA-based brain simulation implementations.

KEYWORDS

brain simulation, FPGA, dataflow engine, systolic array, scalable, Inferior Olive,

Hodgkin-Huxley, NeuroML

1 Introduction

The observable dynamics of individual neurons are currently well-understood at a

biophysical level. However, there is still much to be gained from studying the behavior

of large-scale brain networks. Specifically, it is not yet fully understood how the complex

dynamics of these networks give rise to higher-order brain functions. Accordingly,

simulations of these brain networks can provide new insights into brain workings and

human behavior (Murray et al., 2018; Lam et al., 2022). Furthermore, it is believed that

brain-network research can also lead to better understanding of treatments for psychiatric

disorders (Murray et al., 2018; Einevoll et al., 2019). For a comprehensive understanding

Frontiers inNeuroinformatics 01 frontiersin.org

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2024.1330875
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2024.1330875&domain=pdf&date_stamp=2024-04-12
mailto:c.strydis@tudelft.nl
https://doi.org/10.3389/fninf.2024.1330875
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fninf.2024.1330875/full
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Miedema and Strydis 10.3389/fninf.2024.1330875

of the brain, information from multiple scales is required.

Simulations of detailed neural models of (large regions of) the

human brain, which comprise around 86 billion neurons and

1 trillion synapses, based on latest estimates, are nowadays

recognized to call for exascale computing (Amunts and Lippert,

2021).

Present-day High-Performance Computing (HPC) solutions

have already delivered impressive brain simulations, however, their

limitations become manifest once the challenges of simulating life-

sized brain models are identified:

1. Performance and scalability. The computational power of

a single processing unit plays a vital role in a simulation’s

overall performance. Therefore, HPC accelerators, which pack

substantial computational throughput, are essential brain-

simulation components. However, performance efficiency is

equally crucial to pure performance, since we know that

a single processing unit (or accelerator) cannot suffice for

simulating the whole brain. The solution is to enlist more

processing units to the simulation effort. The speedup

gained from adding more processing units correlates with a

program’s inherent parallelism. Gustafson’s Law (Gustafson,

1988) stipulates that significant speedup can be achieved with

additional computational resources the higher the parallelizable

portion (0 6 p 6 1) of the program is. Figure 1 shows

speedups when enlisting increasing numbers of processing

units for p = 0.9 (solid blue line) and p = 0.5 (solid

green line). But these are ideal speedups in the absence of

overheads that can bring system performance (efficiency) down.

Nowadays, the so-called Memory-Wall problem (McKee, 2004)

has emerged as a main challenge limiting achievable speeds;

that is, memory speeds cannot keep up with accelerator speeds,

effectively constraining achievable performance. This can be

seen in the respective dotted lines in Figure 1, which represent

sub-linear performance scaling. To tackle this issue, it is crucial

to minimize memory accesses and keep data as close to the

processing unit as possible. Over networks of processing units,

the problem becomes even more pronounced, especially in the

case of simulating large-scale and realistic brain models that

exhibit dense synaptic activity among their nuclei. That is why—

besides enlisting powerful accelerators—it is imperative to also

implement low-latency and high-throughput interconnects to

Abbreviations: HPC, High-Performance Computing; DFE, Data-Flow Engine;

DFEs, Data-Flow Engines; HH, Hodgkin-Huxley; eHH, extended-Hodgkin-

Huxley; IO, Inferior Olive; AI, Artificial Intelligence; ANN, Artificial Neural

Network; SNN, Spiking Neural Network; FPGA, Field-Programmable Gate

Array; HDL, Hardware Description Language; ASIC, Application-Specific

Integrated Circuit; SSP, Strong Stability-Preserving; GPU, Graphics Processing

Unit; GPGPU, General-Purpose computing on Graphics Processing Unit;

CPU, Central Processing Unit; ODE, Ordinary Di�erential Equation; DRAM,

Dynamic Random-Access Memory; LMem, Large Memory; FMem, Fast

Memory; SLiC, Simple Live CPU; FIFO, First In – First Out; LUT, Look-Up

Table; ALM, Adaptive Logic Module; FF, Flip-Flop; BRAM, Block Random-

Access Memory; URAM, UltraRAM; DSP, Digital-Signal Processor; IAF; I&F

integrate-and-fire; LIF, leaky integrate-and-fire; SLR, Super Logic Region;

SSI, Stacked-Silicon Interconnect; HBM, High-Bandwidth Memory; AdEx,

Adaptive-Exponential Integrate-and-Fire; GUI, Graphical User Interface.

ensure good performance scalability and efficient utilization of

all computational resources, minimizing memory accesses (Ishii

et al., 2017). This is exemplified in cases such as Pronold et al.

(2022), where network communication dominates simulation

time, and communication time deteriorates with enlisting more

CPUMPI processes.

2. Flexibility. Simulator flexibility is a crucial property of modern-

day simulation platforms since the computational-neuroscience

community is in constant flux, always tweaking model aspects

and tuning their parameters. Consequently, brain simulators

require sufficient flexibility and modularity in order to cover a

wide variety of configurations needed for research.

3. Usability. For all their complexity, mounting simulations

should be as easy to use as possible for neuroscientists. What

is more, if an HPC simulator should make use of hardware

accelerators to improve its performance, as is the current trend,

then harnessing its full potential should–ideally–not require

specialized knowledge from an acceleration expert working next

to the neuromodeler.

In this work, we advocate the use of exascale-ready computing

methods for facilitating the steep requirements of large-scale

brain simulations. Traditional HPC solutions are known to fall

short of meeting these requirements. To eschew the inherent

memory bottleneck of conventional (von-Neumann) processing

technologies such as Central Processing Units (CPUs) and

Graphics Processing Units (GPUs), Field-Programmable Gate

Array (FPGA) acceleration is recognized as one of the most robust

platforms for attaining scalable performance when discounting

exotic approaches such as quantum computing. Until now, their

low usability (which is neurosimulator challenge 3) has been the

main deterrent neuromodelers consistently adopting them in the

field. In this work, we will demonstrate that this final barrier can

be largely overcome through the combination of key enabling

technologies and special design methods.

In terms of methods, firstly, the use of modern FPGAs allows

designing dataflow-computing kernels instead of following the

typical control-flow (i.e., von-Neumann) approach, which results

in significant performance gains for data-intensive workloads, such

as brain simulation (Flynn et al., 2013). Building on top of this

dataflow-computing paradigm, parameterizable FPGA libraries

such as flexHH (Miedema, 2019) have been proposed for simulating

a gamut of biologically plausible brain models. The trivial

control flow of dataflow kernels, in turn, permits the design of

very simplified hardware interconnects across FPGA accelerators,

effectively leading to communication-efficient, systolic-array-like

multi-FPGA ensembles. Thus, on the technology front, some

dataflow-enabled FPGA platforms can offer the option for direct

communication links between them, allowing for direct, low-

latency, and high-throughput connections, without the interference

of a host CPU. This makes them highly promising for exhibiting

good performance scalability (Pell et al., 2013). Finally, the addition

of latest High-Bandwidth Memory (HBM) modules on FPGA

chips significantly improves their performance for memory-bound

applications (Wang et al., 2020).

The aforementioned aspects point to specific multi-FPGA

platforms as a highly promising candidate for tackling the

three identified challenges for biologically detailed, exascale-ready,

Frontiers inNeuroinformatics 02 frontiersin.org

https://doi.org/10.3389/fninf.2024.1330875
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Miedema and Strydis 10.3389/fninf.2024.1330875

FIGURE 1

Visualization of Gustafson’s law and weak scaling: with predicted (dotted lines, realistic) and without (solid lines, ideal) added communication

overhead when the parallelizable fraction is equal to 0.9 and to 0.5.

large-scale brain simulations. In this article, we present ExaFlexHH,

a dataflow-based, performance-scalable, and user-friendly brain

simulation library. Our contributions are as follows:

• A concrete proposal for attaining exascale-ready brain

simulations based on an ensemble of cutting-edge

technologies and methods.

• A review and taxonomy of multi-accelerator platforms for

brain simulations.

• A future-proof, scalable, multi-FPGA simulation library

called ExaFlexHH, for eHH models that is synthesis-free,

parameterizable, and flexible.

• A detailed performance evaluation of ExaFlexHH, including a

performance model for making future, scale-out projections.

The remainder of this paper is organized as follows: Related

works are presented in Section 2. In Section 3, we provide

crucial background information and detail the ExaFlexHH

implementation. In Section 4, we present our evaluation results.

Section 5 examines performance bottlenecks and evaluates the

potential for improvement if some of these bottlenecks are

addressed. Finally, in Section 6, we present our conclusions.

2 Related work

Many HPC works have aimed at brain research in recent

years. We have chosen only works that meet the following criteria:

firstly, works that utilize high-performance accelerators since these

are a crucial component in achieving the large-scale and highly

scalable simulations required for brain research. Secondly, works

that utilize multi-accelerator computation, since this is essential

for achieving the required performance density for large-scale

and highly detailed brain simulations. We have, thus, excluded

SpiNNaker and NEST (Gewaltig and Diesmann, 2007) due to

the absence of accelerator support as well as Brain2 (Stimberg

et al., 2019) and GeNN (Yavuz et al., 2016) due to a lack of

support for scale-out acceleration. Finally, platforms focused on

machine learning and cognitive neuroscience are excluded as

generally unsuitable for simulating biologically detailed models;

therefore, BiCoSS (Yang et al., 2021), Loihi (Davies et al., 2018), and

Tianjic (Deng et al., 2020) have been dropped.

An overview of eligible works is shown in Table 1. We

have organized information into three main categories, largely

matching the three challenges set in the previous section, as

follows: (I) Performance (scalability): The number of accelerators

per node, the number of nodes, and the type of connections

used will be specified and presented. This information will give

insight into the potential performance that can be achieved and the

cost of utilizing the system. (II) User experience: Computational-

neuroscience language support such as PyNN (Davison et al.,

2009) and NeuroML (Cannon et al., 2014). Also, advanced and

easy-to-use graphical user interfaces (GUIs) are contributing to

user experience. We distinguish three levels of flexibility: no (),

partial (+) and full (++) flexibility. (III) Biological plausibility:

The neuron-model(s) and type(s) of synapses are specified here.

Compared to other types of models, HH and particularly eHH

models incur high computational costs (Izhikevich, 2004; Kozloski

and Wagner, 2011), but more crucially, also high communication

costs due to the detailed modeling of electrical and chemical

synaptic activity. Of the two, chemical-synapse activations are

relatively slow events and can be simulated in an event-based

manner, reducing communication costs. In contrast, electrical

synapses (i.e., gap junctions) require continuous interneuron

communication, stressing multinode-accelerator data transfers,

which can limit throughput and latency (Hahne et al., 2015; Jordan

et al., 2018).

BrainScaleS-2 (Pehle et al., 2022), is an analog hardware

platform for emulating spiking neural networks. It supports

Adaptive-Exponential Integrate-and-Fire (AdEx) or integrate-

and-fire (I&F) neurons and allows for multi-compartmental

features (Kaiser et al., 2022), and conductance-based synapses.

The platform utilizes digital chips for control and plasticity

management and the EXTOLL network protocol (Neuwirth

Frontiers inNeuroinformatics 03 frontiersin.org

https://doi.org/10.3389/fninf.2024.1330875
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

M
ie
d
e
m
a
a
n
d
S
try

d
is

1
0
.3
3
8
9
/fn

in
f.2

0
2
4
.1
3
3
0
8
7
5

TABLE 1 Comparison of ExaFlexHHwith other brain simulation developments.

Platform Performance and scalability User experience Biological plausibility

Accelerator
type

Accel./Node # Nodes Connection type User-
friendly
interface

Flexibility

BrainScaleS Analog + Digital

ASIC

1 1 Extoll architecture using 1-GEth* + + AdEx & LIF, multiple compartments +

chemical/electrical synapses

TrueNorth Digital ASIC 1 or 16 16 or 1 1-GEth packet-switched network/ native

inter-chip interfaces

LIF + chemical synapses

Multi-GPU Neural Simulator GPU 2 1 Not mentioned + Izhikevich + chemical synapses

BSim GPU 4 1 NVLINK using NVHS + ++ LIF + chemical synapses

Spice GPU 8 1 NVLINK + LIF + chemical synapses

CarlSim 4 GPU 4 1 Not mentioned + ++ LIF & Izhikevich, multiple compartments +

chemical/electrical synapses

BlueHive FPGA 4 1 PCIe & SATA (bare metal) Izhikevich + chemical synapses

SNAVA FPGA 2 1 FPGA high-speed serial links + LIF & Izhikevich + chemical synapses

NeuroFlow FPGA 6 1 FPGA links + LIF, AIF, Izhikevich, HH¶+ chemical synapses

NEURON/CoreNEURON CPU/GPU 2 2/4 NVLINK + ++ Everything

Arbor CPU/GPU 1 128 Asynch., MPI-based spike comm. + ++ Everything

ExaFlexHH (this work) FPGA 8 1 FPGA direct links † + HH + electrical synapses

¶No results shown for HH models. †Only NeuroML-compatible, the parser only supports cell descriptions.

