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Introduction: In recent years, the decoding of motor imagery (MI) from

electroencephalography (EEG) signals has become a focus of research for

brain-machine interfaces (BMIs) and neurorehabilitation. However, EEG signals

present challenges due to their non-stationarity and the substantial presence

of noise commonly found in recordings, making it di�cult to design highly

e�ective decoding algorithms. These algorithms are vital for controlling devices

in neurorehabilitation tasks, as they activate the patient’s motor cortex and

contribute to their recovery.

Methods: This study proposes a novel approach for decoding MI during

pedalling tasks using EEG signals. A widespread approach is based on feature

extraction using Common Spatial Patterns (CSP) followed by a linear discriminant

analysis (LDA) as a classifier. The first approach covered in this work aims to

investigate the e�cacy of a task-discriminative feature extraction method based

on CSP filter and LDA classifier. Additionally, the second alternative hypothesis

explores the potential of a spectro-spatial Convolutional Neural Network (CNN)

to further enhance the performance of the first approach. The proposed CNN

architecture combines a preprocessing pipeline based on filter banks in the

frequency domainwith a convolutional neural network for spectro-temporal and

spectro-spatial feature extraction.

Results and discussion: To evaluate the approaches and their advantages and

disadvantages, EEG data has been recorded from several able-bodied users while

pedalling in a cycle ergometer in order to train motor imagery decoding models.

The results show levels of accuracy up to 80% in some cases. The CNN approach

shows greater accuracy despite higher instability.

KEYWORDS

brain-machine interface (BMI), electroencephalography (EEG),motor imagery (MI), deep

learning (DL), convolutional neural network (CNN), common spatial patterns filter bank

(CSPFB), linear discriminant analysis (LDA), IFNet

1 Introduction

Brain-machine interfaces (BMIs) enable the recording of neural activity from the
user’s brain and its utilization as a control element for devices (Lebedev and Nicolelis,
2006; Lebedev, 2014; Slutzky, 2019). These interfaces can employ invasive methods (which
involve recording the signals directly from the brain) such as electrocorticography (ECoG)

Frontiers inNeuroinformatics 01 frontiersin.org

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2024.1345425
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2024.1345425&domain=pdf&date_stamp=2024-02-29
mailto:javier.juanp@umh.es
https://doi.org/10.3389/fninf.2024.1345425
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fninf.2024.1345425/full
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Juan et al. 10.3389/fninf.2024.1345425

(Leuthardt et al., 2006a,b), or invasive electroencephalography
(iEEG) (Holdgraf et al., 2019; Balaji and Parhi, 2022); or non-
invasive methods (record the signals through the scalp) like
electroencephalographic signals (EEG) (Sanei and Chambers, 2007;
Garipelli et al., 2013; Ortiz et al., 2020), functional Magnetic
Resonance Imaging (fMRI) (Heeger and Ress, 2002; Misaki et al.,
2021), and magnetoencephalography (MEG) (Supek and Anie,
2014; Hillebrand et al., 2019).

In the field of motor rehabilitation, Brain-Machine Interfaces
play a pivotal role in detecting the patient’s intention to move
(Mak and Wolpaw, 2009). This facilitates the control of clinical
devices, such as lower limb exoskeletons (Contreras-Vidal et al.,
2016) or cycle ergometers (Comani et al., 2013; Ortiz et al., 2019b).
While the former provides an experience closer to natural walking,
the latter offers advantages in terms of safety, ease of use, and
cost-effectiveness. Motor imagery (MI) is a commonly employed
technique in these BMIs to activate the brain’s motor area and
improve rehabilitation outcomes. This is primarily attributed to
two main reasons. First, certain studies suggest that the human
motor cortex is particularly active during walking (Castermans
and Duvinage, 2013). Second, deeper patient engagement in their
tasks can lead to increased activation of the affected motor area,
benefiting not only their muscle therapy through actual limb
movement (supported by a cycle ergometer, exoskeleton, etc.) but
also their neural, spinal and nervous rehabilitation. This heightened
mental involvement is fostered through MI-based control. In
this regard, EEG-based Brain-Machine Interfaces are particularly
advantageous, primarily because of the ease of user instrumentation
and the minimal constraints on patients. Certainly, numerous
studies have delved into motor imagery decodification in recent
decades (Ang and Guan, 2008). For example, Xu et al. utilized
discrete wavelet transform to classify EEG signals during left-hand
and right-hand motor imagery (Xu and Song, 2008). Another
illustration is provided by Shen et al. in their exploration of
motor imagery-EEG-based gait rehabilitation control (Shen et al.,
2022). Notably, there are studies dedicated to pedaling motor
imagery decodification from EEG signals, such as the work by Ortiz
et al. (2019b) and Delisle-Rodriguez et al. (2019), among others.
These investigations are unified in their objective of decoding
motor imagery from EEG signals, employing a diverse array of
techniques and algorithms, and achieving promising results in
certain instances. However, EEG signals are characterized by a
substantial signal-to-noise ratio, which complicates their analysis
(Kumar and Bhuvaneswari, 2012).

