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Epileptic seizures are characterized by their sudden and unpredictable nature, 
posing significant risks to a patient’s daily life. Accurate and reliable seizure 
prediction systems can provide alerts before a seizure occurs, as well as give 
the patient and caregivers provider enough time to take appropriate measure. 
This study presents an effective seizure prediction method based on deep 
learning that combine with handcrafted features. The handcrafted features were 
selected by Max-Relevance and Min-Redundancy (mRMR) to obtain the optimal 
set of features. To extract the epileptic features from the fused multidimensional 
structure, we designed a P3D-BiConvLstm3D model, which is a combination 
of pseudo-3D convolutional neural network (P3DCNN) and bidirectional 
convolutional long short-term memory 3D (BiConvLstm3D). We also converted 
EEG signals into a multidimensional structure that fused spatial, manual 
features, and temporal information. The multidimensional structure is then 
fed into a P3DCNN to extract spatial and manual features and feature-to-
feature dependencies, followed by a BiConvLstm3D input to explore temporal 
dependencies while preserving the spatial features, and finally, a channel 
attention mechanism is implemented to emphasize the more representative 
information in the multichannel output. The proposed has an average accuracy 
of 98.13%, an average sensitivity of 98.03%, an average precision of 98.30% 
and an average specificity of 98.23% for the CHB-MIT scalp EEG database. A 
comparison of the proposed model with other baseline methods was done 
to confirm the better performance of features through time–space nonlinear 
feature fusion. The results show that the proposed P3DCNN-BiConvLstm3D-
Attention3D method for epilepsy prediction by time–space nonlinear feature 
fusion is effective.
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1 Introduction

Epilepsy is a neurological disorder characterized by epileptic seizures (Chang and 
Lowenstein, 2003; Fisher et al., 2014), which are often accompanied by intense shaking or 
convulsions. According to statistics from the World Health Organization, neurological 
disorders rank as the second leading cause of global mortality. It is estimated that an additional 
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5 million individuals are diagnosed with epilepsy worldwide annually 
(World Health Organization, 2022). Therefore, epilepsy deserves 
significant attention and focus to improve its prevention and treatment 
efforts. The unpredictability, suddenness, and recurrence of epileptic 
seizures can cause additional anxiety for individuals with epilepsy and 
their families. Epilepsy also has a negative impact on society, as the 
stigma and bias against individuals with epilepsy can lead to feelings 
of shame and social isolation for the affected individuals. This stigma 
can hinder societal development and progress. Therefore, epilepsy 
prediction and treatment became particularly important. Seizures are 
controllable with medication in about 70% of cases, so early prediction 
of epilepsy reduces the worry about epilepsy, as having enough period 
to stop a seizure before it occurs reduces the patient’s suffering to a 
great extent.

Seizure prediction is one of the hot topics in clinical research, 
which is a challenging task. Seizures are the result of excessive and 
abnormal neuronal activity in the cerebral cortex, so epilepsy can 
usually be detected by electroencephalography (EEG). EEG reflects 
the electrical activity of neurons in the brain, and more than 80% of 
people with epilepsy can be  monitored for abnormalities by 
EEG. Therefore, it is of great value to analyze EEG in the diagnosis of 
epilepsy. With the development of modern science, a variety of 
methods have been developed to automatically predict seizures. Most 
of these methods are based on EEG analysis.