F
ro
n
tie

rs
in

N
e
u
ro
in
fo
rm

a
tic

s
0
4

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fninf.2024.1330875
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Miedema and Strydis 10.3389/fninf.2024.1330875

et al., 2015) in combination with FPGAs for interconnectivity.

BrainScaleS-2 can be interfaced with through PyNN (Müller

et al., 2022) providing a user-friendly interface. However, the

platform has not yet been tested for performance scalability

and consequently this remains uncertain. TrueNorth (Akopyan

et al., 2015) is a specialized chip for neural simulations that has

been demonstrated in different configurations such as a single

chip on a NS1e board, 16 NS1e boards connected through a 1

GbE packet-switch network, and the NS16e platform on a 4×4

board. However, its performance scalability has not been evaluated

making good scalability uncertain. Additionally, TrueNorth chips

only support I&F models, limiting their biological plausibility.

The Corelet developer kit (Amir et al., 2013) requires learning

its environment, instead of using standardized languages such

as NeuroML or PyNN. Both aforementioned platforms are

Application-Specific Integrated Circuits (ASICs). ASIC solutions

offer excellent performance, scalability and energy efficiency but

lack the level of flexibility needed in the constantly evolving field

of computational neuroscience. Even trivial model changes can

easily result in a new development cycle, significantly delaying the

research process and stacking costs. Consequently, such solutions

do not meet the general brain-simulation needs.

In Thibeault et al. (2011), Qu et al. (2020), and Bautembach

et al. (2021), three GPU-based simulation platforms for Spiking

Neural Networks (SNNs) are introduced: a multi-GPU neural

(mGPUns) simulator, BSim, and Spice. The scalability results of

mGPUns are constrained as only the results of 1 and 2 GPUs

are shown and thus insight is limited. Both the performance

results of BSim and Spice have shown limited performance

scalability, ranging from as low as 1.6 comparing 4-GPU

execution to single-GPU with BSIM execution to ≈5.1 when

using 8 GPUs compared to 1 GPU with Spice. Additionally,

the simulators lack the support of HH-type models and only

BSim supports PyNN. In contrast, CARLsim 4 (Chou et al.,

2018) is a multi-GPU simulator that aims at supporting a wide

range of neural models and synapse types including Izhikevich

models, multiple compartments, and current and conductance-

based synapses with plasticity. CARLsim 4 offers tools for

parameter tuning and visualization and uses a custom API rather

than standard languages like NeuroML or PyNN. However,

performance evaluations show limited performance scalability

as the maximum increase in performance is 1.95× and 2.44×

when using 2 and 4 GPUs, respectively, compared to 1 GPU;

also, there is no support for eHH models. Consequently, it

is not optimally qualified for large-scale, biologically detailed

simulations. Overall, all discussed GPU platforms exhibit

excellent performance, flexibility, and usability. However,

they are von-Neumann architectures with all that this entails,

including thread synchronization, instruction overheads and

memory latencies (Hameed et al., 2010; Yazdanpanah et al.,

2013). These limitations become especially evident when energy

efficiency is a consideration (Lant et al., 2019). While there have

been promising developments such as NVLink, performance

scalability is questionable due to difficulties in efficiently

exploiting such developments (Li et al., 2019). Therefore, the

GPU solutions are not considered optimal to achieve ideal

performance scalability.

In the field of FPGAs, Bluehive (Moore et al., 2012) is a

computing platform that utilizes 16 FPGAs in a rack, connected

via PCIe and a custom PCIe-to-SATA adapter for a reconfigurable

topology. It can simulate 64k Izhikivich neurons with 64 million

synapses per FPGA in real-time on a four FPGA setup. However,

the system does not provide any scalability results. Additionally,

Bluehive is limited to Izhikevich models with no easy to add new

functionalities and has a lack of a user-friendly interface reducing

the accessibility for non-experts. SNAVA (Sripad et al., 2018) is an

FPGA-based neural simulation platform with a custom interface

for model selection and connectivity. While it can simulate leaky

integrate-and-fire (LIF) and Izhikevich neurons, it lacks support

for HH-type models and widely used languages like PyNN and

NeuroML. Using fixed-point simulation for performance may

impact accuracy in stiffer, biophysical models like eHH. Although

it is designed for scalability with an expandable ring structure,

experimental results are limited to a two-FPGA network, and

model updates’ impact on synthesis cycles introduces uncertainty

and challenges SNAVA’s flexibility. NeuroFlow (Cheung et al.,

2016) is another multi-FPGA neural simulation platform with

PyNN compatibility. It supports a range of models including HH

neurons. This makes NeuroFlow one of the most user-friendly and

complete neural simulation platforms available. However, it does

not support gap-junction connectivity and multi-compartment

models. Additionally, performance and scalability results are

limited to the simpler Izhikevich models and event-driven

implementations, with synapses between neurons on the same or

neighboring FPGAs. Therefore, while NeuroFlow is promising,

its performance and scalability for complex cases remain to be

seen. In all FPGA solutions, the hardware is configured specifically

for each application, delivering high performance, while also

providing higher levels of (re)modeling flexibility as well as energy

efficiency (Chow et al., 2012; Guo et al., 2012; Arram et al., 2013;

Gan et al., 2013). Unfortunately, flexibility comes at the cost of

notoriously low levels of programming ease compared to GPUs

due to the stringent hardware-programming languages involved

(e.g., VHDL, Verilog) as well as the large, hardware-synthesis debug

cycles.

Finally, we include two full-fledged neurosimulator

environments, which support multinode simulations using

CPU-only or a mix of CPU & GPU implementations. The

community standard simulator NEURON (Hines and Carnevale,

1997) integrates HPC solutions through CoreNEURON (Kumbhar

et al., 2019; Awile et al., 2022). Therefore, it supports simulations

on multi-threaded CPUs and GPUs, and multi-node processing

through the use of MPI. This brings significant performance

benefits to NEURON. However, its performance scalability is still

far from ideal as it is constrained by the previously mentioned

von-Neumann limitations. Arbor (Abi Akar et al., 2019) is a

neural simulator focusing on high-performance processing and

multi-compartmental neuron models, including eHH with gap

junctions. Additionally, Arbor is designed to be user-friendly,

providing an object-oriented interface. However, its performance

scalability when modeling complex connectivity is unclear, and

centralized spike exchange between neurons may limit its ability to

scale efficiently. Furthermore, the capability to handle large-scale

simulations with gap-junction connectivity is not demonstrated.

Frontiers inNeuroinformatics 05 frontiersin.org

https://doi.org/10.3389/fninf.2024.1330875
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Miedema and Strydis 10.3389/fninf.2024.1330875

ExaFlexHH is a high-performance, hardware library for

simulating biologically plausible eHH models on one or multiple

FPGAs. The use of the dataflow paradigm allows for efficient

utilization of hardware acceleration and support for multiple

FPGAs connected within a single node in a ring structure allows for

low-latency interconnects. The system’s modular design allows easy

modification of parameters without re-synthesis, while NeuroML

compliance ensures user-friendliness. Though communication can

extend seamlessly outside a single compute node, ExaFlexHH has

been currently demonstrated on as many as 8 FPGAs on a single

compute node, leaving multi-node as future work. Despite this

limitation, ExaFlexHH provides a flexible, highly scalable, and

high-performance option for the simulation of large-scale eHH

models.

3 Method

This section begins with the discussion of HH-type models

and our use case, the Inferior Olive, and an explanation of

why this model is suitable as a benchmark in Section 3.1.

The subsequent Section 3.2 discusses the Maxeler system and

the dataflow paradigm. Then, in Section 3.3 the predecessor of

ExaFlexHH, flexHH is discussed. Finally, the implementation is

detailed in Section 3.4.

3.1 Hodgkin-Huxley-type models

The HH neural networks described here are represented by a

set of Ordinary Differential Equations (ODEs). Therefore, an ODE

solver is required to solve (i.e., simulate) these models. The simplest

ODE solver is the forward-Euler, shown in Equation (1). Here, un

represents the approximated state variables step n, 1t denotes the

time-step size, and f a describes the vector of state derivatives. This

process progresses iteratively for a simulation.

un+1 = un +1t · f (un) (1)

In HH-type models, two types of state variables are involved:

membrane voltages across cellular compartments, and gate

variables indicating ion-channel openings. The voltage derivative

for a specific compartment i in an HH-type model is computed

as per Equation (2), where C signifies membrane capacitance,

Iapp,i is the applied current representing external stimuli, Ichannels,i
aggregates all ion-channel currents, Ileak,i indicates leakage current,

and Imc,i and Igap,i reflect currents from inter-compartment

connections and gap junctions, respectively. Notably, these latter

terms are model-dependent and may be excluded if not applicable.

For example, the original HH only consists of a single cell and a

single compartment and therefore, does not include Imc,i and Igap,i.

A network of 3 compartmental neurons is given in Figure 2. This

figure shows three compartments, the currents per compartment,

and all-to-all, through gap junctions, connected network of 8

neurons.

Iapp,i can be defined by any arbitrary function, while Ichannels,i
follows Equation (3). In this equation, Nchannels,i is the number of

channels for compartment i, gc,j is the conductance, and Vc,j is the

reverse voltage of channel j. Furthermore, Ichannels,i involves yProdj,

the product of gate activation variables of channel j calculated using

Equation (4). In this equation Mgates[j] represents the amount of

different gate types and pk is an integer that counts the number of

gates for a given type within the channel.

dVi

dt
=

Iapp,i − Ichannels,i − Ileak,i − Imc,i − Igap,i

C
(2)

Ichannels,i =
Nchannels,i−1

∑

j=0
Ichannel,j

=
Nchannels−1

∑

j=0
gc,j(V − Vc,j)yProdj (3)

yProdj =

Mgates[j]−1
∏

k=0

y
pk
k

(4)

Formodels supportingmultiple compartments, Imc,i is added to

represent the current between adjacent compartments. To calculate

the current flowing between compartments, we use a similar

equation as in Schweighofer et al. (1999), shown in Equation (5).

This equation incorporates the number of linked compartments

Ncomps,i to compartment i, the internal conductance gint , the

surface ratio of adjoining compartments pi,j, and their respective

membrane voltages (Vi, Vj).

Imc,i = gint

Ncomps,i−1
∑

j=0

Vi − Vj

pi,j
(5)

Gap junctions, the inter-cellular connections, are modeled

following a generalized approach from Schweighofer et al. (2004)

by calculating Igap,i through Equation (6), where Vi,j is the voltage

difference between cell i and j, c0, c1, and c2 are identical between

connections, and wi,j represents the weight between compartments

i and j, where j belongs to a different cell than i, therefore enhancing

data efficiency and model adaptability.

Igap,i =
Ncells−1

∑

j=0
(wi,j(c0 exp(c1 · V

2
i,j)+ c2)Vi,j) (6)

The derivatives of the gate-activation variables represented by

yj are also required and can be determined via Equation (7) and/or

Equation (8). These involve transition rates αj and βj or the target

value infj and the time constant τj, which are generally determined

by exponential functions. For reference, the derivatives of the

gate-activation variables of the original HH model (Hodgkin and

Huxley, 1952) are presented in Equations (9–17).

dyj

dt
= (1− yj) · αj − yj · βj (7)

dyj

dt
=

infj − yj

τj
(8)

Frontiers inNeuroinformatics 06 frontiersin.org

https://doi.org/10.3389/fninf.2024.1330875
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Miedema and Strydis 10.3389/fninf.2024.1330875

FIGURE 2

Schematic overview of a network of HH-type neurons.

dn

dt
= αn(1− n)− βnn (9)

dm

dt
= αm(1−m)− βmm (10)

dh

dt
= αh(1− h)− βhh (11)

αn =
0.01(V + 10)

exp(
V + 10

10
)− 1

(12)

βn = 0.125 exp(V/80) (13)

αm =
0.1(V + 25)

exp(
V + 25

10
)− 1

(14)

βm = 4 exp(
V

18
) (15)

αh = 0.07 exp(
V

20
) (16)

βh =
1

exp(
V + 30

10
)+ 1

(17)

The model used to benchmark ExaFlexHH is a model of

the Inferior Olive (IO) which is a brain region implicated in

learning and online motor control (Schweighofer et al., 2013).

De Gruijl et al. (2012) developed a model of an IO network

employing an eHH description. The extensions incorporated

in this model include more sophisticated ion gates, multiple

compartments, and gap junctions. Specifically, each IO cell in the

model consists of three compartments: the dendrite, soma, and

axon. The sophisticated ion gates and the multi-compartmental

structure augment the complexity as well as the computational

demands belonging to the intracellular dynamics. Moreover, the

inclusion of gap junctions among the dendrites, which represents

instant, continuous interneuron connections, further intensifies the

complexity by requiring communication among cells, therefore

disrupting parallelism and posing a challenge to straightforward

performance scaling. Given the biological plausibility, complexity,

and computational requirements of this model, it is a fitting

scenario for evaluating the ExaFlexHH framework. The equations

used for the IO model are provided as Supplementary material.