Approaches for decodingMI fromEEG signals typically involve
extracting discriminative features, whether they are temporal,
spatial, or spectral in nature, and feeding them to a classifier (Lotte
et al., 2018). Additionally, Convolutional Neural Networks (CNNs)
based on Deep Learning (DL) have been explored as potential
solutions. However, further evidence is still needed to establish
whether they outperform feature-based methods (Lawhern et al.,
2018). In the specific case of decoding motor imagery from EEG,
spatial features based on the Common Spatial Patterns (CSP)
algorithm have proven to yield good results (Ortiz et al., 2020).
Additionally, frequency band division has shown to be effective in
enhancing MI decoding models (Ortiz et al., 2020). Furthermore,
in the case of Ortiz et al. (2020), it appears that these features are

particularly well-suited for Bayesian linear classification algorithms
like Linear Discriminant Analysis (LDA). There are also some
neural networks optimized forMI decoding from EEG signals, such
as Autthasan et al. (2021), based on spatial features, andWang et al.
(2023), which combines the concept of a filter bank with spatial
feature analysis.

For all these reasons, this study has compared the performance
of the method based on spatial feature classification developed
in Juan et al. (2022), with an alternative approach grounded in
DL, embodied within the IFNet neural network framework (Wang
et al., 2023). The optimal solution for motor imagery decoding,
whether achieved through traditional feature extraction methods
or DL approaches, has the potential to enhance the quality of life
for millions of individuals with motor disabilities around the globe.

2 Materials and methods

2.1 Users

For this case study, data from thirteen able-bodied users were
employed. Six female users (U01, U03, U06, U08, U09 and U11)
and seven male users (U02, U04, U05, U07, U10, U12 and U13), all
without any diagnosed motor or neurological dysfunction, within
selection criteria, with ages ranging from 18 to 62 years (32±13).
All users were provided with clear information about the study and
signed the informed consent, which was approved by the Comité
de Ética de la Investigación con medicamentos of the Hospital
Universitario Severo Ochoa from Leganés (Comunidad de Madrid,
Spain) under the code HLM-CYCLING-EEG.

2.2 Experimental protocol

The protocol was strategically designed to train two types of
control: rest control (with the cycle ergometer inactive) andmotion
control (with the cycle ergometer active). This involved having
relaxation phases (without Motor Imagery, MI) and MI phases,
both at rest and during pedaling (with the device assisting the user
as in real therapy).

Each test session consisted of 22 trials, with each trial
comprising 15 seconds of relaxation, followed by 30 seconds of
MI during pedaling, and then another 15 seconds of relaxation.
Users were acoustically alerted at each task transition, resulting in
two-second intervals introduced between tasks to exclude those
data segments and prevent interference from external stimuli.
Out of the 22 trials, the odd-numbered ones were conducted
with the cycle ergometer inactive, and the even-numbered ones
with the cycle ergometer active in passive mode. This provided
data on the initiation commands (MI at rest) and cessation
commands (relaxation during motion) for the rehabilitation device
in a potential therapy setting. Every user conducted four of these
sessions in four consecutive days, one session per day. Figure 1
illustrates a schematic of the employed protocol.

A total of 22 trials per session were selected, with the goal of
having 11 trials from each category (rest and motion), allowing
for an 11-fold cross-validation (10+1) for each paradigm in every
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FIGURE 1

Experimental protocol. Each user completed four sessions of this protocol.

test session, and generating CSP-LDA models. Consequently, the
lowest-performing trial from each paradigm in each session can
be excluded, and the remaining 10 resting trials can be used for
training IFNet models. This procedure will be further explained
in Section 2.4.1.3. Each user participated in four test sessions,
with the intention of acquiring an adequate volume of data for
training the convolutional models without overly burdening the
users, thus preventing a decrease in their performance. Prior to
each user’s first session, they were provided with guidelines on how
to perform motor imagery, with an emphasis on guiding them
toward a kinesthetic and consistent form of imagination across the
test sessions and to remain quiet during the registers. Additionally,
they completed the Movement Imagery Questionnaire-3 in its
Spanish version (Trapero-Asenjo et al., 2021), as all users were
Spanish speakers. Table 1 depicts the results obtained by each user.
The users were also provided with basic guidelines for achieving
a correct state of relax, with an emphasis on the importance of
contrasting it with the motor imagery state.

2.3 Experimental setup

The EEG recording equipment used in the experimental
sessions of this project consists of a 32-channel
g.NAUTILUSPROFlexible cap with the g.SCARABEO electrode
distribution, along with the Wi-Fi HEADSET transmitter and
BASE STATION receiver, all from the manufacturer g.tec medical
Engineering GmbH. The reference electrode was clipped to the
right earlobe, which was previously cleaned with skin prep gel, and
all electrodes were accompanied by conducting gel to achieve an
appropriate impedance level for recording, ensuring a clean signal
quality. The signals were recorded at 500Hz.

