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Enabling uncertainty estimation
in neural networks through
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Background: The willingness to trust predictions formulated by automatic

algorithms is key in a wide range of domains. However, a vast number of

deep architectures are only able to formulate predictions without associated

uncertainty.

Purpose: In this study, we propose a method to convert a standard neural

network into a Bayesian neural network and estimate the variability of predictions

by sampling di�erent networks similar to the original one at each forward pass.

Methods: We combine our method with a tunable rejection-based approach

that employs only the fraction of the data, i.e., the share that the model can

classify with an uncertainty below a user-set threshold. We test our model in a

large cohort of brain images from patients with Alzheimer’s disease and healthy

controls, discriminating the former and latter classes based on morphometric

images exclusively.

Results: We demonstrate how combining estimated uncertainty with a

rejection-based approach increases classification accuracy from 0.86 to 0.95

while retaining 75% of the test set. In addition, the model can select the

cases to be recommended for, e.g., expert human evaluation due to excessive

uncertainty. Importantly, our framework circumvents additional workload during

the training phase by using our network “turned into Bayesian" to implicitly

investigate the loss landscape in the neighborhood of each test sample in order

to determine the reliability of the predictions.

Conclusion: We believe that being able to estimate the uncertainty of a

prediction, along with tools that can modulate the behavior of the network

to a degree of confidence that the user is informed about (and comfortable

with), can represent a crucial step in the direction of user compliance and easier

integration of deep learning tools into everyday tasks currently performed by

human operators.

KEYWORDS
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Highlights

• Uncertainty estimation key point to implement deep learning in clinical settings.

• A neural network can be used to probe the local confidence in inference.

• No extra computational time or challenging settings.

• Saying “I don’t know” and asking for human evaluation can improve trust and

usability of automatic systems.

• Up to+10% improvement in performance for AD classification frommorphometrics

images over 75% of dataset.
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1 Introduction

The willingness to trust predictions formulated by automatic

algorithms is key in a wide range of domains. In addition to

questions of ethics and responsibility, it is important to note that,

while extremely powerful, a vast number of deep architectures

are only able to formulate predictions without an associated

uncertainty. This shortcoming critically reduces user compliance

even when explainability techniques are used, and this issue is

particularly sensitive when deep learning techniques are employed,

e.g., in the medical diagnosis field. Producing a measure of the

system’s confidence in its prediction can significantly improve

trustability in the deep learning tool as a recommendation

machine, which is capable of improving the workflow of physicians.

Alzheimer’s disease (AD) is one of the most critical public health

concerns of our time. Due to the increase in life expectancy and

better professional care, more and more people reach older ages

but are often affected by degenerative brain disorders such as AD,

which is a severe form of dementia (Knopman et al., 2021). The

main symptoms are progressive memory loss, difficulties in normal

life activities, language disorders, disorientation, and, in general,

decreased cognitive functions. Although in some cases specific

genetic mutations are responsible for the onset of the disease, one

of the most important risk factors is age (which, however, can also

be related to comorbidities).

As a progressive degenerative pathology, AD is usually

preceded by a different condition called mild cognitive impairment

(MCI), with less intense symptoms that often, but not always,

evolve into AD, which has no cure.

There are many theories about the etiopathogenesis of AD,

several of which are linked to an alteration in the metabolism of

beta-amyloid precursor protein. The causal relationship between

beta-myeloid metabolism and the clinical presentation of AD

is the subject of intense research (Hampel et al., 2018, 2020;

Spasov et al., 2019; Toschi et al., 2019). In clinical practice, AD

diagnosis is based on symptoms and is commonly confirmed using

magnetic resonance imaging (MRI) or, in some cases, positron

emission tomography (PET), leaving the clinician with a great

deal of subjectivity and uncertainty to deal with when positioning

a patient in the AD continuum. For these reasons, there is

great interest in models capable of detecting and predicting AD-

related structural and functional changes. Deep learning models

are able to usefully extract local and global characteristics through

convolutional layers and learn how to predict interesting outcomes,

such as distinguishing healthy controls from AD patients or even

MCI patients, which will remain stable for those who will progress

to AD (Jo et al., 2019; Spasov et al., 2019; Sethi et al., 2022;

Termine et al., 2022). In this context, difficulties in accessing large-

scale curated datasets and the need to work with multimodal

high-dimensional data call for particular attention in avoiding

overfitting and increasing the reliability of automatic models,

possibly including the output of uncertainty estimates, which can

be evaluated by neuroscientists and physicians.