For an exhaustive description of the model, readers are directed

to De Gruijl et al. (2012).

3.2 Maxeler system and dataflow paradigm

Neuron dynamical equations typically require minimal control,

such as a few if/else statements, making them well-suited for the

dataflow paradigm. This paradigm, especially when implemented

using FPGAs, can be efficiently leveraged. Maxeler Technologies

offers a unique solution in this space with its Data-Flow Engines

Frontiers inNeuroinformatics 07 frontiersin.org

https://doi.org/10.3389/fninf.2024.1330875
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Miedema and Strydis 10.3389/fninf.2024.1330875

(DFEs) and associated tools (Pell et al., 2013). The DFEs are

FPGA-based hardware that are programmed via the use of Maxeler

tools and excel in exploiting the dataflow paradigm.

In the dataflow paradigm, traditional control logic is mostly

absent. Compute dependencies are resolved statically, at compile

time. Control is effectively reduced to counters that advance data

through execution units in the datapath. This approach allows for

the majority of FPGA resources to be dedicated to computation

rather than control logic. Moreover, it enables implementation in

a deeply pipelined manner, significantly enhancing computational

throughput.

A key factor for efficient dataflow implementation on FPGA-

based hardware is the use of on-chip memory. Contemporary

FPGAs, such as the Xilinx Ultrascale+ (AMD, 2023), feature three

levels of on-chip memory. The first level, utilizing logic slices

and lookup tables, creates flexible RAM but is not efficient for

larger memories. The second level, Block Random-Access Memory

(BRAM), comprises physical memory units with up to 36 Kbits

storage capacity. These units can be combined for greater capacity.

The third level, UltraRAM (URAM), offers the largest storage (288

Kbits) but is the least flexible. The Maxeler tools abstract these

memories and collectively call them FMem (Fast Memory). With

the use of the Maxeler tools, the on-chip memory is classified as

FMem. Additionally, the DFEs contain on-board DRAM, ranging

in the order of tens of gigabytes, which is referred to as LMem

(Large Memory) in the Maxeler tools.

Another advantage of using the dataflow paradigm with DFEs

is scalability. DFEs connect directly via the MaxRing, which is

a low-overhead, wired Daisy-chain connection among DFEs in

a server node and accommodated via using unused PCIe pins

on the mainboard. The MaxRing, thus, offers high-bandwidth,

low-latency, and highly scalable interconnects. This facilitates

deeper pipeline designs, increased parallelism, and a highly scalable

platform architecture that ExaFlexHH intends to harness.

Programming the Maxeler system involves three fundamental

parts:

1. CPU-Host Code: Written in C, this code initializes data,

coordinates DFEs, andmanages I/O (Input/Output) between the

CPU-host and DFEs.

2. Kernel Code: Using MaxJ, an extended version of Java, this code

defines the functionality of the kernel(s) on the DFEs.

3. Manager: Also defined in MaxJ, the manager configures

I/O for the kernels, including on-board DRAM, inter-kernel

communication, MaxRing, and CPU-host interactions. It

also sets hardware-specific configurations like frequency and

synthesis strategies.

The toolflow process begins with the MaxCompiler translating

MaxJ kernel code into a dataflow graph. The MaxCompiler uses

this graph and the manager description to generate VHDL code.

This code is then utilized by FPGA vendor tools for implementation

processes like synthesis and place-and-route, ultimately producing

a bitfile for use with the C code on the CPU-host. This process

is visualized in Figure 3. In this figure, it can be seen that the

lines of code are directly translated to functional units on the

DFE. Additionally, the figure depicts how multiple DFEs can be

connected through MaxRing to construct a larger dataflow graph.

Importantly, this graph features a pipelined architecture, thereby

significantly enhancing parallelism.

This toolflow significantly simplifies programming complexity

compared to traditional low-level hardware-description languages

(e.g., VHDL) or even HLS languages (e.g., Vivado C and

OpenCL). MaxJ offers more precise control over generated logic,

leading to more efficient and optimized design implementation.

Thus, the Maxeler toolflow represents an excellent programming

environment for efficient development.

3.3 flexHH

This work builds upon the original flexHH library (Miedema,

2019). flexHH is a high-performance, energy-efficient, and flexible

hardware library for HH-based simulations. The high performance

and energy efficiency primarily originate from the use of the

dataflow paradigm on a DFE. However, the library is still easy to

use as the workflow presented in Figure 4 shows. The workflow

begins with the user input, consisting of parameters of the

model, including model parameters such as variables defining the

equations, the number of compartments in the network (Ncomp),

and the maximum number of gates per compartment (Ngates).

These parameters are adaptable to values up to and including

the maximum values defined during the hardware synthesis.

The model parameters are either sourced from a NeuroML file

(automatically parsed into the corresponding values in the CPU-

host) or directly inputted from the CPU-host code. Additionally,

a scripting language like Python can be used to provide the

parameters and execute the precompiled binary. Then these model

parameters can be used as input for one of the presynthesized

flexHH kernels. These kernels which are available as bitstreams,

contain the functionality for the simulations of (e)HH models.

flexHH contains 5 different kernels (HH, HHg, HHc, HHmc,

and HHmcg). Each of the kernels supports a different subset

of features [complex ion gates (c), multiple cell compartments

(m), and gap junctions (g)]. The naming convention reflects the

supported features. For example, HHmc supports HH-type models

with multiple cell compartments (m) and complex ion gates (c).

Therefore, each kernel instance can be somewhat tailored to the

user’s needs and not waste resources on features not required by

the experiment.

The high performance and energy efficiency are achieved

with the use of the dataflow paradigm via the previously

discussed Maxeler tools. Firstly, this is enabled by the use

of different kernels, each supporting a different subset of

model features, and therefore resources are not wasted on

features not required by the simulation. Secondly, this is

enabled by the kernels that are flexible and reusable. The

flexibility and reuseability are enabled by the generalization

of the modeling functions, which are discussed in Section

3.1. Without the equation generalization, a new time-

consuming synthesis would be required each time something

changes inside the model. Instead, by a generalization

of the functions, each constant, parameter, and variable

can be set on the CPU host. Consequently, removing the

Frontiers inNeuroinformatics 08 frontiersin.org

https://doi.org/10.3389/fninf.2024.1330875
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Miedema and Strydis 10.3389/fninf.2024.1330875

FIGURE 3

Diagram of MaxJ code being translated to a dataflow graph across multiple DFEs.

FIGURE 4

Workflow for the use of flexHH.

requirement of a new hardware synthesis, thus, resolving one

of the main issues for neuroscientists when using an FPGA.

An example of how the equations are generalized can be

seen in Equation 18. This equation is used to calculate the

transition rates within an HH model, Equations (12, 17) in

Section 3.1. The input consists of the membrane voltage of

compartment i (Vi), 3 constants (k0, k1, k2), and a variable to

select the function branch (ft). An important feature of the

equation generalization is the NeuroML compatibility. This

compatibility is illustrated in Figure 5, which demonstrates

how the NeuroML function HHsigmoidVariable

and its parameters can be converted to the f function

[which implements Equation (18)], resulting in the exact

same functionality. Moreover, as the parameters can be

chosen for each cell, compartment and channel separately,

flexHH supports use cases that most other platforms

completely avoid such as heterogeneous eHH networks with

gap junctions.

Frontiers inNeuroinformatics 09 frontiersin.org

https://doi.org/10.3389/fninf.2024.1330875
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Miedema and Strydis 10.3389/fninf.2024.1330875

FIGURE 5

Conversion of a NeuroML function to: (A) the mathematical description of the generalized function used in ExaFlexHH, and (B) a MaxJ function used

in the ExaFlexHH library.

f (ft ,Vi, k0, k1, k2) =























k0 · (k1 − Vi)

e(k1−Vi)·k2 − 1
, if ft = 0

k0 · e
(k1−Vi)·k2 , if ft = 1
k0

e(k1−Vi)·k2 + 1
, if ft = 2

(18)

The generalization of the equations is done in such a way that it

is NeuroML-compatible. Consequently, with the use of a parser, a

NeuroML file containing the information of the simulation can be

used to define the input parameters of the flexHH kernels. Notably,

the flexibility and NeuroML compatibility do not compromise

performance. The results in the original flexHH paper show that

flexHH outperforms a Xeon Phi 5110P CPU, a Nvidia Titan X

GPU, and a hardcoded version on the same DFE for the number

of cells supported by flexHH. These results indicate the competitive

performance of the flexHH library on a DFE.

While flexHH offers unique benefits, such as high performance

and usability, in its current version it has some functional

limitations:

• The library exclusively supports serial connections between

intracellular compartments. This limitation is justifiable, as

numerous models can be supported, given that alternative

connection configurations are predominantly necessary for

dendritic networks or trees.

• When gap junctions are supported, the amount of calculations

will always be N2
cells

(the amount of calculations required for

an all-to-all connected network). Consequently, for networks

with less than all-to-all connectivity, this method results in

more calculations than optimal.

• The library is limited to the use of a single DFE, constraining

its scalability.

For more details about the flexHH library, the reader is referred

to Miedema (2019).

3.4 Implementation

Here, we discuss the implementation of a new hardware library

ExaFlexHH. Because of the unique benefits of flexHH library, this

library is extended. We extended its functionality to support the

MAX5C DFEs, based on the multi-SLR capable Xilinx Ultrascale+

FPGAs AMD (2023). Additionally, the capability to operate across

multiple DFEs has been integrated, facilitated by utilizing the

MaxRing technology. The extension is done by taking the code,

and thus kernels, from flexHH and incorporating the additional

functionality so the same equations and workflow can be used.

Therefore, the ExaFlexHH library will contain the code of the

kernels, the CPU-host code, a parser to convert a NeuroML file

to the variables used in the CPU-host code, and the Python script

to run a simulation. The ExaFlexHH library is publicly available

in its repository.1 flexHH includes two categories of kernels (as

previously mentioned in Section 3.3): those without gap junctions

(HH, HHc, and HHmc) and those with gap junctions (HHg and

HHmcg). This distinction is made as only the kernels with gap

junctions require data communication between the kernels and,

thus, additional engineering work. For the sake of simplicity, only

the updates to the kernels HHmc and HHmcg will be discussed in

detail, which are individually the most complex designs possible

within the flexHH and ExaFlexHH libraries. Prior to the discussion

of the aforementioned kernels, particularly focusing on the data

flow and arithmetic, we address the Maxeler Manager, to ensure

maintainability and portability, the high-level kernel I/O and kernel

instantiation are separated from the hardware-specific details.

This is achieved by using a Java interface for the creation of

I/O with generic functions and kernel instantiation. The actual

managers, which are Java objects, implement the interface and

handle hardware-specific details.

3.4.1 Kernels without gap junctions
The HHmc kernel calculates the trace of each membrane

voltage and gate-activation variable for the requested simulation

time. To calculate the membrane voltage (Equation 2) is used,

with the exception of Igap,i as gap junctions are not supported.

All of the calculations are local to a cell and can be executed

in parallel, allowing for the instantiation of multiple kernels.

For the implementation on the MAX5C DFEs, each of which

contains three dies, a total of three kernels with one kernel per

die were instantiated per device. To use multiple MAX5C DFEs,

the kernels on a single device were duplicated. As there is no data

communication between the kernels, the performance is bounded

by the performance of a single kernel. The original HHmc flexHH

1 https://gitlab.com/c7859/neurocomputing-lab/Inferior_OliveEMC/

ExaFlexHH

Frontiers inNeuroinformatics 10 frontiersin.org

https://doi.org/10.3389/fninf.2024.1330875
https://gitlab.com/c7859/neurocomputing-lab/Inferior_OliveEMC/ExaFlexHH
https://gitlab.com/c7859/neurocomputing-lab/Inferior_OliveEMC/ExaFlexHH
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Miedema and Strydis 10.3389/fninf.2024.1330875

kernel was found to be limited by the I/O bandwidth of the

on-board DRAM.

To analyze this bottleneck, we calculate the required

throughput, which can be done accurately due to the deterministic

behavior of the kernel. The calculation consists of multiplying

the data size of the I/O-stream elements with the required access

frequency of these streams, where the access frequency is expressed

in number of clock cycles. Furthermore, this product is multiplied

by the operating frequency of the DFE. The resulting equation

is shown in Equation (19). In this equation, ufcell is the unroll

factor (parameter which unrolls loops in hardware), Ncomps,cell the

number of compartments per cell, Ngates,comp the number of gates

per compartment, and f the operational frequency of the kernel.

Additionally, the values 96, 32, and 4 (multiple times, for multiple

I/O streams) are the resulting values of the data sizes in bytes

required at different moments during the execution of the kernel.

To reduce the dimensions of the plot, the parameters are fitted to

our use case, described in Section 3.1, concerning an IO network.

Specifically,Ncomps,cell is set to the number of compartments per

cell in an IO cell (here: three) and Ngates,comp is set to the minimum

number of gates per compartment in the IO model which is also

three. The results are shown in Figure 6. These results indicate that

the on-board DRAM (called LMem, Large Memory, in the DFE

terminology) is a bottleneck for the kernel and that the required

throughput exceeds the DRAM’s theoretical bandwidth unless the

unroll factor ufcell is set to 1 and the frequency is lower than 168

MHz.