Regarding the cycle ergometer, the model used is the
CycleMotusTM A4, developed by Fourier Intelligence ©. The screen
was covered at all times to prevent external stimuli. The rotation
speed was adjusted according to each user’s preference, as we aim
to develop adaptable and robust models that can meet the specific
needs of each patient for potential future implementation in real
therapy. In any case, all users selected rotation speeds within the
range of 20 to 40 revolutions per minute and maintained these
speeds throughout all four test sessions.

Figure 2 shows the experimental setup.

2.4 Motor imagery decodification methods

In this section, we describe the two selected methods for
motor imagery decoding. Method I involves feature extraction
using Common Spatial Patterns followed by classification using
Linear Discriminant Analysis, while Method II is based on a
Convolutional Neural Network algorithm, IFNet.

2.4.1 Method I: CSP-LDA
2.4.1.1 Preprocessing

For this first analysis method, a series of hardware filters were
applied to all channels during signal acquisition, as implemented
by the manufacturer. This includes a noise reduction algorithm
integrated into the device, a 4th-order Notch filter between 48 Hz
and 52 Hz to eliminate the 50 Hz power line component, and
an 8th-order band-pass filter with cut-off frequencies of 0.5 Hz
and 100 Hz to confine the signal to the desired frequency range.
Following this, a preselection of channels from the motor area was
performed, which comprises 19 electrodes. According to the 10/10
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TABLE 1 Motor imagery indexes obtained by every user after filling the MIQ-3 questionnaire in its Spanish version (Trapero-Asenjo et al., 2021).

User External
visual MI
index

Internal
visual MI
index

Kinesthetic
MI index

User External
visual MI
index

Internal
visual MI
index

Kinesthetic
MI index

U01 6.00 5.50 7.00 U08 6.50 6.75 3.00

U02 5.75 6.25 4.75 U09 5.25 5.50 6.75

U03 5.75 6.00 6.00 U10 5.25 7.00 6.50

U04 5.50 1.50 2.00 U11 5.75 6.75 5.50

U05 4.00 5.00 3.25 U12 2.75 3.25 2.75

U06 5.00 5.50 6.75 U13 7.00 7.00 6.75

U07 5.25 5.00 5.25

FIGURE 2

Experimental setup employed in the tests.

EEG standard, these electrodes are: FZ, F4, F3, FC5, FC1, FC2, FC6,
T7, C3, CZ, C4, T8, CP5, CP1, CP2, CP6, P3, PZ, and P4 (Figure 3).

Next, a frequency band division was applied for filtering,
consisting of 10 distinct bands: 2–5Hz, 5–10Hz, 10–15Hz, 15-20Hz,
20–25Hz, 25–35Hz, 35–40Hz, 40–45Hz, 45–50Hz, 50–60Hz. For
each of the selected channels, the signal was simultaneously filtered
within each of these ranges using second-order Butterworth filters.
The resulting signals from each channel were summed to obtain the
signal for analysis, following the method employed in Wang et al.
(2023), as illustrated in Figure 4.

2.4.1.2 Feature extraction

This part of the analysis is based on the CSP filter. This filter was
applied to each of the 19 preprocessed selected channels, preceded
by a temporal windowing process. The windows have a duration of
two seconds with an overlap of one and a half seconds, resulting
in feature extraction every half second, for each of the 19 EEG

channels. The label assigned to each window is determined by its
mode, with windows showing a mode indicative of a task change
being excluded from the analysis. Figure 5 provides a more visual
representation of this temporal segmentation.

2.4.1.3 Classification

The temporal window classification was performed using the
LDA algorithm, feeding it with the features obtained in the previous
step, from all 19 channels together. The algorithm provides an
output (MI or relax) every half second, which can be compared
with the actual label to check for accuracy. Figure 6 illustrates
the 10+1 cross-validation model applied during the data analysis
with CSP-LDA method. This cross-fold validation model has
been implemented in every of the eight decodification models
presented by every user (static and cycling, for each one of the
four experimental sessions conducted by every user). Every model
is created with ten trials and tested with the eleventh one, and this
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FIGURE 3

Schematic of electrode placement; blue electrodes form the ones used in the study. The ground electrode (GND) is situated at FCz, whereas

reference electrode (REF) is clipped to the right earlobe.

is repeated eleven times so that every trial has been employed as the
test one. Hence, standard deviation data can be computed with the
accuracy results got from every model.