In the literature, there are several prediction methods that can 
be  used to confirm the challenge of predicting seizures. The 
combination of manual feature extraction from time-series signals 
and traditional machine learning classifiers has indeed made 
significant contribution to epilepsy detection (Sharma et al., 2019). Lu 
et  al. (2021) employed support vector machines for automatic 
classification of epileptic EEG signals. They chose sample entropy and 
Higuchi fractal dimension as features, and achieved 89.8% accuracy. 
Non-linear features show effectiveness in epilepsy detection or 
prediction. Manual feature makes the model easier to interpret and 
better able to capture the essential features of the data. It can also 
be  customized for different research tasks and applications. Our 
purpose is to explore the prediction of epilepsy based on nonlinear 
features. Appropriate feature selection determines the accuracy of the 
system, but relying only on features and SVM cannot adequately 
access the hidden information of the data, requiring a combination of 
other techniques and methods. With the development of neural 
networks, various neural network methods are gradually being applied 
to the detection and prediction of epilepsy. Among these neural 
networks, recurrent neural networks, convolutional neural networks 
and graphical neural networks have become prominent. He et  al. 
(2022) utilized a graph attention network as the front end to extract 
spatial features, and used a bidirectional long short-term memory 
network as the back end to capture temporal relationships. As a result, 
the seizure detection accuracy on CHB-MIT is 98.52%. Yu et  al. 
(2022) utilized manual features and hidden deep features for 
complementary fusion through the feature fusion module. These 
fused features were then input into a Multiplicative Long Short-Term 
Memory network, achieving an average sensitivity of 95.56% and a 
false positive rate of 0.27/h. In addition, neural networks have been 
proved to be effective in epilepsy detection or prediction. we will 
further study neural network epilepsy prediction. Singh and Malhotra 
(2022) using the spectral power and average spectral amplitude of 
each band as the characteristic inputs of the two-layer LSTM, and 

achieved 98.14% accuracy, 98.51% sensitivity and 97.78% specificity. 
Zhang et al. (2021) combined with multidimensional sample entropy 
and Bi-LSTM, the seizure prediction accuracy was 80.09% and the 
FPR was 0.26/h. Tuncer and Bolat (2022) using EEG instantaneous 
frequency and spectral entropy as features, Bi-LSTM can also be used 
to classify seizures well. The results show that the combination of 
artificial features and Bi-LSTM still has high efficiency in predicting 
seizures. Prathaban and Balasubramanian (2021) reconstructed the 
EEG with sparse and converted it into a two-dimensional image. 
Then, in order to explain the relationship between channels, the 2D 
image is transformed into a three-dimensional image of time, signal 
value and channel representation, and a 3D optimized convolutional 
neural network was used to predict epileptic seizures. It shows that 
epilepsy prediction based on the 3D neural network can be realized. 
However, it should be noted that features with high redundancy can 
affect the performance of the model. Only by selecting features and 
reducing redundancy between features can we improve the calculation 
efficiency of the model and optimize the performance of the model. 
Xing et al. (2022) segmented EEG signals into five frequency bands: 
α, β, γ, θ, and δ, calculated their power spectral density values, merged 
spatial information from multiple electrodes, and then applied them 
to a 3D neural network, a bidirectional long and short-term memory 
network. This method successfully realized the emotion classification. 
The study also incorporated spatial information from electrodes into 
the analysis of emotion recognition. The principle of EEG acquisition 
is the waveform of the potential difference between two electrodes on 
the scalp, so the position of the electrodes reflects the state of other 
adjacent electrodes. This means that we can get some information 
about the EEG signal from the spatial information of the electrodes. 
Therefore, we  will select features, combines manual features, 3D 
neural network, and Bi-ConvLSTM3D to form a neural network 
structure model that preserves spatial information: P3DCNN-
BiConvLSTM3D-Attention3D. Using this model can better intervene 
epileptic seizures and reduce the negative impact of epilepsy.

The article is structured as follows: In Section 2, we provide a brief 
description of the dataset, signal pre-processing, selected feature types, 
mRMR algorithm, and 3D feature construction. Section 3 presents an 
overview of the EEG spatial information modelling, P3DCNN-
BiConvLSTM3D-Attention3D model application, and evaluation 
metrics. We  then discuss and compare the results with previous 
studies. Finally, we provide our conclusions.

2 Materials and methods

Epileptic signals are essentially nonlinear, so nonlinear 
characteristics are part of the research. Using a single feature may not 
be able to effectively capture epilepsy-related information, and too 
many features will reduce the efficiency of the algorithm. Therefore, 
multiple features are used to represent the features of epileptic signals. 
The Max-Relevance and Min-Redundancy algorithm (mRMR) is used 
to select important non-linear features while maximizing their 
relevance and minimizing redundancy.