ThroughputDRAM,HHmc = (96+ 4) · ufcell · f

+(32+ 4+ 4+ 4) ·
1

⌈

Ngates,comp

ufcell

⌉ · f

+4 ·
1

⌈

Ngates,comp

ufcell

⌉ ·
1

Ncomps,cell
· f

= (100 · ufcell + (
4

Ncomps,cell
+ 44) ·

1
⌈

Ngates,comp

ufcell

⌉) · f (19)

3.4.2 Kernels with gap junctions
In the updated implementation, the HHmcg kernel is divided

into two distinct parts: (1) the computations within a cell, and

(2) the computations out of the cell, involving gap junctions.

As a result, the HHmcg kernel is also split into two separate

kernels: the cellCore kernel and the gapCore kernel. The gapCore

kernel calculates Igap while the cellCore kernel calculates the

remainder of the currents of Equation (2) and the dynamics of

the gate activation variables. According to Miedema (2019), the

computations involving gap junctions are more computationally

demanding than those of the inner cell dynamics. Therefore, the

gapCore kernel plays a crucial role in overall performance. To

optimize performance, the computational workload and hardware

resources are closely matched. This is achieved by allowingmultiple

gapCore kernels per single cellCore kernel, with the number

of gapCore kernels per cell being variable to support different

configurations and future-generation DFEs. An architectural

overview of the HHmcg kernel is shown in Figure 7, the details will

be given when the gapCore and cellCore kernels are described in

more detail in the following section.

3.4.2.1 The gapCore kernel

The gapCore kernel(s) calculate(s) the gap-junction current

Igap,i for each cell i in the network, as described in Equation (6)

where wi,j is the variable connection weight between cell i and j,

Vi the membrane voltage of cell i and c0, c1, and c2 are single

floating-point constants. To enhance performance, the loop used to

calculate Igap,i is unrolled in hardware using an unroll factor ufgap.

In order to enhance performance, the voltages are stored in

the BRAMs. This can be done in either the gapCore or cellCore

kernel. However, similar to the amount of ticks (number of clock

cycles which process data in a DFE) required for the computations

of the kernel, the amount of memory reads in the gapCore kernel

scales with the square of the number of cells. On the other

hand, the number of reads in the cellCore kernel scales with the

total number of gates in the entire network. Considering the

typical network structure, the number of cells is significantly larger

than the number of gates per cell. This assertion is verified by

our inspection of the amount of gate variables within the cells

of Neuroml-DB (Birgiolas et al., 2023). This inspection showed

that the maximum number of gate variables per cell is 24,011,

which was an outlier. However, in the perspective of the size of

the cerebral cortex, which contains between 10 to 100 million

neurons (Braitenberg and Schüz, 2013), it is still relatively small.

As a result, the amount of data transfers between the gapCore

and cellCore kernel will be reduced when the dendritic voltages

are stored in the gap kernel. In addition to the voltages, the

intermediate values of Igap, i are also stored in BRAM (IgapMem).

To analyze the most efficient way to store the data, the amount

of memory blocks required can be calculated. The data-storage

requirement is determined by both its width, defined as the number

of bits per variable, and its depth, denoting the total number of

variables. Given the finite configurations available in hardware, this

often results in additional overhead in terms of memory blocks

needed. Furthermore, the number of memory blocks required

on an FPGA is influenced by the number of read and write

ports. This leads to Equation (20) (Voss et al., 2021). This equation

describes the number of used memory blocks as the product of

the required data width divided by the width in hardware (w),

the required data depth divided by the depth in hardware (d),

and the number of read and write ports divided by the number

of ports available in hardware (p). From this equation it follows

that it is advantageous to store data in vectors as the reduction

in depth and number of write ports outweigh the increase in data

width.

nmem = ⌈
wreq

whardware
⌉ × ⌈

dreq

dhardware
⌉ × ⌈

preq

phardware
⌉ (20)

Unrolling or vectorizing the calculations within the gapCore

kernel is a method to leverage the hardware capabilities of a

DFE to facilitate more concurrent operations, thereby optimizing

the performance of a single DFE. Additionally, multiple gapCore

kernels can be run in parallel on MAX5 cards to further

enhance performance. The voltages of each cell are stored in

Frontiers inNeuroinformatics 11 frontiersin.org

https://doi.org/10.3389/fninf.2024.1330875
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Miedema and Strydis 10.3389/fninf.2024.1330875

FIGURE 6

LMem bandwidth (horizontal, red line) and total required throughput for multiple unroll factors (other lines) for a single HHmc kernel.

FIGURE 7

Architectural overview of a single DFE. Data movement is denoted with arrows and memory components are highlighted in various green colors.

Data transfer from LMem to the kernels consists of the parameters for both channels and compartments. Conversely, data transfer from the kernel

toward the LMem consists of state variables: vMem stores membrane voltages, yMem stores gate variables, vOtherMem stores dendritic voltages of

other gap kernels, and IgapMem stores gap-junction currents.

the BRAMs, and the intermediate values of the gap-junction

current are also stored there. By using multiple identical

kernels, the summation of the gap-junction current can be

split into multiple, equal-sized calculations, allowing for the

same code to calculate the gap-junction currents to be used

across all kernels while still selecting the correct data. This

is possible because the gap junctions are all-to-all connected

as is shown in Equation (6). Let Ngap−kernels be the total

number of gapCore kernels. Then, each kernel stores
Ncells

Ngap−kernels

voltages. This amount will further be referred to as Ncells,gap.

Furthermore, we introduce Vsgap,k, which is the array containing

the voltages stored in gapCore kernel k. With this variable,

we can rewrite Equation (6) to clarify the requirement of

data transfer when multiple kernels are used. This is shown

in Equation (21) where there are 4 gapCore kernels. From this

equation, it becomes clear that the summation to calculate the

gap-junction current can be split into multiple, of equal size

and equal functionality, summations. Consequently, the same

code can be used to instantiate multiple kernels with the same

functionality. However, the right data is required to be selected

from memory. Namely, it has to be decided if either Vsgap,0,

Vsgap,1, Vsgap,2, or Vsgap,3 has to be used. Therefore, we introduce

the variable vsOther. This variable will hold Vsgap,0, Vsgap,1,

Vsgap,2, or Vsgap,3 based on which phase of the program is

being executed.

Frontiers inNeuroinformatics 12 frontiersin.org

https://doi.org/10.3389/fninf.2024.1330875
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Miedema and Strydis 10.3389/fninf.2024.1330875

Igap,i =
NCells/(Ngap−kernels=4)

∑

j=0
(wi,j(c0 exp(c1 · (Vi − Vsgap,0[j])

2)+ c2)(Vi − Vsgap,0[j]))

+

NCells/(Ngap−kernels=4)
∑

j=0
(wi,j(c0 exp(c1 · (Vi − Vsgap,1[j])

2)+ c2)(Vi − Vsgap,1[j]))

+

NCells/(Ngap−kernels=4)
∑

j=0
(wi,j(c0 exp(c1 · (Vi − Vsgap,2[j])

2)+ c2)(Vi − Vsgap,2[j]))

+

NCells/(Ngap−kernels=4)
∑

j=0
(wi,j(c0 exp(c1 · (Vi − Vsgap,3[j])

2)+ c2)(Vi − Vsgap,3[j]))

(21)

The data transfer in the proposed system is designed to

only occur between neighboring kernels, as dictated by the

ring topology. Therefore, this architecture implements a one-

dimensional systolic array. To ensure that all data is correctly

sent to each kernel, the system is divided into three different

phases:

1. Start: During the initial phase of the program, partial

calculations of the gap-junction currents are performed using

the locally stored voltages in the kernel. These voltages are then

sent to the neighboring kernels that require them for further

calculations. This occurs concurrently with the calculations

themselves.

2. Middle: During this phase, the gap-junction currents have

already been updated with the influence of the local kernel’s

voltages. The received voltages, stored in the vsOther vector,

are then used to further update the gap-junction currents.

Concurrently, the voltages are sent to the next gapCore kernel.

Because the voltages require to pass through each DFE, this

phase may consist of multiple stages, where the gap-junction

currents are updated and sent to the next neighboring kernel in

each stage.

3. End: In the final phase, the final voltages are received and the

final values of the gap-junction currents are calculated. The

voltages are then fully updated.

The execution flow is visualized in Figure 8, which shows an

example with four gap kernels on 4 different DFEs. However, the

schedule is flexible and works regardless of the number of gapCore

kernels. Moreover, this schedule is flexible and successful for both

inner and inter DFE data transfers. The implementation does not

differentiate between data received from another DFE via MaxRing

or from another die on the same DFE. Namely, as is shown

in Algorithm 1, the kernel will receive its data from a general input

and send it to a general output function, which both are agnostic of

the source or target of the data. Based on the configuration, the data

will be transferred to the appropriate kernel.

In addition to data transfer, the gapCore kernel implements the

functions calcIGap and updateV. The function calcIGap

calculates the gap-junction currents according to Equation (21).

Therefore, it accepts as input parameters (i) the number of cells

per gap kernel Ncells,gap, (ii) the memory IgapMem for storing

the intermediate values of the currents, (iii) the memory vMem

containing the voltages stored in the respective gapCore kernel,

(iv) vsOther, the dendritic voltages obtained from other DFEs,

stored in vOtherMem, (v) the weights ws of the connectivity

matrix, (vi) the constants cs [c0, c1, and c2 from equation

Equation (6)], and (vi) the variable state tracking in which state

the algorithm is. The updateV function updates the voltages of

the respective kernel in the final stage using the forward-Euler

numerical method. Therefore, it accepts as input parameters (i)

memory IgapMem containing currents of the gap junctions, (ii)

the currents Iscell from the inner cell dynamics, and (iii) the

dendritic voltages from vMem, to retrieve the current values of

these state variables and update them accordingly. The currents

from the inner cell dynamics Iscell must be obtained from the

cellCore kernel.

Because the data transfers occur exclusively between

neighboring kernels, any number of kernels can be chained

together in a ring topology, thereby, achieving a scalable hardware

implementation. Furthermore, by transmitting all the data

at the start of each stage, the time available for data transfer

is maximized, thereby minimizing the required throughput.

The amount of ticks required per stage can be calculated

via Equation (22). In this equation loopLengthgap is the pipeline

depth in the gapCore kernel, Ncells,gap is the number of cells per

gapCore kernel, and ufgap the unroll factor of the gapCore kernel.

Subsequently, the throughput requirements can be determined

via Equation (23). In this equation sizedata is the size of the

data which is required to transfer over the MaxRing during

a stage, and Nticks,stage the ticks per stage as described in the

previous equation.

procedure RUN(Ncells,gap , IgapMem, vMem,ws, cs,Ngap−kernels)

for 0 ≤ stage < Ngap−kernels do

if stage == 0 then

vsOther← vMem.read()

else

vsOther← input.receive() ⊲ Either from an inter or

intra DFE data stream

end if

output.send(vsOther)

calcIGap(Ncells,gap, IgapMem, vMem, vsOther,ws, cs, stage)

if stage == (Ngap−kernels − 1)) then

updateV(IgapMem, Iscell , vMem)

end if

end for

end procedure

Algorithm 1. Pseudocode of the program flow of a single gapCore kernel.

Nticks,stage=











loopLengthgap · Ncells,gap, if loopLengthgap > Niterations

N2
cells,gap

ufgap
, otherwise

(22)

where

Niterations =
Ncells,gap

ufgap

ThroughputMaxRing,gap =
sizedata · f

Nticks,stage
(23)

Frontiers inNeuroinformatics 13 frontiersin.org

https://doi.org/10.3389/fninf.2024.1330875
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Miedema and Strydis 10.3389/fninf.2024.1330875

FIGURE 8

Program flow in ExaFlexHH when instantiating 4 gap-junction kernels on multiple DFEs.

To illustrate the required throughput, a frequency of 250 MHz

is used, as this is the maximum frequency achievable by MAX5

DFEs according to the Maxeler documentation. The required

throughput is visualized in Figure 9A. This demonstrates that the

MaxRing bandwidth, at 5 Gbyte/s, will not be a performance

bottleneck, as the required throughput is significantly lower.

The potential performance bottlenecks in our system are the

bandwidth of the on-board DRAM and the amount of compute

resources available. As discussed previously, each SLR has its own

DRAM DIMM, and a single gapCore kernel is implemented on a

single Super Logic Region (SLR). Therefore, the available DRAM

bandwidth is that of a single DIMM, which is 15 GB/s. The gap

kernel has three streams connected to the on-board DRAM: (1)

an input stream for the initial values of the voltages (vsIn); (2)

an input stream for the weights of the gap-junction connections

(ws), which are stored in a connectivity matrix, and (3) an output

stream to store the values of the voltages at each simulation time

step (vsOut). The values of vsIn are only streamed toward the kernel

at the start of each simulation, and the voltages are then stored

in the BRAMs. The stream for vsOut is only active in the last

iteration of each time step. Both of these streams are negligible in

comparison to the duration of the I/O stream of weights ws, which

are used and streamed constantly throughout execution. Therefore,

only the throughput requirements for the weights are used for

the analysis of the on-board DRAM data transfers. This gives a

required throughput of 4 · ufgap · f bytes. The required throughput

for the gapCore kernel is shown in Figure 9B. The figure shows that

for an unroll factor of 32 and a frequency higher than 118 MHz,

the required throughput exceeds the theoretically available DRAM

bandwidth. Additionally, this also holds for an unroll factor of 16

and frequencies higher than 236 MHz. However, in practice, the

effective bandwidth is expected to be lower. Consequently, it is

expected that the performance of the gap kernel will be bounded

by the bandwidth of the on-board DRAM.