In the context of our binary classifier, we opted for accuracy as
a performance metric due to the balanced nature of the datasets.
The choice of accuracy provides a straightforward measure of the
classifier’s correctness in distinguishing between the two classes.
Precision focuses on the accuracy of the positive predictions, recall
assesses the ability of the classifier to capture all positive instances,
whereas other metrics such as F1-score balances precision and
recall. Additionally, the implementation of cross-validation serves
the purpose of obtaining standard deviation data, contributing to
a more comprehensive evaluation of the classifier’s consistency
and robustness across different subsets of the dataset. This metric
selection aligns with the balanced distribution of classes and
ensures a holistic assessment of the classifier’s performance.

2.4.2 Method II: IFNet
2.4.2.1 Preprocessing

The signal acquisition process was conducted in the same
manner as in Method I (Section 2.4.1.1), utilizing the same

hardware filters and channel preselection (Figure 3); it involves
the same records. Regarding the filter bank, a different approach
was employed for this model, focusing more on real-time analysis.
In this case, it consisted of an online triple Butterworth filter of
the 8th order in the state space, filtering one-second windows
in series, in parallel across these three frequency bands: 2–25Hz,
25–50Hz, and 50–75Hz. After filtering each window, the results
from the three branches are summed to obtain the final signal for
analysis (Figure 4), emulating the preprocessing technique from
Wang et al. (2023). This filtering strategy is tailored for real-time
processing, mirroring a real therapy scenario. The selection of an
state space filter, which is better suited for processing acquired
temporal windows rather than the entire recorded signal, and
the reduction of the number of frequency bands to three, were
driven by computational efficiency and the demands of real-time
applications.

After filtering the signals, we applied the MinMax scaler to
standardize them for preparing the datasets for the neural network.
It not only improved the data’s consistency but also set the stage for
potential future enhancements. These enhancements could include
adding synthetic samples, calibrating the system with conformal
prediction, or fine tuning algorithms.
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FIGURE 4

Preprocessing techniques employed in the analysis, (A) for Method I, and (B) for Method II. The primary distinctions lie in the number of frequency

bands and the filtering approach. In (A) the entire signal is filtered simultaneously, while in (B) one-second time windows are filtered, with the filter

state updated for the subsequent temporal window. (A) Filter bank schematic used for MI decoding method I (CSP+LDA). (B) Filter bank schematic

used for MI decoding method II (IFNet). * indicate that the graph marked with it is the sum of the graphs on the right of the figure.

2.4.2.2 Classification

In this method, the same window division was applied as in
Method I (two-second windows with a one and a half-second
overlap, resulting in a classifier output every half second, Figure 5).
Using this windowing approach, the IFNet network (Wang et al.,
2023) was trained, creating a model for each user by dividing all
their preprocessed data into 80% for training, 15% for validation,

and 5% for testing. In terms of functionality and hyperparameters,
no changes were made to the default network, except for adjusting
the filters to match those used in preprocessing; Figure 7 provides
a brief summary of this configuration and IFNet’s body, which
involves an spatial convolution followed by a temporal one,
preparing the data for classification. The worst trial from each
session of recordings, as selected by Method I (see Section 2.4.1.3),
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FIGURE 5

Temporal window segmentation utilized in the analysis. Each window is labeled (MI or relax).

FIGURE 6

Cross-fold validation implemented for the analysis. The figure illustrates the data distribution schematic for a single user and how the various motor

imagery decoding models are generated. For each of these models (two per session, one for static and one for cycling), a 10+1 cross-validation was

employed. This involved using each trial as a test case and collecting standard deviation results in this manner.

was removed, leaving 10 trials for each of both the static and cycling
models.

Again, as datasets are balanced, accuracy has been chosen
as evaluation metric. It is important to note that by using this
approach, each user has only two models: one for the static
condition and one for cycling. To create these models, data from
all four experimental sessions were used for training, resulting
in inter-session models formed by 40 static trials and by 40
cycling trials. Convolutional Neural Networks tend to improve
their performance as the amount of data increases (provided
overfitting is avoided), which justifies this inter-session recording
and training. This configuration leads to approximately 1,825 EEG
windows for training each model, 350 for validation, and 115
for testing, for every user. However, it’s noteworthy to mention
that the training times for this approach are considerably longer

compared to Method I. Training each model in Google Colab
takes approximately 40 minutes, while the training process in
Method I is nearly instantaneous on a laptop (ACER Aspire 5,
Intel CORE i7 10th gen, 8GBRAM) usingMATLAB. Consequently,
cross-validation is not implemented in this case.

2.5 Frequency bands ablation study

To evaluate the impact of different signal filtering frequency
bands on motor imagery decoding in Method II (IFNet), an
ablation study was conducted. This study was conducted with three
different users: U01, who exhibited high accuracy with Method
I (CSP-LDA) but a significant difference between MI and relax
accuracy when using IFNet; U07, who showed outstanding results
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FIGURE 7

Overview of the configuration settings applied to the IFNet neural network in this study. For every model, 1000 epochs were computed followed by a

500 epochs retraining, focusing on reducing the validation loss. More information about its structure and functionalities can be found in Wang et al.