Figure 1 shows the algorithmic process of this study. The process 
begins with the selecting and preprocessing of EEG signals from the 
dataset. Following this, several feature are extracted. Apply the mRMR 
algorithm to obtain highly significant features and then combine them 
with the spatial relationship of the electrode channels to create 3D 

https://doi.org/10.3389/fninf.2024.1354436
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Liu et al. 10.3389/fninf.2024.1354436

Frontiers in Neuroinformatics 03 frontiersin.org

features with spatial features. Input 3D features into the P3DCNN 
Biconvlstm3D model, and finally add the channel attention mechanism 
to improve the performance and efficiency of the model. The KNN and 
SVM are used to conduct synchronous comparison experiments.

2.1 CHB-MIT dataset

The present work used a public dataset created jointly by 
Children’s Hospital Boston (CHB) and the Massachusetts Institute of 
Technology (MIT). The dataset is called CHB-MIT. The dataset 
contains 24 cases, of which 21 cases and 1 cases were from the same 
female patient, and an interval between data collection was one and a 
half years. The participants included 5 males ranging in age from 3 to 
22 and 17 females ranging in age from 1.5 to 19. The dataset consists 
of 967.55 h of scalp EEG records, including 178 recorded seizures.

2.2 Preprocessing of EEG signals

Due to the low amplitude of EEG signals, they are susceptible to 
external environmental interference, such as powerline frequency 
(60 Hz or 50 Hz) interference. In addition, physiological activity can 
introduce artifacts into EEG signals, mainly including eye artifacts 
and muscle artifacts caused by eye movement and blinking. Therefore, 
in order to obtain relatively clean EEG signals, signal preprocessing 

must be done before feature extraction. Firstly, the EEG signals is 
filtered by using a band-pass filter in the range of 0.5 to 75 Hz. Because 
this study needed to consider the influence of electrode placement, it 
is very important to locate the electrodes in the preprocessing phase. 
Use the pop_chanedit function in EEGLAB to locate scalp electrode. 
The EEG signals were processed using EEGLAB’s Independent 
Component Analysis (ICA) through the pop_runica function. Use 
pop_selectcomps function to remove these components manually to 
obtain relatively clean EEG. The processed EEG signals were 
subsequently segmented.

2.3 Feature type selection

Nonlinear dynamics analysis methods may better suit for analysis 
of the complex and nonlinear EEG waveform recorded from the brain 
than traditional linear methods, such as time and frequency domain 
analysis. Nonlinear features can effectively capture the characteristics 
of biological systems, and can also be used in the analysis of EEG 
(Acharya et al., 2013). Due to the instability and non-stationary of 
epileptic signals, we extract the following non-linear features from the 
EEG signals: Higuchi Fractal Dimension (HFD) (Sharma and Joshi, 
2022), Approximate Entropy (ApEn) (Srinivasan et al., 2007), Sample 
Entropy (SampEn) (Arunkumar et  al., 2016), and Fuzzy Entropy 
(FuzzyEn) (Xiang et al., 2015), FuzzyEn works equally well for fuzzy 
time series and can describe the degree of ambiguity of the series 

FIGURE 1

Flow chart of multi feature selection and temporal spatial epilepsy prediction.
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(Versaci and Morabito, 2003). These nonlinear features were subjected 
to feature selection.

Fractal dimension is a measure used to quantify the complexity of 
signals. In this study, we used HFD to characterize the fractal dimension 
of the signal. HFD is computed by the following steps (Higuchi, 1988):

Step 1: constructing a new time series as Eq. (1):
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Step 2: Eqs. (2) and (3)can be used to calculate the duration of the 
time series.
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Step 3: the HFD is calculated as follows Eq. (4):
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ApEn is an index to measure the complexity of time series. It is a 
nonlinear dynamics parameter, which is used to measure regularity 
and volatility of time series by comparing the similarity of template 
vectors. ApEn is computed as below (Pincus, 1991):

In general, for a time series x n x x x N( ) = ( ) ( ) ( )1 2, ,..,  consisting 
of N  data points, the method for calculating ApEn is as follows:

First, constructing an m-dimensional vector X Xm
N m
m

1 1
, ,… − + , 

where X x i x i x i m i N mi
m = ( ) +( ) … + −( ){ } ≤ ≤ − +, , ,1 1 1 1, .