In the previously discussed implementation, the weights for

the gap junctions are stored in the on-board DRAM of the DFEs.

Therefore, during simulation these weights need to be transferred

between the DRAM and the DFE. To improve performance beyond

Frontiers inNeuroinformatics 14 frontiersin.org

https://doi.org/10.3389/fninf.2024.1330875
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Miedema and Strydis 10.3389/fninf.2024.1330875

FIGURE 9

Required throughput for the gapCore kernel. (A) Required MaxRing throughput for di�erent gapCore-kernel unroll factors, at a frequency of

f = 250 MHz. (B) On-board DRAM bandwidth (horizontal, red line) and total required throughput for multiple unroll factors (other lines) for a single

gapCore kernel.

what the DRAM bandwidth permits, an alternative approach is

proposed: rather than loading the weights from the on-board

DRAM, which demands more memory bandwidth with a higher

ufgap, we can have the weights of the gap junctions generated

directly on the DFE itself during simulation. These weights

(ranging from 0.0 to 1.0) can be sampled from a hardware

kernel on the DFE which implements one or more stochastic

processes. Such an approach is permissible in this context of

realistic neural simulations where large-scale network dynamics

are often initialized based on some stochastic distribution, as

exemplified in Negrello et al. (2019). In effect, avoiding DRAM use

will significantly reduce the throughput requirement between the

on-board DRAM and the DFE.

To achieve this, the generation of the connectivity weights

is implemented as separate and independent kernels, promoting

modularity. However, due to the direct relationship between the

number of calculations and limited hardware resources, a limited

number of generation schemes, that require these calculations and

corresponding hardware, are supported. In this work, we support

the generation of weights based on the uniform and Gaussian

distributions, as previously shown in literature; for instance, the

book by Braitenberg and Schüz (1998) and the works of Pfeuty et al.

(2003) and Knight and Nowotny (2021).

For the implementation of random-number generation, the

Squares algorithm (Widynski, 2020) is used to generate pseudo-

random numbers with a uniform distribution. This algorithm

is efficient for implementation on the DFE due to its counter-

based nature. To generate random numbers that follow a Gaussian

distribution, the uniform numbers generated by the Squares

algorithm are put through the probit function.

3.4.2.2 The cellCore kernel

The functionality of the cellCore kernel is similar to that of the

HHmc kernel, however, there are several modifications required

due to the interaction with the gap kernels. These modifications

include:

• The addition of an input stream to receive voltages from the

gapCore kernels, which are used to calculate the inner-cell

dynamics of compartments with gap-junctions.

• The addition of output streams to send calculated currents and

elastances (inverse of the capacitance) to the gapCore kernels.

These values are needed for the calculations in the gapCore

kernels.

• Additional control logic is implemented to determine if a

compartment connected to a gap junction is being processed.

This control is required to manage the input and output

streams, as well as to prevent writing to the BRAMs of voltages

of compartments connected to gap-junctions.

• The data between the gapCore and cellCore kernel must

be vectorized or non-vectorized to match the different data

processing methods used in each kernel. For vectorization,

shift registers are used, and for non-vectorization, counters

and multiplexers are used to select the correct data from a

vector.

4 Results

In this section, the performance and scalability of ExaFlexHH

using the HHmc and HHmcg kernels will be evaluated. To this

end, kernel execution times, FLOPS (floating-point operations per

second), and energy results are presented. The section begins with a

description of the experimental setup in Section 4.1. Subsequently,

the results of the HHmc are discussed in Section 4.2, followed by a

discussion of the results of the HHmcg kernel in Section 4.3.

4.1 Experimental setup

The De Gruijl IO model, with and without gap junctions, is

utilized as a case study to assess the kernel performance. In the

variant with gap junctions, the network is characterized by an all-

to-all connectivity, which is employed to maximize the load on

Frontiers inNeuroinformatics 15 frontiersin.org

https://doi.org/10.3389/fninf.2024.1330875
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Miedema and Strydis 10.3389/fninf.2024.1330875

TABLE 2 Specifications of the multi-DFE platform, where ExaFlexHH is

deployed.

Specification Value

DFE model MAX5C

Chip architecture Xilinx Ultrascale+

LUTs (k) 1,182

FFs (k) 2,364

DSPs 6,840

On-chip memory capacity (MB) 43.2

On-board DRAM DIMMs 3

On-board DRAM capacity per DIMM (GB) 16

On-board DRAM bandwidth per DIMM

(GByte/s)

15

SLRs 3

MaxRing bandwidth (GByte/s) 5

Host CPU Intel R© Xeon R© Bronze

3104

MaxelerOS version 2021.1

MPI version Open MPI 3.1.3

the interconnect, as this network type necessitates the most data

transfer. A presentation of this model was given in Section 3.1.

For the kernel execution, we utilize the Maxeler tools and

multiple Max5C DFEs the specifications of which are shown in

Table 2. These DFEs are connected through the MaxRing in a

ring topology and are also connected to a CPU host, an Intel

Xeon Bronze 3104 CPU with a frequency of 1.70GHz, via two

InfiniBand links, providing a bandwidth of 14 GB/s. Furthermore,

to instantiate multiple HHmc kernels, MPI is used. This limits

the amount of parallel MPI jobs as it depends on the number

of available CPU cores. Therefore, for the particular host CPU,

a maximum of 6 parallel MPI processes can be launched, and

although 8 DFEs are available only 6 could be used when

running multipleHHmc kernels. Because theHHmc kernels do not

communicate with each other, MPI is only used to spawn multiple

processes and thus kernels. For the HHmcg kernels we can use the

max_run_array function from the Maxeler tools. This function

facilitates the creation of a DFE array, including one with 8 DFEs.

Consequently, here we are not confined to the MPI process limit

of 6.

Kernel execution times are measured using the

gettimeofday() function on the CPU host, and the number

of floating-point operations per IO cell is determined through

kernel profiling. The FLOPS are calculated by considering the

number of operations used in the generalized functions, similar

to those in flexHH, as discussed in Section 3.3. Therefore, some

functions may use more operations than necessary in a hardcoded

scenario. To simplify the analysis, all operations are considered in

the calculation of FLOPS. This decision is based on two reasons:

(1) the FLOPS are consistent across all kernels used to simulate

the IO, allowing for a clear comparison of performance scaling

when using different numbers of DFEs and kernels, and (2) the

TABLE 3 Resource utilization of the HHmc and HHmcg kernels on the

Max5C DFE.

Max5C HHmc HHmcg

LUTs 1,182,240 241,879

(20.5%)

230,463 (19.5%)

FFs 2,364,480 438,890

(18.6%)

472,169 (20.0%)

BRAMs 4,320 4,320 (30.0%) 2,290 (69.2%)

URAMs 960 209 (21.5%) 288 (30.0%)

DSPs 6,840 453 (6.6%) 1,181 (17.3%)

hardware for the generalized equations is allocated even if it is not

always utilized, making it a reliable measure of performance. The

number of operations is multiplied by weight factors as presented

in Thant et al. (2005) and by the number of ticks in a single

step, and finally multiplied by the number of kernels to obtain

the total number of FLOPS. To measure power consumption,

the maxtop command from the Maxeler toolflow is used. The

maxtop command presents the power consumption based on

sensors present on the DFEs themselves.

The results for both the HHmc and HHmcg kernels include the

execution time per step for different numbers of cells, the number

of FLOPS achieved for single and multiple DFEs, and the energy

efficiency in the form of FLOPS/W. The value of Ngates,max is set to

6, representing the maximum number of gates per compartment.

The unroll factor for the cellCore kernel, ufcell, is set to 1, which

is the maximum value before exceeding the bandwidth of the

on-board DRAM. Meanwhile, the unroll factor for the gapCore

kernel, ufgap, is set to 16, being the maximum value that correctly

synthesizes. The subsequent feasible value is 32 (owing to the

necessity for powers of two due to data alignment on the DFE)

but this would demand an excessive amount of hardware resources,

consequently leading to failed synthesis. The maximum number of

compartments Ncomps,max that can be successfully synthesized with

a frequency of 170 MHz is 57,344. This gives the resource usage

as presented in Table 3. This shows the availability of hardware

resources. However, as previously discussed, larger unroll factors

did not lead to performance improvements or did not synthesize

correctly. Moreover, the implementation where the connectivity

weights are generated on the DFE itself could not be synthesized

correctly with more unrolling than the original implementation.

Therefore, the results of the implementation where the connectivity

weights are generated on the DFE itself are excluded.

4.2 HHmc

The performance of the kernel for various numbers of cells is

illustrated in Figure 10, using 1 to 6 DFEs. The primary limitation

in kernel performance is the bandwidth of the on-board DRAM.

Hence a larger unroll factor for the cellCore kernel does not lead

to better performance. The results indicate a linear relationship

between the execution time and the number of simulated cells, as

expected due to the parallel nature of the cell computations.

Frontiers inNeuroinformatics 16 frontiersin.org

https://doi.org/10.3389/fninf.2024.1330875
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Miedema and Strydis 10.3389/fninf.2024.1330875

This linear relationship is also reflected in the number of

DFEs used and the GFLOPS achieved, as shown in Figure 11A.

Power consumption was measured (results are presented in

Supplementary material) and used to calculate energy efficiency in

GFLOPS per Watt, as shown in Figure 11B. These results show

a small variation which is also observed in the power usage of

the DFEs when in idle state. Consequently, the results follow our

expectations and therefore, can provide a reference point for the

performance of the HHmcg kernels that require communication;

to be discussed next.

4.3 HHmcg

The performance of the HHmcg kernel is evaluated for the

use of 1, 2, and 8 DFEs. The execution time per simulation

step of the kernel is measured for various network sizes and is

shown in Figure 12. The results indicate a linear scaling for a low

number of cells, which is because that the dataflow pipeline of the

FIGURE 10

Execution time per step of the HHmc kernel, as measured for

di�erent sizes of IO networks.

performance-critical kernel of the gap junctions on the DFE is not

fully saturated with data. This leads to empty stages within the

pipeline and unused hardware resources.

More specifically, the pipeline is completely filled and utilized

when there are enough voltages to divide over all the ufgap
pipelines within the gapCore kernel. This is captured by the

inequality Ncells,gap−kernel · ufgap ≥ dgap, where Ncells,gap−kernel is the

number of cells per gapCore kernel, ufgap the unroll factor of

the gapCore kernel, and dgap the depth of the pipeline of the

gapCore kernel. To provide a better overall indication of when

all the pipelines are fully utilized, the inequality is rewritten as

Ncells,total · ufgap ≥ dgap · NDFEs · Ngap−kernels,DFE, where Ncells,total is

the total number of cells, NDFEs is the number of DFEs, and

Ngapkernels,DFE is the number of gapCore kernels per DFE.

The linear relationship between the execution time and the

number of cells is explained by the fact that for each iteration,

each cell being processed is still required to pass through the

complete pipeline. Furthermore, there are
Ncells,gap−kernel

ufgap
iterations

per step, as is described in section 3.4.2. Consequently, the number

FIGURE 12

Execution time per step of the HHmcg kernel, as measured for

di�erent sizes of IO networks.

FIGURE 11

Scaling of HHmc kernel on multiple DFEs, as measured in terms of: (A) performance; (B) energy e�ciency.

Frontiers inNeuroinformatics 17 frontiersin.org

https://doi.org/10.3389/fninf.2024.1330875
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Miedema and Strydis 10.3389/fninf.2024.1330875

of ticks (number of clock cycles which process data in a DFE) for a

simulation ofNsteps in the partially filled pipeline is equal to the first

branch of Equation (24). Here Ngapkernels,total denotes the number

of total gapCore kernels. On the other hand, in case enough data

is present to completely fill the pipeline, each membrane voltage

of the cells in the gapCore kernels needs to be processed in each

iteration for a simulation of Nsteps. Therefore, in this case, the

number of ticks of the kernel scales quadratically with the number

of cells, as can be seen in the second branch of Equation (24).