(2023).

with both decoding approaches; and U10, who achieved average
results. For each of these users, four new datasets were created,
trained, and tested using IFNet, following the MI decoding method
II. The only variation was the adjustment of the frequency bands in
the state space filter (see Section 2.4.2.1). This allowed us to assess
the effects of different frequency bands on motor imagery decoding
accuracy.

In the first case, only the lowest frequency band (02–25 Hz)
was applied but divided into two consecutive bands: 02–14 and
14–25Hz. This division allowed us to assess the impact of the
lowest band on the relax task decoding accuracy and whether
reducing the number of frequency bands could help mitigate
the class accuracy imbalance. Secondly, the highest band (high
gamma, 50–75 Hz) was removed to measure its contribution to the
analysis. The middle band (high beta, low gamma, 25–50 Hz) was
eliminated in the next scenario to quantify its role inmotor imagery
class decoding and to examine how using two non-consecutive
frequency bands for filtering affects decoding, particularly in terms
of class accuracy bias. Finally, the lowest band (2–25Hz) was also
removed. This ablation study provided preliminary insights into
the contributions of each frequency band to the task decoding and
its potential for optimization, as discussed in Section 4.2.

3 Results

3.1 IFNet and CSP-LDA comparison

In this section, we present the outcomes of a series of
offline tests conducted using CSP-LDA and IFNet classifiers.
Table 2 provides a comparative analysis of these decoding methods
following four postulations: static relax, static MI, cycling relax and
cyclingMI, revealing a noteworthy accuracy enhancement achieved

with IFNet over the conventional state-of-the-art approach. As
a cross-fold validation has been applied using the CSP-LDA
classification method, the results are also presented with standard
deviation data. The average classification accuracy with IFNet
surpasses the traditional method by nearly 5%, with accuracy
improvements observed in 10 out of the 13 users. This feature
is even more pronounced when comparing static data, as the
improvement reaches the 6%, in decrease of the approximately 3%
achieved with cycling models. These aspects are further illustrated
in Figure 8, which showcases a trend between both curves. It is
important to note, however, that when employing IFNet, there is
a notable increase in the variability of accuracy between the two
classes for each user, presenting alarmingly high average standard
deviation values. A substantial variability in decoding performance
among users is a common observation in EEG processing. In this
context, it appears that CSP-LDA exhibits a marginally greater
degree of stability. There don’t appear to be significant performance
discrepancies between both classifiers in the context of the four
postulates, except for the noteworthy improvement in cycling relax
accuracy achieved with CSP-LDA. The results for the other three
scenarios reinforce the overall superiority of the IFNet classifier
in terms of average accuracy, as previously discussed, particularly
in the case of cycling motor imagery, showcasing an accuracy
improvement of over 11%.

3.2 Frequency bands ablation study

Regarding the assessment of the impacts of various frequency
bands of interest, we conducted an ablation study involving
three users, as detailed in Section 2. The results of this concise
study are succinctly presented in Table 3, distinguishing again
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TABLE 2 Results of the classification presented in Section 2.

USER Task IFNet (%
accuracy)

CSP-LDA (%
accuracy±STD)

USER Task IFNet (%
accuracy)

CSP-LDA (%
accuracy±STD)