For those reasons, we propose a Hybrid Bayesian Neural

Network in a framework where predicted probabilities are coupled

with their uncertainties. To reduce the number of parameters,

we propose a convolutional neural network based on depth-wise

separable convolutions. We train our model on a subset of the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset using

Jacobian Determinant images, that is, images where each voxel

describes the change in volume element resulting from non-

linear coregistration of the patient’s structural magnetic resonance

imaging of the brain to a standard space, e.g., the Montreal

Neurological Institute (MNI) T1-weighted template. This choice

was made to isolate morphometric changes (e.g., cortical atrophy)

from the image intensity variations (Hua et al., 2008). Once the

model is trained, we turn the last linear layer into a Hybrid

Bayesian neural network, replacing optimal values w∗ with a

narrow parameter distribution N (w∗, s). This means that instead

of having a single weight value for each connection between

two neurons from the last layer to the final output, a Gaussian

distribution centered on the optimal value w∗ is used. Every time

the network makes an inference, the weights of the last layer

are sampled from those distributions. In this way, it is possible

to obtain N slightly different networks which, in turn, allow the

network to perform ensembling and hence provide an uncertainty

estimate. The latter can also be thresholded to subset the data

and increase prediction performance. Our approach allows us

to employ a straightforward cost function for the classification

problem while estimating sample-wise uncertainty at inference

time. Unlike other methods such as Monte Carlo Dropout (Gal and

Ghahramani, 2016) or standard Bayesian Neural Networks, we do

not introduce uncertainty by altering the network’s architecture or

weight distribution, both of which can lead to slower convergence,

more difficult training, and lower performance. Instead, for each

sample, we investigate the loss landscape vicinity at inference time

to evaluate the quality and uncertainty of predictions. In the case

of excessive uncertainty, this can trigger a request for human

verification. Figure 1 shows a scheme of the overall procedure.

In the field of Alzheimer’s disease classification, various

methodologies have been explored, including the integrative

analysis of the hippocampus and amygdala using shape and

diffusion tensor imaging, as presented in the studies mentioned

in Tang et al. (2016) and Spasov et al. (2019). These approaches

highlight the potential of morphometric and microstructural

features in distinguishing Alzheimer’s patients from healthy

controls. Our study contributes to this diverse landscape of research

by introducing a neural network-based approach focused on

uncertainty estimation, offering a different perspective on the

classification challenges in Alzheimer’s disease.

In this study, we introduce a novel approach that bridges

the gap between traditional neural networks and Bayesian

neural networks (BNNs) in the context of AD classification.

Our method innovatively converts a standard neural network

into a BNN post-training. This unique strategy significantly

reduces the computational complexity and resource demands

typically associated with BNNs. Moreover, our approach enables

efficient uncertainty estimation in neural network predictions

without the need for ensemble techniques. Our methodology

aims to streamline the transition from research to clinical

practice in Alzheimer’s disease classification, eliminating the

complexity typically associated with training for uncertainty

estimation. Initially, we train a standard Convolutional Neural

Network (CNN). During the inference phase, this CNN is
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FIGURE 1

A schematic description of our approach.

transformed into a probabilistic network akin to a Bayesian

network. This transformation is paired with a rejection

approach based on user-defined thresholds. This system is

designed to autonomously classify cases where the network

is reasonably confident while directing all other cases for

human evaluation, thus ensuring reliability and practicality

in clinical applications. This advancement offers a more

practical and resource-efficient solution for medical diagnostic

applications, particularly in settings with limited data and

computational resources.

2 Methods

In this section, we describe the dataset and briefly revisit the

theory behind Bayesian neural networks that justify our approach.