Nticks,HHmcg =

{

Nsteps · dgap · Ncells,gap−kernel · Ngapkernels,total , if Ncells,gap−kernel · ufgap ≥ dgap

Nsteps · N
2
cells,gap−kernel

· Ngapkernels,total ÷ ufgap , otherwise

(24)

To compare the performance of using different numbers

of DFEs, the timing results of the maximum number of cells

are used to calculate the FLOPS. These results can be seen

in Figure 13A: increasing the number of DFEs to 2 or 8

leads to an increase of 1.99 and 7.97 in computational power,

respectively, thus showing excellent performance scalability. We

can conclude that the performance and performance scalability are

not bounded by the MaxRing interconnect due to its ultralow-

overhead design. This is not typical of multi-node setups. For

illustrative purposes, we compared the performance scalability

of our implementation against two other works simulating

an IO network: a multi-GPU setup supporting GPUDirect, as

detailed in Vlag et al. (2019), and a multi-node many-core CPU

architecture as described in Chatzikonstantis et al. (2019). The

results presented in Table 4 demonstrate superior performance

scalability for ExaFlexHH. Notably, ExaFlexHH maintains a

consistent performance trend, particularly when the DFEs are

fully utilized with data. In contrast, the work in Vlag et al. (2019)

reported a variable speedup, dropping to as low as 8× under

similar simulations. Furthermore, Chatzikonstantis et al. (2019)

in fact reported a decrease in performance during scaling

out in their experiments for the case of uniform connectivity

distributions and a connectivity density of 1,000 synapses

per neuron, which is much lower than that supported by

ExaFlexHH.

ExaFlexHH is connected in a ring forming a one-dimensional

systolic array. This architecture inherently supports the expansion

with an arbitrary number of DFEs. Such scalability combined with

the excellent scaling performance of ExaFlexHH indicates that

there is no theoretical limitation of the performance potential of

ExaFlexHH. This implies the feasibility of ExaFlexHH to achieve

exascale performance. However, practically the number of DFEs is

limited and to reach exascale performance the performance of a

single node should be increased. The performance of a single DFE

is determined by both the hardware resources and the bandwidth of

the on-board DRAM. Specifically for ExaFlexHH, the performance

is limited by the GapCore kernel. The performance of this kernel

will increase with sufficient hardware resources to increase the

unroll factor ufgap to the next feasible value of 32 (owing to the

TABLE 4 Comparison of performance scaling between ExaFlexHH, the work presented in Vlag et al. (2019) and Chatzikonstantis et al. (2019).

Implementation Accelerator Maximum
number

of
accelerators

Connectivity Maximum
speedup

Scaling
e�ciency (%)

ExaFlexHH Maxeler

MAX5C DFE

8 nCells2

(all-to-al)

7.97 99.63

Vlag et al. (2019) Nvidia Tesla

K40M GPU

32 1000 · nCells

(uniform distributed)

24.00 75.00

Chatzikonstantis et al. (2019) Intel Xeon Phi

Knights Landing

8 1000 · nCells

(uniform distributed)

1.48 18.50

FIGURE 13

Scaling of the HHmcg kernel on multiple DFEs, as measured in terms of: (A) performance; (B) energy e�ciency.

Frontiers inNeuroinformatics 18 frontiersin.org

https://doi.org/10.3389/fninf.2024.1330875
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Miedema and Strydis 10.3389/fninf.2024.1330875

necessity for powers of two due to data alignment on the DFE) and

more on-board DRAM to facilitate the corresponding throughput.

A prediction of the achievable performance of ExaFlexHH will be

discussed in Section 5.2.

Power measurements were done (results are presented

in Supplementary material) to calculate the energy

efficiency, represented by the FLOPS per Watt. The

energy efficiency is shown in Figure 13B. The energy

efficiency is near-constant, with a variance within 0.3

GFLOPS/W. This is as expected as variance within power

usage is also present when the DFEs are in an idle state.

Consequently, we can conclude that the observed excellent

performance scalability does not compromise system energy

efficiency.

5 Discussion

In this section, we will attempt a comparison between

ExaFlexHH and other FPGA-based implementations from related

works in terms of (normalized) performance (Section 5.1).

Furthermore, we will construct an analytical performance model

of ExaFlexHH and will use it to attempt performance projections

based on future technologies (Section 5.2). As previously stated

in Section 3.4, the performance of both the gapCore and cellCore

kernels was expected to be limited by the bandwidth of the on-

board DRAM in the target system, and the results have confirmed

this bottleneck. However, with advancements in technology, such

as HBM, memory bandwidth is expected to increase significantly

in the future. Despite lagging behind other HPC platforms,

such as GPUs, in terms of DRAM bandwidth, there are no

inherent technological limitations for FPGAs. The difference can

be attributed to market forces and the target market of FPGA

manufacturers. As the FPGA industry starts to focus on the HPC

domain, the performance of FPGAs is expected to progress in the

future (Shahzad et al., 2021).

5.1 Comparison against other FPGA
implementations

To evaluate the performance of ExaFlexHH against

related works, a comparison is made with other FPGA-

based neural simulation implementations introduced and

discussed in Section 2. To ensure a fair and comprehensive

comparison, the following aspects are considered: neural-model

complexity, FPGA-device characteristics, and (normalized)

performance. An overview of the comparison is presented in

Table 5.

In demonstrating the results of eHH models with gap

junctions, the library ExaFlexHH is a unique solution for the

simulation of these models on multiple DFEs. The models

simulated by BlueHive, SNAVA, and NeuroFlow are Izhikevich

models with chemical synapses, which are simpler than the IO

model and not biologically plausible as discussed in Section

2. This simplicity leads to less computations required for

simulating the dynamics, which affects the maximum network

size that can be simulated. The larger network sizes for

BlueHive and NeuroFlow can be explained by the simpler models

used.

Another factor that affects the amount of hardware required is

the precision of the implementations. BlueHive and SNAVA use 16-

bit fixed point variables, which require less hardware but sacrifice

accuracy compared to single floating-point variables. Tomake a fair

comparison, the performance density is used, represented by the

FLOPS per processing element. In this case, the processing element

is defined as a 6-input Look-Up Table (LUT) or an Adaptive Logic

Module (ALM). Because some FPGAs use ALMs instead of LUTs

we adopt the assumption that 2 ALMs ≈ 4 6-input LUTs from

Smaragdos et al. (2014).

The FLOPS of the related works are calculated using

the execution times from their respective papers and the

number of FLOPS per neuron (Izhikevich, 2004). For

chemical synapses, 1 FLOP per active synapse is assumed,

as they can be represented by the accumulation of weights,

as shown in the BlueHive implementation (Moore et al.,

2012). For ExaFlexHH, the results from Section 4 are

repeated.

The comparison shows that ExaFlexHH achieves an order of

magnitude higher performance compared to the related work, and

a resource efficiency between 1.69 and 14.08 times higher. The high

performance allows for large-scale simulations of biophysically

plausible models, even when the neural network is fully connected

with gap junctions, which require continuous interaction and

limit parallelism. The high resource efficiency is indicative of

the employed dataflow paradigm and resulting, systolic-array-like,

operation of the platform and is telling of the ExaFlexHH benefits.

5.2 Performance model and future
potential

The results in Section 4 suggest no inherent limitations to

scaling our architecture to exascale performance. Beyond scaling,

advancements in hardware can also increase performance. To

demonstrate the future performance potential of ExaFlexHH

with evolving hardware, an analytical performance model can

be created. The model ought to be highly accurate given the

deterministic nature of the ExaFlexHH library.

The execution time of the kernel is calculated using

Equation (25), where Tcomp represents the computational time,

determined by the product of the number of ticks (Nticks) and

the frequency (f) of the kernel, as shown in Equation (26),

and TDRAM represents the time to transfer data between the

kernel and the on-board DRAM, which can be computed with

Equation (27) by dividing the total amount of data to be transferred

(DDRAM) by the bandwidth (BWDRAM). Here the amount of

data required to be transferred is equal to the size required

to be transferred of the data per tick (sizedata,tick) multiplied

by the Nticks and f . TMaxRing represents the time to transfer

data between DFEs over the MaxRing, but as discussed in

section 3.4.2, the MaxRing is not expected to be a bottleneck

for performance, as confirmed by the excellent scalability results

in Section 4.3. Thus, for the sake of brevity, TMaxRing will be

omitted from the performance model as its impact is minimal.

Frontiers inNeuroinformatics 19 frontiersin.org

https://doi.org/10.3389/fninf.2024.1330875
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Miedema and Strydis 10.3389/fninf.2024.1330875

TABLE 5 Overview of competitive FPGA-based brain simulation implementations.

Hardware
implementation

BlueHive SNAVA NeuroFlow ExaFlexHH (this
work)

Model Izhikevich Izhikevich Izhikevich IO (extended HH)

Synapse type Chemical Chemical Chemical Electrical (gap junctions)

Connectivity

(# synapses/neuron)

1,000 10 10,000 all-to-all

Network size

(# cells)

256,000 2,000 589,824 145,920

Precision 16-bit fixed-point 16-bit fixed-point Single floating-point Single floating-point

FPGA chip Stratix IV 230 Kintex-7 XC7K325T Stratix V 5SGSD8 Virtex UltraScale+ VU9P

Number of FPGAs 4 2 6 8

Device capacity

(# LUTs or # ALMs)

91,200 ALMs 595,096 LUTs 262,400 ALMs 1,182,000 LUTs

Performance

(G[FL]OPS)

5.89 25.84 16.42 694.11

Resource efficiency

([FL]OPS/LUT)

8,070 43,426 5,214 73,404

FIGURE 14

Estimated performance of the cellCore and HHmc kernel. Performance is calculated as the number of cells (single step) that can be processed within

a second. (A) Performance projections based on the current ExaFlexHH version. (B) Performance projections for a modified version of ExaFlexHH

with support for processing multiple compartments and cells in parallel.

Furthermore, for the purpose of this discussion it is assumed that all

designs will have access to adequate hardware resources on future

FPGAs and will meet timing constraints, thereby ensuring correct

synthesis.

Texec = max(Tcomp,TDRAM ,TMaxRing) (25)

where

Tcomp =
Nticks

f
(26)

TDRAM =
DDRAM

bwDRAM
=

sizedata,tick · Nticks · f

bwDRAM
(27)

In the following, we will present the performance model

of both the cellCore and gapCore kernels. As depicted

in Equations (26, 27), the computational time and the

time required for data transfer between the kernel and

DRAM scale linearly with the frequency. Without loss of

generality, we will set the frequency to 170 MHz for this

analysis.

5.2.1 The cellCore kernel
The computation of the number of ticks required for the

cellCore kernel (Nticks,cell) is performed using Equation (28). In

this equation, Nsteps is the number of simulation steps, Ncomps,total

represents the total number of compartments in the whole

model, and Ngates[i] is the number of gates of compartment i.

Additionally, ufcell is the unroll factor of the cellCore kernel,

and sizebuffer is the size of the buffer required for maintaining

a variable inner loop. For a more elaborate discussion of this

buffer, the reader is referred to Miedema (2019). This equation

computes the execution time needed for a single time-step of

one cell, for various bandwidths, and is used to determine the

number of single time-step calculations of IO cells that can be

Frontiers inNeuroinformatics 20 frontiersin.org

https://doi.org/10.3389/fninf.2024.1330875
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Miedema and Strydis 10.3389/fninf.2024.1330875

FIGURE 15

Estimated performance potential of the gapCore kernel.

Performance is calculated as the number of cells (per single

simulation step) that can be processed within a second.

processed per second. The results are presented in Figure 14A

and demonstrate that the cellCore kernel is limited by the

bandwidth of the on-board DRAM, as previously discussed in

Sections 3.4.1, 4.2. The figure also showcases the improvement

in performance as the DRAM bandwidth increases (e.g., when

moving to HBM-type memory), reaching its maximum throughput

of 110 GB/s. It is important to note that increasing the

unroll factor from six to eight has no effect on performance,

as the maximum number of gates in a compartment of an

IO cell is six, resulting in any additional hardware remaining

idle.

Nticks,cell = Nsteps

Ncomps,total
∑

i=1

⌈

Ngates[i]

ufcell

⌉

+ sizebuffer (28)

To further enhance performance, ExaFlexHH must be

expanded to enable parallel processing of compartments and

cells, in addition to gates. Figure 14B presents the performance

potential for this expanded framework, assuming the use of

better on-board memory bandwidth (up to realistic limits of

current HPC accelerators) and increased hardware resources.

With support for parallel processing of multiple compartments

(uf = 8 and uf = 13, where a single IO cell contains

13 gates in ExaFlexHH), the figure demonstrates an increase in

potential performance as the unroll factor increases. Furthermore,

when uf = 26, or when two IO cells are processed in a

single tick, performance continues to improve with the parallel

processing of more data. The model shows that performance will

continue to increase until a maximum bandwidth of 490 GB/s

is reached, assuming sufficient hardware resources are available.

These results highlight the potential benefits of using high-

bandwidth memory technologies in ExaFlexHH, such as HBMwith

a bandwidth of 460 GB/s, providing future-proofing potential for

the kernel.

5.2.2 The gapCore kernel
The number of ticks required for the execution of the gapCore

kernel is calculated via Equation (29). Similar to the cellCore kernel,

this equation is used to calculate the execution time required

for one time-step for various bandwidths. The results, presented

in Figure 15, demonstrate the relationship between the memory

bandwidth and the maximum network size that can be calculated

within a second. As anticipated, the gapCore kernel benefits

significantly from higher memory bandwidths, given that sufficient

hardware resources are available for the calculations. The results

indicate that performance increases up to a maximum throughput

of 697 GB/s for an unroll factor of 1,024. Additionally, the results

display a quadratic increase in both the number of ticks and

memory size, due to the N2
cells

elements in the connectivity matrix.