Second, define the distance dijm between vectors Xim and X jm as 
the Chebyshev distance as Eq. (5) which is the maximum absolute 
difference between their corresponding elements.
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Third, count the number of j  for which dijm is less than or equal to 
the similarity threshold r , and define the approximate count ci . For 
1 1≤ ≤ − +i N m , ci

m r,  is designated as the ratio of the approximate 
count to the total count as Eq. (6).
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Fourth, define φm r,  as Eq. (7):
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Fifth, increase the dimension to m +1 and obtain φm r+1, .

Sixth, define ApEn as Eq. (8):

 ApEn m r m r m r
,( ) = − +φ φ, ,1

 (8)

SampEn is an improvement on ApEn. The following steps are used 
to calculate SampEn (Richman and Moorman, 2000):

For a sequence x n( ), calculate the maximum distance between 
X i( ) and X j( ) as d X i X j x i k x j k
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Next, increase the dimension to m +1 and obtain B rm+ ( )1 . The 
formula for calculating SampEn is as Eq. (9):
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Bm  is never equal to zero. This is because the distance between 
each pair of vectors X i( ) and X j( ) is greater than zero, and the value 
of B ri

m ( ) is always greater than zero. So the value of Bm  is always 
greater than zero.

FuzzyEn is used to measure the uncertainty or information 
content of fuzzy sets or fuzzy systems. FuzzyEn is defined as Chen 
et al. (2007):

To calculate the mean-removed template vector, 
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The Gaussian function definition is employed Eqs. (10–12):
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The formula for computing FuzzyEn is as follows Eq. (13):

 FuzzyEn X m r r rm m
, ,( ) = ( ) − ( )+

log logΦ Φ 1

 (13)

2.4 Feature filtering based on mRMR

This algorithm is to find a set of features in the original feature 
set that have the max-relevance with the final output result, but 
have the min-redundancy between the features. In order to 
minimize the redundancy of features and obtain the most 
information with the least features, we use the mRMR method to 
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select feature (Peng et  al., 2005). Using this algorithm, we  can 
choose the features with the highest information, thus improving 
the performance and accuracy of the model. The experimental 
process is as follows: we  subject pre-processed EEG signals to 
feature extraction and use the mRMR method to select feature 
group with the max-relevance and min-redundancy. Effective 
feature selection can extract highly correlated features for epilepsy 
detection, while eliminating those features with poor correlation. 
The combination of these features better captures the integrity of 
the signal, reduces the complexity and improving the efficiency of 
network learning. This method achieves the highest accuracy with 
fewer features, mRMR is computed by the following steps (Peng 
et al., 2005):

Define the mutual information between xi and x j as Eq. (14):
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i j
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Using mutual information, the mRMR criterion can be obtained 
as Eqs. (15, 16):
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Where S represents the feature set, with S  being the 
dimensionality. I x ci ;( )  represents for the mutual information 
between feature xi and target c, while I x xi j;( )  represents for the 
mutual information between xi and x j. D and R denote the relevance 
and redundancy, respectively.

The mRMR algorithm considers both of the above criteria as Eq. (17):

 max ,Φ ΦD R D R,( ) = −  (17)

To solve the equation above, we  use an incremental search 
algorithm. That is, on the basis of the features that have been selected, 
find the one that maximises the Eq. (18) in the remaining feature 
space. In fact, it is equivalent to computing and then sorting each of 
the remaining features.
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In the process of feature selection, the mRMR algorithm calculates 
feature importance based on HFD, ApEn, SampEn and fuzzy, and 
selects the most important variables one by one. Figure 2 shows the 
feature importance scores obtained by using the mRMR algorithm.

According to the results in Figure 2, it is obvious that this group 
of features are arranged in descending order of importance score: 
HFD, FuzzyEn, ApEn, and SampEn. It should be noted that SampEn 
has the lowest score, indicating that it has higher redundancy and 
relatively low correlation with other characteristics.