2.1 Dataset

We selected a subset of 376 cases from the ADNI (Petersen

et al., 2010) dataset, composed of cases labeled as both healthy and

AD and employed only theMagnetization Prepared RapidGradient

Echo (MPRAGE) T1-weighted image. T1-weighted (T1w) images

were co-registered to the MNI template using linear initialization

and a non-linear warp, after which the Jacobian Determinant

(JD) maps were computed by isolating the non-linear part of the

deformation field which takes the images from native space to

standard space. Finally, we mask the deformation maps using the

standardMNI brainmask. Registration procedures were performed

using the ANTs package (Avants et al., 2008).

The high-dimensional non-linear transformation (symmetric

diffeomorphic normalization transformation)model was initialized

through a generic linear transformation consisting of center of

mass alignment, rigid, similarity, and fully affine transformations

followed by non-linear warps (metric: neighborhood cross-

correlation, sampling: regular, gradient step size: 0.12, four

multiresolution levels, smoothing sigmas: 3, 2, 1, and 0 voxels in

the reference image space, shrink factors: 6, 4, 2, and 1 voxels.

We also used image histogram matching before registration and

data winsorization with quantiles 0.001 and 0.999. The convergence

criterion was set to be as follows: the slope of the normalized energy

profile over the last 10 iterations < 10−8). Co-registration of all

scans required ∼19,200 h of CPU time on a high-performance

parallel computing cluster. Our final dataset consisted of 376 JD

images, evenly distributed between AD and healthy cases. The data

set was split into 80 (train)/20 (test) fashion, normalized globally,

and cropped to a size (96, 96, 96). An example case is shown in

Figure 2.

2.2 Bayesian neural networks and
uncertainty estimation

We briefly recap the theory behind Bayesian neural networks

and then describe the architecture of our model and the training

procedure.

The idea is that instead of estimating w∗, which minimizes the

cost function, we learn a weight distribution. This is equivalent

to an infinite ensemble approach, which allows us to estimate the

variance of the prediction by sampling a slightly different neural

network each time we perform inference. Instead of learningw∗, we

learn the posterior p(w|D), where D represents the incoming data.
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FIGURE 2

Example of slices for one random case in the test set. Local Jacobian Determinant images are normalized in the range [0, 1].

Here, our aim is to perform inference as the average of different

neural networks, as described in Equation (1).

p(ŷ|D) =

∫

w
p(y|w)p(w|D)dw = Ep(w|D)(p(y|w)) (1)

where p(ŷ|D) is the probability of obtaining the prediction y given

the data D, p(y|w) is the conditioned probability of obtaining y

given the weights of the network w, and p(w|D) is the posterior

probability of having weight w given the data D as shown in

Equation (2).

To perform this computation, we need the posterior p(w|D),

which can be rewritten using the Bayes theorem. p(w|D) can

be expressed by the likelihood p(D|w) and the prior p(w).

However, the normalization term in the denominator is aslo needed

albeit computationally intractable. There are several approaches

to overcome this issue. One popular approach is variational

inference, which tries to estimate p(w|D) by approximating this

distribution with a parametrized distribution qφ(z) that minimizes

the Kullback–Leibler (KL) divergence with the target distribution.

Monte Carlo approaches are also available, with sampling points

that match the required distribution as described in the studies

mentioned in Kingma and Welling (2014), Blundell et al. (2015),

Gal and Ghahramani (2016), and Lee et al. (2023).

The Monte Carlo approach is computationally extremely

intensive, while using variational inference requires changes in

the objective function that accomplish a new task described by

a modification in the loss function. In this case, the standard

loss function is augmented with the KL divergence between the

distribution of the weights and the chosen prior, which can make

training unstable and longer. Other methods aim to tackle the issue

of estimating uncertainty. These include a variety of techniques,

such as using ensembling approaches (Ganaie et al., 2022), dropout

(Gal and Ghahramani, 2016), and others (Abdar et al., 2021),

including limited-cost laplace estimation like in Daxberger et al.