Nticks,gap = Nsteps ·
N2
cells

ufgap
(29)

6 Conclusion

In this work, we have addressed the formidable challenge

of simulating large-scale, complex, biologically plausible eHH

networks, focusing on advanced connectivity modeling. To achieve

this, we conducted a comprehensive assessment of various multi-

hardware accelerator platforms, evaluating their performance

and scalability, flexibility, usability, and model support. High

performance is a critical factor in rendering the simulation of

biologically plausible networks viable, while scalability is imperative

for accommodating larger and more intricate neural models.

Additionally, an ideal platform should be flexible enough to adapt

to the evolving demands of model development, and user-friendly,

to eliminate the need for extensive hardware and programming

expertise. Unfortunately, none of the established platforms appear

to fully meet these requirements for the target model complexity of

our work.

Our novel solution, the ExaFlexHH hardware library, has

been engineered to address these shortcomings, building upon the

foundation of the flexible and user-friendly flexHH library, used

for single-node simulations. It allows for seamless modification of

neural parameters, encompassing gate and membrane properties,

the number of compartments, and the quantity of cells, all

without the time-consuming process of hardware (re)synthesis.

Furthermore, ExaFlexHH accommodates heterogeneous neuron

models and is designed to be NeuroML-compliant, with a future

goal of developing a NeuroML parser.

One of the distinctive features of ExaFlexHH is its ability

to facilitate communication between gap-junction kernels and

cell kernels on different accelerator devices, enabling multi-device

support. Its design has been meticulously optimized to leverage

hardware parallelism, and it offers expandability, allowing for the

addition of a greater number of DFEs. The hardware configuration

and algorithmic design are modular, ensuring ease of maintenance

and portability.

Our performance evaluations demonstrate that ExaFlexHH

exhibits linear performance scalability, measured in GFLOPS,

particularly in scenarios without gap junctions, as indicated by the

Frontiers inNeuroinformatics 21 frontiersin.org

https://doi.org/10.3389/fninf.2024.1330875
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Miedema and Strydis 10.3389/fninf.2024.1330875

performance results of the HHmc kernel. Even in the presence of

gap junctions, it showcases nearly linear scalability, exemplified by

the results of the HHmcg kernel. Specifically, employing two DFEs

instead of one results in a performance increase of approximately

1.99, and eight DFEs yield an impressive factor of 7.96 in enhanced

performance. Notably, our results reveal consistent performance

efficiency in GFLOPS per watt, suggesting significant potential

for harnessing emerging DFE/FPGA hardware with minimal

porting efforts. In conclusion, ExaFlexHH represents a high-

performance, scalable, and future-proof multi-FPGA simulation

solution specifically tailored for eHH models, addressing the

demanding requirements of modern neuroscientific research. Its

highly scalable nature facilitates exascale-ready computing speeds,

further enhancing its utility in pushing the boundaries of future

brain-simulation platforms.

Future work in ExaFlexHH should aim to broaden its

neural-model support by extending the current features and

addressing the current limitations. This entails, among other

things, accommodating additional model types, integrating

chemical synapse support, extending the support for different

compartmental cell structures, and the optimization of lower gap-

junction connectivities. Furthermore, we propose to collaborate

with neuroscientists to provide them a powerful tool while

simultaneously receiving practical feedback.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material, further inquiries can be

directed to the corresponding authors.

Author contributions

RM: Conceptualization, Investigation, Methodology, Software,

Writing – original draft, Writing – review & editing. CS:

Conceptualization, Funding acquisition, Resources, Supervision,

Writing – original draft, Writing – review & editing.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article. This

research was supported by the European Commission Horizon

2020 Framework Programme Projects EuroEXA (Gr. Agr. No.

754337), SEPTON (Gr. Agr. No. 101094901) and SECURED

(Gr. Agr. No. 101095717) and by the Dutch Research Council’s

Gravitation project DBI2(No. 024.005.022).

Acknowledgments

The authors gratefully acknowledge the continuous

support provided by Maxeler Technologies throughout

the research effort. The authors also like to thank George

Smaragdos, Stanislav Sauliunas and Lennart Landsmeer

for review and feedback on the paper, Max Engelen for

technical discussions about the implementation, and Sotirios

Panagiotou for his help with NeuroML and proofreading

the manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no impact

on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fninf.2024.

1330875/full#supplementary-material

References

Abi Akar, N., Cumming, B., Karakasis, V., Küsters, A., Klijn, W., Peyser, A., et
al. (2019). “Arbor-a morphologically-detailed neural network simulation library for
contemporary high-performance computing architectures,” in 2019 27th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing (PDP)
(IEEE), 271–282. doi: 10.1109/EMPDP.2019.8671560

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P., et al.
(2015). Truenorth: design and tool flow of a 65 mw 1 million neuron programmable
neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 34, 1537–1557.
doi: 10.1109/TCAD.2015.2474396

AMD (2023). UltraScale Architecture and Product Data Sheet: Overview. Available
online at: https://docs.xilinx.com/v/u/en-US/ds890-ultrascale-overview (accessed
January 18, 2024).

Amir, A., Datta, P., Risk,W. P., Cassidy, A. S., Kusnitz, J. A., Esser, S. K., et al. (2013).
Cognitive computing programming paradigm: a corelet language for composing
networks of neurosynaptic cores,” in The 2013 International Joint Conference on Neural
Networks (IJCNN) (IEEE), 1–10. doi: 10.1109/IJCNN.2013.6707078

Amunts, K., and Lippert, T. (2021). Brain research challenges supercomputing.
Science 374, 1054–1055. doi: 10.1126/science.abl8519

Frontiers inNeuroinformatics 22 frontiersin.org

https://doi.org/10.3389/fninf.2024.1330875
https://www.frontiersin.org/articles/10.3389/fninf.2024.1330875/full#supplementary-material
https://doi.org/10.1109/EMPDP.2019.8671560
https://doi.org/10.1109/TCAD.2015.2474396
https://docs.xilinx.com/v/u/en-US/ds890-ultrascale-overview
https://doi.org/10.1109/IJCNN.2013.6707078
https://doi.org/10.1126/science.abl8519
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Miedema and Strydis 10.3389/fninf.2024.1330875

Arram, J., Tsoi, K. H., Luk, W., and Jiang, P. (2013). “Hardware acceleration of
genetic sequence alignment,” in International Symposium on Applied Reconfigurable
Computing (Springer), 11–24. doi: 10.1007/978-3-642-36812-7_2

Awile, O., Kumbhar, P., Cornu, N., Dura-Bernal, S., King, J. G., Lupton, O.,
et al. (2022). Modernizing the neuron simulator for sustainability, portability, and
performance. Front. Neuroinform. 16:884046. doi: 10.3389/fninf.2022.884046

Bautembach, D., Oikonomidis, I., and Argyros, A. (2021). “Multi-gpu snn
simulation with static load balancing,” in 2021 International Joint Conference on Neural
Networks (IJCNN) (IEEE), 1–8. doi: 10.1109/IJCNN52387.2021.9533921

Birgiolas, J., Haynes, V., Gleeson, P., Gerkin, R. C., Dietrich, S. W.,
and Crook, S. (2023). Neuroml-db: Sharing and characterizing data-driven
neuroscience models described in neuroml. PLoS Comput. Biol. 19:e1010941.
doi: 10.1371/journal.pcbi.1010941

Braitenberg, V., and Schüz, A. (1998). Cortex: Statistics and Geometry of Neuronal
Connectivity. Cham: Springer Science BusinessMedia. doi: 10.1007/978-3-662-03733-1

Braitenberg, V., and Schüz, A. (2013). Cortex: Statistics and Geometry of Neuronal
Connectivity. Cham: Springer Science Business Media.

Cannon, R. C., Gleeson, P., Crook, S., Ganapathy, G., Marin, B., Piasini, E., et al.
(2014). Lems: a language for expressing complex biological models in concise and
hierarchical form and its use in underpinning neuroml 2. Front. Neuroinform. 8:79.
doi: 10.3389/fninf.2014.00079

Chatzikonstantis, G., Sidiropoulos, H., Strydis, C., Negrello, M., Smaragdos, G., De
Zeeuw, C. I., et al. (2019). Multinode implementation of an extended hodgkin-huxley
simulator. Neurocomputing 329, 370–383. doi: 10.1016/j.neucom.2018.10.062

Cheung, K., Schultz, S. R., and Luk,W. (2016). Neuroflow: a general purpose spiking
neural network simulation platform using customizable processors. Front. Neurosci.
9:516. doi: 10.3389/fnins.2015.00516

Chou, T.-S., Kashyap, H. J., Xing, J., Listopad, S., Rounds, E. L., Beyeler,
M., et al. (2018). “Carlsim 4: an open source library for large scale, biologically
detailed spiking neural network simulation using heterogeneous clusters,” in
2018 International Joint Conference on Neural Networks (IJCNN) (IEEE), 1–8.
doi: 10.1109/IJCNN.2018.8489326

Chow, G. C. T., Tse, A. H. T., Jin, Q., Luk, W., Leong, P. H., and Thomas,
D. B. (2012). “A mixed precision monte carlo methodology for reconfigurable
accelerator systems,” in Proceedings of the ACM/SIGDA International Symposium on
Field Programmable Gate Arrays 57–66. doi: 10.1145/2145694.2145705

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

Davison, A. P., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski,
D., et al. (2009). Pynn: a common interface for neuronal network simulators. Front.
Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

De Gruijl, J. R., Bazzigaluppi, P., de Jeu, M. T. G., and De Zeeuw, C. I. (2012).
Climbing fiber burst size and olivary sub-threshold oscillations in a network setting.
PLOS Comput. Biol. 8, 1–10. doi: 10.1371/journal.pcbi.1002814

Deng, L., Wang, G., Li, G., Li, S., Liang, L., Zhu, M., et al. (2020). Tianjic: A unified
and scalable chip bridging spike-based and continuous neural computation. IEEE J.
Solid-State Circ. 55, 2228–2246. doi: 10.1109/JSSC.2020.2970709

Einevoll, G. T., Destexhe, A., Diesmann, M., Grün, S., Jirsa, V., de Kamps,
M., et al. (2019). The scientific case for brain simulations. Neuron 102, 735–744.
doi: 10.1016/j.neuron.2019.03.027

Flynn, M. J., Mencer, O., Milutinovic, V., Rakocevic, G., Stenstrom, P., Trobec,
R., et al. (2013). Moving from petaflops to petadata. Commun. ACM 56, 39–42.
doi: 10.1145/2447976.2447989

Gan, L., Fu, H., Luk, W., Yang, C., Xue, W., Huang, X., et al. (2013). “Accelerating
solvers for global atmospheric equations through mixed-precision data flow engine,”
in 2013 23rd International Conference on Field programmable Logic and Applications
(IEEE), 1–6. doi: 10.1109/FPL.2013.6645508

Gewaltig, M.-O., and Diesmann, M. (2007). Nest (neural simulation tool).
Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Guo, C., Fu, H., and Luk, W. (2012). “A fully-pipelined expectation-maximization
engine for gaussian mixture models,” in 2012 International Conference on Field-
Programmable Technology (IEEE), 181–189. doi: 10.1109/FPT.2012.6412132

Gustafson, J. L. (1988). Reevaluating amdahl’s law. Commun. ACM 31, 532–533.
doi: 10.1145/42411.42415

Hahne, J., Helias, M., Kunkel, S., Igarashi, J., Bolten, M., Frommer, A., et al. (2015).
A unified framework for spiking and gap-junction interactions in distributed neuronal
network simulations. Front. Neuroinform. 9:22. doi: 10.3389/fninf.2015.00022

Hameed, R., Qadeer, W., Wachs, M., Azizi, O., Solomatnikov, A., Lee, B. C.,
et al. (2010). “Understanding sources of inefficiency in general-purpose chips,” in
Proceedings of the 37th Annual International Symposium on Computer Architecture
37–47. doi: 10.1145/1815961.1815968

Hines, M. L., and Carnevale, N. T. (1997). The neuron simulation environment.
Neural Comput. 9, 1179–1209. doi: 10.1162/neco.1997.9.6.1179

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Physiol. 117,
500–544. doi: 10.1113/jphysiol.1952.sp004764

Ishii, K., Inoue, T., and Namiki, S. (2017). “Toward exa-scale optical circuit switch
interconnect networks for future datacenter/hpc,” inNext-Generation Optical Networks
for Data Centers and Short-Reach Links IV (International Society for Optics and
Photonics), 1013105. doi: 10.1117/12.2250796

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE
Trans. Neur. Netw. 15, 1061–1070. doi: 10.1109/TNN.2004.832719

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et al. (2018).
Extremely scalable spiking neuronal network simulation code: from laptops to exascale
computers. Front. Neuroinform. 12:2. doi: 10.3389/fninf.2018.00002