U01 Static relax 0.0 68.5±7.2 U08 Static relax 54.5 57.3±14.2

Static MI 100.0 71.3±9.9 Static MI 77.6 59.8±13.3

Cycling relax 66.1 69.4±8.0 Cycling relax 58.0 71.2±14.8

Cycling MI 86.2 77.0±9.9 Cycling MI 89.7 59.6±16.1

Mean 63.1 70.3±12.4 Mean 69.9 62.0±13.6

U02 Static relax 93.8 43.2±13.2 U09 Static relax 89.3 56.1±7.2

Static MI 16.4 50.6±11.8 Static MI 77.6 52.1±11.9

Cycling relax 97.3 56.9±20.2 Cycling relax 54.5 66.0±17.5

Cycling MI 16.4 71.3±9.9 Cycling MI 77.6 51.7±9.5

Mean 63.8 49.3±8.2 Mean 54.8 56.5±10.3

U03 Static relax 57.1 52.9±8.2 U10 Static relax 93.8 56.9±7.9

Static MI 56.0 49.7±9.5 Static MI 61.5 50.0±10.7

Cycling relax 67.0 58.4±9.0 Cycling relax 44.6 59.5±12.0

Cycling MI 46.6 51.5±12.1 Cycling MI 40.5 51.4±10.7

Mean 56.7 53.1±8.7 Mean 60.1 54.5±11.0

U04 Static relax 71.4 57.1±10.2 U11 Static relax 93.8 63.5±8.5

Static MI 83.6 53.3±12.0 Static MI 61.5 63.0±11.1

Cycling relax 42.9 52.6±11.8 Cycling relax 99.1 68.0±9.7

Cycling MI 54.3 45.0±10.0 Cycling MI 3.5 52.7±13.7

Mean 63.1 52.0±10.4 Mean 64.5 61.8±9.6

U05 Static relax 45.5 60.1±13.9 U12 Static relax 89.3 63.0±11.4

Static MI 82.8 52.6±14.1 Static MI 10.3 55.1±13.9

Cycling relax 80.4 64.3±11.5 Cycling relax 58.0 53.9±8.3

Cycling MI 74.1 59.3±13.7 Cycling MI 89.7 53.0±9.7

Mean 70.7 59.1±13.3 Mean 61.8 56.2±9.9

U06 Static relax 84.8 60.1±12.8 U13 Static relax 0.0 70.1±9.2

Static MI 57.8 56.8±9.9 Static MI 100.0 59.4±6.7

Cycling relax 17.0 55.3±10.6 Cycling relax 58.0 88.2±7.7

Cycling MI 88.8 56.5±9.5 Cycling MI 89.7 53.0±10.3

Mean 62.1 57.2±8.6 Mean 61.9 67.7±12.6

U07 Static relax 99.1 63.8±12.4

A
ve
ra
ge

Static relax 67.1 59.7±10.5

Static MI 76.7 70.4±12.4 Static MI 65.1 57.2±11.3

Cycling relax 67.9 70.0±6.8 Cycling relax 58.2 64.1±11.4

Cycling MI 82.8 69.0±5.6 Cycling MI 66.3 55.2±12.1

Mean 81.6 68.3±11.4 Total mean 64.2 59.1±11.3

The data delineated in the table reflects the average classification accuracy derived from all individual trials for each user for both motion conditions, static and cycling; as well as the standard

deviation (STD) of the accuracy among trials with CSP-LDA cross-fold validation method.

four postulations (static relax and MI and cycling relax and MI).
Apparently, the choice of frequency bands for the preprocessing
chain does not yield significant differences in the analysis. However,
it is noteworthy that the mid-range band (25Hz-50Hz) appears to

play a pivotal role in motor imagery decoding, as the accuracy
experiences a notable decline upon the removal of this frequency
band. It is also remarkable the increase of the instability in the
classification results for the static models.
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FIGURE 8

Inter-user performance comparison between the IFNet and CSP-LDA classifiers. (A) Inter-user static performance comparison between the IFNet

and CSP-LDA classifiers (correlation coe�cient of -0.06). (B) Inter-user cycling performance comparison between the IFNet and CSP-LDA classifiers

(correlation coe�cient of 0.72). (C) Inter-user average performance comparison between IFNet and CSP-LDA classifiers (correlation coe�cient of

0.42).
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4 Discussion

4.1 Classifiers

As elaborated in Section 3.1, Deep Learning classifiers
demonstrate moderately superior accuracy in the decoding of
motor imagery from EEG signals compared to feature extractors-
based methods. Specifically, the IFNet classifier enhances results
by 5% when compared to the CSP-LDA method, as illustrated in
Table 2 and Figure 8. This phenomena is repeated in three out of
the four scenarios, as only the cycling relax data generates higher
average accuracy outcomes with CSP-LDA classifier. However, a
notable challenge arises in the form of a substantial imbalance
between the decoding classes when using the IFNet classifier,
rendering it less suitable for real-time classification due to its
inherent instability. Users like U01 or U13, exhibiting 100%
accuracy for static motor imagery but 0% for static relax, or U11
displaying 99.1% for cycling relax despite only achieving a 3.5%
average accuracy for cycling motor imagery, involve totally or
partially polarized decoding models with limited usability. And
this issue is observed across various users, to varying degrees.
We conducted several tests involving the augmentation of kernel
size prior to neural network training, which mitigated this bias in
results, albeit only for a limited number of users, especially when
no previous scaling was applied to the data. These observations
suggest the existence of additional complexities or obstacles that
hinder neural networks from consistently converging when tasked
with decoding motor imagery from EEG signals.

Upon analyzing Figure 8, a conspicuous correlation emerges
between the two classifiers, IFNet and CSP-LDA, in terms of the
accuracy observed for each user. Notably, Figure 8 shows how
high-performing users achieve superior results with both classifiers,
while those with average performance exhibit similar outcomes in
both methods. This correlation can also be extended to the cycling
models, as depicted in Figure 8, even though the static models do
not manifest this trend as distinctly (Figure 8). This observation
implies that users with higher performance levels may exhibit
distinct EEG signal patterns or idiosyncrasies that contribute to the
enhanced classifier performance, especially during motion. In this
context, DL methods offer a significant advantage when working
with large datasets as they can leverage the entire dataset for
trainingmodels using Transfer Learning techniques. Consequently,
incorporating data from exceptional users during the training of
models for users with average performance can help mitigate issues
related to task classification imbalance. Nevertheless, in situations
where collecting extensive datasets is challenging, the significantly
shorter training times offered by conventional signal processing
methods like CSP-LDA and the higher stability rates they exhibit
make these strategies a viable option to consider, even though they
may yield slightly lower accuracy.