(2021) using efficient computations of Hessian. However, most of

those methods require higher computational costs, are not scalable,

and modify the objective function.

In this study, assuming that optimal values of w∗ can serve

as the center of Gaussian distribution; little deviation around

these optimal values can represent similar networks, and this

approach turns a standard neural network into a Bayesian neuroal

network without the need for any added complexity at training

time. Under the general assumption that the test distribution

is comparable to the training distribution, small changes in

the weights of the last layer should not result in divergent

outcomes since optimal weights are expected to be in a global

or local minimum. In addition, in real-world applications, it

is common to have a slight distribution shift between training

and test data, and thus, the weights often cannot represent a

minimum for all or part of the test set. Our modifications

enable the network to estimate the uncertainty and hence the

shift from the minimum. If the uncertainty between slightly

different network predictions is high, the network’s predictions

are not stable, and that specific case can be flagged for expert

human evaluation.

p(w|D) =
p(D|w)p(w)

∫

w′ p(D|w′)p(w′)dw′
(2)
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2.3 Neural network architecture

Our base model is a residual convolutional neural network

based on depth-wise separable convolutions, which we

implemented to reduce the number of parameters and the

risk of overfitting. 3D depth-wise separable convolutions are

based on an ad hoc PyTorch implementation, using grouped

convolutions with the group number set to the same value

as the number of input channels, followed by a point-wise

convolution with output channels. In other words, convolutions

are first learned channel-wise, and then, information about

the interaction between channels is taken into account by the

second depth-wise convolution for each point. This reduces the

number of parameters from COK3 to C(K3 + O). Here, C is

the number of input channels, K is the 3D kernel size, and O

is the number of output channels. Our model consists of three

residual blocks, and each block is composed of two depth-wise

separable convolutions with a PReLU activation function (He

et al., 2015). Each block halves the side dimension of the images.

A flattening layer is followed by a linear layer for the first part of

the training and then turned into a Bayesian linear layer replacing

optimal values with Gaussian distributions. We used the Adam

optimizer (Kingma and Ba, 2014) with a learning rate of 3e − 4

and trained our model for five epochs. All implementations were

built in Python, using Pytorch, Monai (Cardoso et al., 2022), and

Torchbnn libraries (Lee et al., 2023). Figure 3 shows a scheme of

the whole architecture.

After training, the weights of the last layer are replaced by

a set of Gaussians w∗ → N(w∗, s), and we set s = 0.01 in

our experiments. This is an empirical choice that can be tuned

in for specific purposes, always ensuring that the resulting weight

perturbations remain small. At each forward pass, the network

processes information in the standard way until it reaches the last

layer. Here, a set of weights is sampled from w ∼ N (w∗, s).

2.4 Experiment

Our model is trained to classify AD and healthy cases from

JD images. Inference is run on the test set with N = 100,

sampling the weights from their distributions as described above,

after which the softmax of the output is computed to obtain the

probabilities and aggregate the results using means and standard

deviations. With this information, we explored a set of thresholds

on standard deviation to examine the resulting variation of

performances. Each estimation with a standard deviation with

FIGURE 3

Architecture overview: our model is a classifier based on residual convolutional blocks. Each block is composed of two depth-wise separable

convolutional layers to keep the number of parameters as low as possible to process 3D images. In correspondence with the gaussian distribution

symbol, we sample the network classifier weights w ∼ N (w∗, s).
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over the predetermined threshold is rejected and excluded from

the performance estimation. The threshold can be set arbitrarily

according to used needs. If higher accuracy is required, one

can set a small value for the threshold t. In this case, we will

have fewer data accepted for estimation and more “rejected”

cases to be reviewed manually. On the other hand, most or all

of the test sets can be retained if one is able to accept more

misclassified cases.

The Algorithm 1 and 2 describes the entire procedure.

input x,N JD images, number of inference

for i in range(N) do

Sample NN weights w ∼ N (w∗, s)

Estimate output probabilities pi = fw(x)

Average prediction pmean = 1
N

∑

i pi

Compute pstd =

√

∑

i(pi−pmean)2

N−1

Algorithm 1. Inference.

input pmean, pstd for test set

keep=[]

for sample in test set do

if pstd < threshold then

keep.append(pmean)

else

Reject pmean

Evaluate keep

Algorithm 2. Reject procedure.