Kaiser, J., Billaudelle, S., Müller, E., Tetzlaff, C., Schemmel, J., and Schmitt, S.
(2022). Emulating dendritic computing paradigms on analog neuromorphic hardware.
Neuroscience 489, 290–300. doi: 10.1016/j.neuroscience.2021.08.013

Knight, J. C., and Nowotny, T. (2021). Larger gpu-accelerated brain
simulations with procedural connectivity. Nat. Comput. Sci. 1, 136–142.
doi: 10.1038/s43588-020-00022-7

Kozloski, J., and Wagner, J. (2011). An ultrascalable solution to large-scale neural
tissue simulation. Front. Neuroinform. 5:15. doi: 10.3389/fninf.2011.00015

Kumbhar, P., Hines, M., Fouriaux, J., Ovcharenko, A., King, J., Delalondre, F., et
al. (2019). Coreneuron: an optimized compute engine for the neuron simulator. Front.
Neuroinform. 13:63. doi: 10.3389/fninf.2019.00063

Lam, N. H., Borduqui, T., Hallak, J., Roque, A., Anticevic, A., Krystal, J. H., et al.
(2022). Effects of altered excitation-inhibition balance on decision making in a cortical
circuit model. J. Neurosci. 42, 1035–1053. doi: 10.1523/JNEUROSCI.1371-20.2021

Lant, J., Navaridas, J., Luján, M., and Goodacre, J. (2019). Toward fpga-
based hpc: advancing interconnect technologies. IEEE Micro 40, 25–34.
doi: 10.1109/MM.2019.2950655

Li, A., Song, S. L., Chen, J., Li, J., Liu, X., Tallent, N. R., et al. (2019). Evaluating
modern GPU interconnect: Pcie, nvlink, NV-sli, NVswitch andGPUdirect. IEEE Trans.
Parallel Distr. Syst. 31, 94–110. doi: 10.1109/TPDS.2019.2928289

McKee, S. A. (2004). “Reflections on the memory wall,” in Proceedings of the 1st
conference on Computing Frontiers 162. doi: 10.1145/977091.977115

Miedema, R. (2019). Flexhh: a flexible hardware library for hodgkin-huxley-
based neural simulations. M.sc. thesis, Computer Engineering, Delft University of
Technology. doi: 10.1109/ACCESS.2020.3007019

Moore, S. W., Fox, P. J., Marsh, S. J., Markettos, A. T., and Mujumdar, A.
(2012). “Bluehive-a field-programable custom computing machine for extreme-
scale real-time neural network simulation,” in 2012 IEEE 20th International
Symposium on Field-Programmable Custom Computing Machines (IEEE), 131–140.
doi: 10.1109/FCCM.2012.32

Müller, E., Schmitt, S., Mauch, C., Billaudelle, S., Grübl, A., Güttler, M., et al. (2022).
The operating system of theneuromorphic brainscales-1 system. Neurocomputing. 501,
790–810. doi: 10.1016/j.neucom.2022.05.081

Murray, J. D., Demirta s, M., and Anticevic, A. (2018). Biophysical modeling
of large-scale brain dynamics and applications for computational psychiatry. Biol.
Psychiat. 3, 771–787. doi: 10.1016/j.bpsc.2018.07.004

Negrello, M., Warnaar, P., Romano, V., Owens, C. B., Lindeman, S., Iavarone, E., et
al. (2019). Quasiperiodic rhythms of the inferior olive. PLoS Comput. Biol. 15:e1006475.
doi: 10.1371/journal.pcbi.1006475

Neuwirth, S., Frey, D., Nuessle, M., and Bruening, U. (2015). “Scalable
communication architecture for network-attached accelerators,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture (HPCA) (IEEE),
621–638. doi: 10.1109/HPCA.2015.7056068

Pehle, C., Billaudelle, S., Cramer, B., Kaiser, J., Schreiber, K., Stradmann, Y., et
al. (2022). The brainscales-2 accelerated neuromorphic system with hybrid plasticity.
Front. Neurosci. 16:795876. doi: 10.3389/fnins.2022.795876

Pell, O., Mencer, O., Tsoi, K. H., and Luk, W. (2013). “Maximum performance
computing with dataflow engines,” in High-Performance Computing Using FPGAs
(Springer), 741–774. doi: 10.1007/978-1-4614-1791-0_25

Pfeuty, B., Mato, G., Golomb, D., and Hansel, D. (2003). Electrical synapses
and synchrony: the role of intrinsic currents. J. Neurosci. 23, 6280–6294.
doi: 10.1523/JNEUROSCI.23-15-06280.2003

Pronold, J., Jordan, J., Wylie, B. J., Kitayama, I., Diesmann, M., and Kunkel, S.
(2022). Routing brain traffic through the von neumann bottleneck: efficient cache usage
in spiking neural network simulation code on general purpose computers. Parallel
Comput. 113:102952. doi: 10.1016/j.parco.2022.102952

Qu, P., Zhang, Y., Fei, X., and Zheng, W. (2020). High performance simulation
of spiking neural network on gpgpus. IEEE Trans. Parallel Distr. Syst. 31, 2510–2523.
doi: 10.1109/TPDS.2020.2994123

Schweighofer, N., Doya, K., Fukai, H., Chiron, J. V., Furukawa, T., and Kawato, M.
(2004). Chaos may enhance information transmission in the inferior olive. Proc. Natl.
Acad. Sci. USA 101, 4655–4660. doi: 10.1073/pnas.0305966101

Frontiers inNeuroinformatics 23 frontiersin.org

https://doi.org/10.3389/fninf.2024.1330875
https://doi.org/10.1007/978-3-642-36812-7_2
https://doi.org/10.3389/fninf.2022.884046
https://doi.org/10.1109/IJCNN52387.2021.9533921
https://doi.org/10.1371/journal.pcbi.1010941
https://doi.org/10.1007/978-3-662-03733-1
https://doi.org/10.3389/fninf.2014.00079
https://doi.org/10.1016/j.neucom.2018.10.062
https://doi.org/10.3389/fnins.2015.00516
https://doi.org/10.1109/IJCNN.2018.8489326
https://doi.org/10.1145/2145694.2145705
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.1371/journal.pcbi.1002814
https://doi.org/10.1109/JSSC.2020.2970709
https://doi.org/10.1016/j.neuron.2019.03.027
https://doi.org/10.1145/2447976.2447989
https://doi.org/10.1109/FPL.2013.6645508
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1109/FPT.2012.6412132
https://doi.org/10.1145/42411.42415
https://doi.org/10.3389/fninf.2015.00022
https://doi.org/10.1145/1815961.1815968
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1117/12.2250796
https://doi.org/10.1109/TNN.2004.832719
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.1016/j.neuroscience.2021.08.013
https://doi.org/10.1038/s43588-020-00022-7
https://doi.org/10.3389/fninf.2011.00015
https://doi.org/10.3389/fninf.2019.00063
https://doi.org/10.1523/JNEUROSCI.1371-20.2021
https://doi.org/10.1109/MM.2019.2950655
https://doi.org/10.1109/TPDS.2019.2928289
https://doi.org/10.1145/977091.977115
https://doi.org/10.1109/ACCESS.2020.3007019
https://doi.org/10.1109/FCCM.2012.32
https://doi.org/10.1016/j.neucom.2022.05.081
https://doi.org/10.1016/j.bpsc.2018.07.004
https://doi.org/10.1371/journal.pcbi.1006475
https://doi.org/10.1109/HPCA.2015.7056068
https://doi.org/10.3389/fnins.2022.795876
https://doi.org/10.1007/978-1-4614-1791-0_25
https://doi.org/10.1523/JNEUROSCI.23-15-06280.2003
https://doi.org/10.1016/j.parco.2022.102952
https://doi.org/10.1109/TPDS.2020.2994123
https://doi.org/10.1073/pnas.0305966101
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Miedema and Strydis 10.3389/fninf.2024.1330875

Schweighofer, N., Doya, K., and Kawato, M. (1999). Electrophysiological properties
of inferior olive neurons: a compartmental model. J. Neurophysiol. 82, 804–817.
doi: 10.1152/jn.1999.82.2.804

Schweighofer, N., Lang, E. J., and Kawato, M. (2013). Role of the olivo-
cerebellar complex in motor learning and control. Front. Neural Circ. 7:94.
doi: 10.3389/fncir.2013.00094

Shahzad, H., Sanaullah, A., and Herbordt, M. (2021). “Survey and future trends
for fpga cloud architectures,” in 2021 IEEE High Performance Extreme Computing
Conference (HPEC) (IEEE), 1–10. doi: 10.1109/HPEC49654.2021.9622807

Smaragdos, G., Isaza, S., van Eijk, M. F., Sourdis, I., and Strydis, C. (2014). “Fpga-
based biophysically-meaningful modeling of olivocerebellar neurons,” in Proceedings
of the 2014 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
89–98. doi: 10.1145/2554688.2554790

Sripad, A., Sanchez, G., Zapata, M., Pirrone, V., Dorta, T., Cambria, S., et al.
(2018). Snavaa real-time multi-fpga multi-model spiking neural network simulation
architecture. Neural Netw. 97, 28–45. doi: 10.1016/j.neunet.2017.09.011

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and
efficient neural simulator. Elife 8:e47314. doi: 10.7554/eLife.47314

Thant, H. A., San, K. M., Tun, K. M. L., Naing, T. T., and Thein, N. (2005).
“Mobile agents based load balancing method for parallel applications,” in 6th Asia-
Pacific Symposium on Information and Telecommunication Technologies (IEEE), 71–82.
doi: 10.1109/APSITT.2005.203634

Thibeault, C. M., Hoang, R. V., and Harris, F. C. (2011). “A novel multi-gpu neural
simulator,” in BICoB 146–151.

Vlag, M. A., v. d., Smaragdos, G., Al-Ars, Z., and Strydis, C. (2019). Exploring
complex brain-simulation workloads on multi-gpu deployments. ACM Trans.
Architect. Code Optimiz. 16, 1–25. doi: 10.1145/3371235

Voss, N., Kwaadgras, B., Mencer, O., Luk, W., and Gaydadjiev, G. (2021). On
predictable reconfigurable system design. ACM Trans. Architect. Code Optimiz. 18,
1–28. doi: 10.1145/3436995

Wang, Z., Huang, H., Zhang, J., and Alonso, G. (2020). “Shuhai: benchmarking high
bandwidth memory on fpgas,” in 2020 IEEE 28th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM) (IEEE), 111–119.
doi: 10.1109/FCCM48280.2020.00024

Widynski, B. (2020). Squares: a fast counter-based rng. arXiv preprint
arXiv:2004.06278.

Yang, S., Wang, J., Hao, X., Li, H., Wei, X., Deng, B., et al. (2021). Bicoss: toward
large-scale cognition brain with multigranular neuromorphic architecture. IEEE Trans.
Neural Netw. Lear. Syst. 33, 2801–2815. doi: 10.1109/TNNLS.2020.3045492

Yavuz, E., Turner, J., and Nowotny, T. (2016). Genn: a code generation framework
for accelerated brain simulations. Sci. Rep. 6, 1–14. doi: 10.1038/srep18854

Yazdanpanah, F., Alvarez-Martinez, C., Jimenez-Gonzalez, D., and Etsion, Y.
(2013). Hybrid dataflow/von-neumann architectures. IEEE Trans. Parallel Distr. Syst.
25, 1489–1509. doi: 10.1109/TPDS.2013.125

Frontiers inNeuroinformatics 24 frontiersin.org

https://doi.org/10.3389/fninf.2024.1330875
https://doi.org/10.1152/jn.1999.82.2.804
https://doi.org/10.3389/fncir.2013.00094
https://doi.org/10.1109/HPEC49654.2021.9622807
https://doi.org/10.1145/2554688.2554790
https://doi.org/10.1016/j.neunet.2017.09.011
https://doi.org/10.7554/eLife.47314
https://doi.org/10.1109/APSITT.2005.203634
https://doi.org/10.1145/3371235
https://doi.org/10.1145/3436995
https://doi.org/10.1109/FCCM48280.2020.00024
https://doi.org/10.1109/TNNLS.2020.3045492
https://doi.org/10.1038/srep18854
https://doi.org/10.1109/TPDS.2013.125
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

	ExaFlexHH: an exascale-ready, flexible multi-FPGA library for biologically plausible brain simulations
	1 Introduction
	2 Related work
	3 Method
	3.1 Hodgkin-Huxley-type models
	3.2 Maxeler system and dataflow paradigm
	3.3 flexHH
	3.4 Implementation
	3.4.1 Kernels without gap junctions
	3.4.2 Kernels with gap junctions
	3.4.2.1 The gapCore kernel
	3.4.2.2 The cellCore kernel

	4 Results
	4.1 Experimental setup
	4.2 HHmc
	4.3 HHmcg

	5 Discussion
	5.1 Comparison against other FPGA implementations
	5.2 Performance model and future potential
	5.2.1 The cellCore kernel
	5.2.2 The gapCore kernel

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