A brief statistical analysis has been conducted on the accuracy
results, employing the Wilcoxon test to compare both classifiers in
the context of both mental tasks, relaxation, and motor imagery, as
well as both conditions, static and cycling. The p-values obtained
have been adjusted using the Benjamini-Hochberg correction,
resulting in a corrected p-value of 0.68 for the relax task and 0.17
for the motor imagery task, along with 0.17 for static classifiers and
0.34 for cycling ones. These indices suggest no statistical evidence

TABLE 3 Results of the frequency bands ablation study.

Frequency
bands [Hz]

Task (%
accuracy)

U01 U07 U10 Mean

02-14—14-25 Static relax 100 96.4 75.0 90.5

Static MI 0.9 81.0 25.0 35.6

Cycling relax 40.2 58.9 39.3 46.1

Cycling MI 86.2 76.7 47.4 70.1

Mean 56.6 78.3 46.5 60.5

02-14—14-25—
50-75

Static relax 97.3 87.5 62.5 82.4

Static MI 21.6 67.2 71.6 53.5

Cycling relax 58.0 57.1 60.7 58.6

Cycling MI 75.9 77.6 48.3 67.2

Mean 62.9 72.4 60.6 65.4

02-25—25-50 Static relax 69.6 96.4 71.4 79.2

Static MI 35.3 69.0 62.1 55.5

Cycling relax 57.1 61.6 44.6 54.5

Cycling MI 85.3 84.5 43.1 71.0

Mean 61.8 77.9 55.3 65.0

25-50—50-75 Static relax 0.0 91.1 58.0 49.7

Static MI 100.0 83.6 34.5 72.7

Cycling relax 87.5 78.6 53.6 73.2

Cycling MI 87.9 82.5 44.7 71.6

Mean 69.3 84.9 45.4 66.5

The values represent the classification accuracy achieved using the IFNet classifier for each

preprocessing scenario and for every user in the study for both motion conditions, static and

cycling, as well as the average accuracy results.

to reject the null hypothesis, indicating no significant performance
differences between CSP-LDA and IFNet classifiers under any
task or performing condition. This result further supports the
conclusion of favoring CSP-LDA for small datasets due to its
shorter computing times and greater stability, with no significant
functional distinctions from the IFNet classifier. However, IFNet
should be considered a preferable option when working with large
datasets, especially with the implementation of an inter-subject
fine-tuning algorithm.

In relation to Table 1 and the MI indexes obtained by
the users, it appears that there is limited correlation with
their MI performance. Even so, considering the application of
inter-user modeling techniques, it becomes crucial to provide
clear and consistent instructions for the motor imagery task
before conducting experiments. This standardization will not only
enhance the accuracy achieved by Transfer Learning models but
also facilitate real patients in their therapy, promoting a healthier
and more effective rehabilitation process.

For future works or analyses, it is imperative to address the
instability observed in the decoding models. Techniques such as
fine-tuning, particularly in an inter-subject context, are posited as
potentially effective means to tackle this issue; although exploring
alternative decoding techniques may also offer solutions to this
problem. Given the relatively recent emergence of neural networks
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FIGURE 9

Color map of the corrected p-values calculated for the ablation study outputs. The map shows a comparison between pre-processing strategies for

both conditions, static and cycling.

in this field, there remains substantial room for improvement,
unlike more "traditional" techniques such as CSP-LDA, deeply
studied. Pioneering general EEG analysis neural networks like
EEGNet (Lawhern et al., 2018) or DeepConvNet (Schirrmeister
et al., 2017), among others, have progressively evolved into more
specialized networks tailored for concise analysis. IFNet (Wang
et al., 2023) is specifically designed for MI decoding through
EEG signals, as its predecessor MIN2Net (Autthasan et al.,
2021), but there also exist another approaches for EEG analysis
based in Deep Learning, i.e., Bayesian-optimized Interpretable
Convolutional Neural Network (BO) ICNN for P-300 analysis
(Borra et al., 2022) or the CNN proposed for motor execution
decoding from EEG by Borra et al. (2019). Learning from the
strengths of these diverse approaches and highlighting and sharing
their respective advantages could be pivotal for advancing research
in EEG analysis. This collaborative approach may contribute to the
ongoing refinement of decoding models and foster innovation in
the field of EEG signal processing.

In this context, gaining insights into the current landscape
of pedaling motor imagery decoding through EEG signals is
crucial to assessing the quality of results and understanding the
significance of the findings in this study. The overall average
accuracy values obtained, with IFNet at over 65% and CSP-
LDA at 60%, align reasonably with outputs from similar studies
(Rodríguez-Ugarte et al., 2017; Ortiz et al., 2019b; Romero-Laiseca
et al., 2020). However, the instability present in part of the
IFNet models impacts results reliability; also, other comparable
studies have achieved potentially better outcomes, for example
Delisle-Rodríguez et al. attained higher average accuracies in the

classification for pedaling MI throughout EEG signals, despite
facing similar instability challenges in some models (Delisle-
Rodriguez et al., 2019). In spite of these comparisons, the
unique combination of a DL approach and a feature extraction
method, coupled with the incorporation of both static and
cycling motion conditions as well as the ablation study, bring
forth novel insights and conclusions from this study. It is
important to acknowledge that each study operates within its
specific conditions, making direct comparisons challenging and not
always justified.