2.5 Explainability

To visualize the portion of the images that was weighted mostly

by our model, we used the trulens library (Leino et al., 2018)

implementation of integrated gradients, as shown in the study

mentioned in Sundararajan et al. (2017). A baseline x0 image—

usually a tensor of zeros—is generated, and a set of interpolated

images are computed according to the formula xi = x0 +

α(x − x0) where x is the actual image that we are trying to

explain and α is a linearly spaced set of coefficients in [0, 1]. All

those images are passed to the network, and the gradients along

the path to the chosen class are collected and integrated. The

images are smoothed with a 3D Gaussian kernel with σ = 4 to

reduce noise in the procedure and keep the values above the 95

percentile to obtain a mask for the most important regions. The

procedure is repeated 10 times, after which the attribution masks

are averaged.

3 Results

As a baseline, we tested the standard neural network

(i.e., without last layer substitution). In this case, in 100%

of the test set, we obtained an accuracy of 0.86, an F1

score of 0.87, precision of 0.86, and recall of 0.86 with an

AUC of 0.938.

Successively, our approach was tested as a function of t (i.e., the

maximum standard deviation accepted for the class with the highest

probability, see above). We computed the area under the receiver

operating characteristic curve and the fraction of the retained test

dataset for each threshold. In Figure 4 and Table 1, the results are

reported as a function of the threshold value.We can clearly see two

FIGURE 4

Results: the left figure accuracy (blue), AUC (orange), and the fraction of the test dataset (green) are shown as functions of the threshold. Right

figure: AUC for the standard model and a selected bayesian model with a threshold of 0.002.
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TABLE 1 Results: accuracy, AUC, and the fraction of the test dataset with

uncertainty behind the threshold.

Threshold Accuracy AUC fraction

0.002 0.947 0.959 0.750

0.005 0.916 0.955 0.789

0.01 0.904 0.951 0.829

0.02 0.898 0.939 0.907

0.05 0.876 0.939 0.960

0.10 0.868 0.940 1.0

0.15 0.868 0.940 1.0

0.2 0.868 0.940 1.0

Bold values indicate the highest (best) values.

opposite trends, where reducing the threshold result in increases

in accuracy and AUC, while the employed fraction of the test set

naturally decreases, since the model is rejecting the predictions

whose associated uncertainty exceeds the threshold. In our use

case, we observed the best results with a threshold of 0.002, which

retains 75% of the dataset and reaches an accuracy of 0.95 and AUC

of 0.96. Figure 5 shows the final explainability masks generated

by averaging integrated gradients for randomly chosen AD and

healthy cases in the test set. It appears that the model focuses on

different areas of the lower brain and, in particular, the ventricular

spaces, whose deformation/enlargement due to atrophy is known

to be associated with AD (Nestor et al., 2008; Ott et al., 2010).

4 Discussion

In this study, we introduce a simple and yet effective way

to modify a standard neural network into one that is able to

accompany predictions with uncertainty estimates. In a wide

range of application fields, for example, the medical industry, the

readiness to accept forecasts by autonomous devices, especially

those based on black-box algorithms such as neural networks,

is crucial. The contribution of such tools to medical diagnosis,

screening, and triaging is constrained by ethics and responsibility.

We argue that tools that can have different behavior controlled

by the user needs (e.g., setting higher or lower thresholds

on uncertainty of predictions) constitute an important step in

this direction.

Here, we introduce a novel application of this concept for

Alzheimer’s disease classification using neural networks, which

is tailored to align with practical needs in a hospital setting.