4.2 Frequency bands ablation study

The primary objective of the frequency bands ablation study
was to ascertain the significance of different frequency bands in
the decoding analysis. The ablation study reveals that, within
EEG frequency ranges, there are no substantial disparities among
frequency bands when decoding the relax class using the IFNet
classifier. Nevertheless, it is evident that the high beta and the low
gamma bands (25–50Hz) play a crucial role in the classification
of MI class, as its accuracy drops by 10% when excluded from
the analysis, and even by 20% if excluded high gamma too (50–
75Hz). This observation aligns with existing literature, which
commonly associates these spectrum bands with motor imagery
tasks (Ahn and Jun, 2015; Ortiz et al., 2019a). Anyhow, the inherent
instability observed in U01 leads to the creation of extremely
polarized models, potentially impacting the overall average results.
The accuracy of the relax task, on the other hand, remains notably
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consistent regardless of the specific frequency band used in the
analysis. It is indeed surprising that the most favorable relax
classification results are achieved when utilizing solely the low-
frequency band (2–25Hz). This observation implies that this band
carries significant weight in relax classification, although it is not
particularly effective for decoding motor imagery tasks, aligning
also with the existing literature.

Regarding the two motion conditions (static and pedaling),
no significant differences seem to emerge in the results for
the static one, beyond the noticeable increase in the disparity
between relax and MI when excluding the mid and high frequency
bands (25–50 Hz and 50–75 Hz) from the filtering process, as
the results obtained in the study remain quite consistent along
the four preprocessing scenarios proposed in the ablation study.
Cycling models, notwithstanding, present an improvement of
approximately 10% when avoiding the lowest bands (02–25 Hz)
along with remarkable stability for that case, while the rest of
filtering conditions yield similar lower results. These findings
suggest a potential correlation between signal noise induced by cap
movement during motion conditions and the high beta and gamma
bands (25–50 Hz and 50–75Hz), which appear to be crucial for
cycling models.

Concerning the specific criteria used to select users for this
concise study, certain conclusions can be drawn from the findings
presented in Table 3. Notably, the combination of the "relax
band" (2-25Hz) and the “MI ban” (25–50Hz) has a profound
impact in reducing instability between classes in static models.
This effect is particularly conspicuous in the data from user U01,
where it not only balances the classes but also enhances the
overall accuracy. Conversely, the removal of the lower band (2Hz-
25Hz) seems to exacerbate the bias between classes classification,
although it does enhance the accuracy for the already balanced
user, U07. In summary, the evidence suggests that an effective
strategy is to omit the high gamma band (50–75Hz) in static
models to alleviate class imbalances, even if it comes at the
cost of some reduction in overall accuracy. For cycling models,
the application of high gamma filtering appears to contribute
to the reduction of decoding model polarization, possibly by
mitigating signal noise induced by cap movement. Moreover, the
elimination of the lowest band from the signal preprocessing
filtering enhances average accuracy, suggesting that applying high
beta and gamma bands (25-50Hz and 50-75Hz) filtering process
is the most effective option for cycling condition. In any case, it’s
important to note that the results obtained from this brief study
are preliminary, and their consistency may vary when applying
inter-user techniques.

As a matter of fact, a short statistical analysis has been
performed on the ablation study results, replicating the
methodology outlined in Section 4.1. Corrected p-values were
computed using the Wilcoxon test to compare each possible pair of
the four frequency configurations utilized in the ablation analysis,
this time distinguishing only between the two motion conditions,
static and relax. This involved collecting data from all three
participants for both relax and motor imagery tasks. The resulting
p-values were then corrected using the Benjamini-Hochberg
method. The outcomes of this statistical investigation are depicted
in a color map, presented in Figure 9. Once again, the statistical
evidence does not robustly support the conclusions drawn in

the study, although they put forward stronger confidence values
for cycling models, but insufficient. The comparison of 02–14—
14–25—25–75Hz with 25–50—50–75Hz scenarios also yields
better statistical evidence, but, again, insufficient. Nonetheless, as
mentioned before, given the preliminary nature of this research
involving only three users, further studies are warranted for
more definitive conclusions. Notwithstanding, the findings are
consistent with existing literature, suggesting that excluding the
50Hz-75Hz high gamma band to enhance stability might be a
viable option for static models, as well as applying high beta and
gamma bands (25–50Hz and 50–75Hz) in the filtering process for
cycling conditions.
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