Our method is designed as a potential screening tool, offering

high efficiency without additional computational burden during

training. Importantly, it can be easily modulated to suit specific

hospital requirements. During the inference phase, our network

employs an uncertainty estimation mechanism. This allows for

the identification of cases where the model’s confidence in its

prediction is below a pre-defined threshold. In such instances,

rather than making a potentially unreliable decision, the network

“asks for human evaluation.” This means that these complex cases

are flagged for review by medical professionals, ensuring a higher

reliability in diagnoses. In our experimental setup, as presented in

Figure 1, we can automatically indentify a fraction of the test dataset

that consists of samples about which the network was unsure.

These were intentionally set aside, and the network proceeded

to automatically evaluate the remaining less ambiguous samples.

This approach simulates a real-world scenario, where challenging

cases would be highlighted and forwarded to medical staff for

further examination. It underscores our commitment to accuracy

and safety in medical diagnosis, acknowledging the critical role of

human expertise in conjunction with advanced AI technology.

Furthermore, in our methodology, as in any other deep

learning medical imaging studies, the curation of the dataset

and preprocessing is a crucial step for the success of automatic

screening methods. Following previous research, we partially

preprocessed the information for the network computing the

Jacobian Determinant images to highlight structural differences

between healthy and pathological cases. Although we employed

the state-of-the art Advanced Normalization Tools (ANTs) for

registration, there remains an inherent limitation in this process,

since the registration could be imperfect and sometimes generate

artifacts. While we meticulously vetted and excluded visually

suboptimal cases, the registration step could still introduce noise

and outliers. This potential source of variance is an important

consideration in interpreting our findings. Our study highlights the

need for continuous improvement in registration techniques and

underscores the significance of considering these factors in similar

neuroimaging-based AI studies.

Features such as uncertainty estimation and automatic

rejections can improve the translation of research to clinical

predictive models. Rather than completely replacing humans in

evaluation, AI can support extremely useful recommendation

systems and powerful tools to reduce workload in an efficient

way for, example, medical professionals. We proposed a method

that turns a classical neural network into a Bayesian neural

network, hence endowing the model with the ability to estimate

the uncertainty associated with predictions. Unlike other methods,

we do not use optimized Gaussian distributions, but rather

empirically narrow Gaussian distributions centered on the best

weight value determined by the conventional training procedure.

Our objective is to enable the network to explore the loss landscape

on the test distribution data in order to identify situations where

the predictions are not stable with minor weight perturbations,

indicating that the loss is not minimized due to distribution shift,

and hence, predictions cannot be trusted. This is based on the

intuition that if the model’s weight configuration minimizes the

loss on the training set, predictions on unseen images should

remain consistent even after small changes in the network’s

weights, as long as there is no change in the data distribution.

In turn, this is motivated by the assumption that loss function’s

local landscape is relatively flat around the minimum. However,

in the presence of slight differences between the training and

test data distributions, unreliable predictions can emerge. Our

approach addresses this by using a distribution of slightly different

neural networks and their standard deviation across predictions

as an approximation of the local Hessian, hence providing

an estimation of uncertainty at inference time without adding

significant computational complexity. We also incorporated a
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FIGURE 5

Results: integrated gradients. This is an interoperability method to look at the most influent areas for prediction. In this case, the model focuses on

the ventriculi of the brain, an area which is involved in neurodegeneration.

rejection method based on thresholding the estimated uncertainty,

which has resulted in a global performance increase (which

amounts to reducing probably misclassified cases as they are

associated with higher uncertainty) over a considerable portion of

the test dataset. Additionally, by exclusion, this system can select

cases to be recommended for expert human evaluation when the

uncertainty is above the threshold.

5 Conclusion

We built a Bayesian-based neural network method capable

of estimating variability in predictions by simulating sampling

from an infinite neural network ensemble. We used the estimated

variability combined with a rejection method to retain only

the fraction of the dataset that the model can classify with an

uncertainty below the threshold and showed that this procedure

can improve the accuracy from 0.86 to 0.95 (while retaining 75% of

the test) when discriminating for AD from healthy cases based only

on brain morphometry. Using integrated gradients, we also found

that our model focuses on areas of the brain that are consistent

with the clinical presentation of AD, in addition to highlighting

previously unexplored areas in the lower part of the brain.
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