In order to find the appropriate number of features, this article 
conducted experiments using different numbers of feature sets from 
high to low importance scores in HFD, FuzzyEn, ApEn, and SampEn. 
By comparing the effects of different feature numbers on the accuracy 
of the model, the optimal feature number is determined, as shown in 
Figure 3. It can be observed that with the increase of the number of 
features, the accuracy of the model is also improves, reaching the 
highest point at three features. However, with the addition of the 
fourth feature, the accuracy of the model drops. Therefore, it is very 
important to strike a balance between minimizing redundancy and 
maximizing relevance in the process of feature selection to ensure the 
best prediction performance. The effect of Figure 3 also reflects the 
correctness of the results of Figure 2. The model chosen is also the 
P3DCNN-BiConvLSTM3D-Attention3D model proposed in present 
work, which is selected using accuracy as an evaluation metric. The 
parameter settings are shown in Tables 1, 2.

In conclusion, HFD, FuzzyEn and ApEn have been chosen as the 
features used in the experiments. The selected multiple features were 
combined with the 2D electrode channel spatial feature matrix. To 
normalize the data, import the StandardScaler class from the scikit-
learn library and use the fit_transform method.

3 Epileptic-states classification

According to the EEG records of epileptic patients, their condition 
can be divided into two periods: the interictal period and the Seizure 

FIGURE 2

Importance score of each feature.

FIGURE 3

Accuracy values under different features.
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Occurrence Period (SOP). The interictal period represents to the time 
when the patient is in a normal state, and the SOP represents to the 
time range when the patient has epileptic symptoms. The main goal 
of epilepsy prediction is to detect seizures within the range of Seizure 
Prediction Horizon (SPH). An appropriate SPH should include an 
appropriate time range for taking adequate intervention or preventive 
measures before actual seizures. A long prediction range can cause 
patient anxiety and pose a challenge to using neural network 
prediction models, while a short prediction range may result in 
insufficient preparation time for patients and healthcare providers, 
ultimately failing to achieve the goal of epilepsy prediction. Achieving 
an appropriate balance is crucial in epilepsy prediction.

Truong et al. (2018) established the time interval of SPH from 
5 min before the actual seizure occurrence. Within this period, 
patients were provided only 5 min to prepare. To provide ample time 
for both the physician and the patient, we defines the SPH range as 
15 min prior to the seizure up to 5 min before the seizure itself, as 
illustrated in Figure 4.

In present work, positive samples are retrieved during the 15 to 
5 min interval leading up to seizure onset, as seizures are likely to 
occur during the following 15 min. Negative samples are segments 

without signs of imminent seizure within 15 min. The number of 
positive and negative samples of the dataset used in CHB-MIT was 
11,300:11,400, which was generated because the time window used in 
this study was 6 s and each patient had a large number of EEG 
recordings, each recordings is at least two hours. To balance the 
positive and negative samples, the same 1:1 positive and negative 
samples were used for each patient.

3.1 Three-dimensional feature construction 
of EEG

The CHB-MIT uses 23 electrodes for recording, which conforms 
to the positioning and naming of the international 10–20 system for 
EEG electrode placement standards. The dataset’s electrode names are 
as follows: AF7, AF3, AF4, AF8, FT9, FT7, FC3, FCz, FC4, FT8, FT10, 
T7, T8, TP7, CP3, CPz, CP4, TP8, P8, PO7, PO3, PO4, and PO8. 
Figure 5 shows a mapping of the actual spatial distribution of these 
scalp electrodes on the head.

To extract spatial features between scalp electrodes, a spatial 
feature matrix with a 4 × 7 two-dimensional electrode channel is 
designed based on Figure 5, as illustrated in Figure 6. From Figure 6, 
the relative spatial relationships between different electrodes can 
be clearly understood.

To represent the EEG signals from a multi-feature perspective, the 
selected features were combined into a feature set: By arranging the 
2D matrices of each feature after StandardScaler transformation, can 
obtain a 3D feature input composed of three features as illustrated in 
Figure 7. H represents the height of the matrix set to 4, W represents 
the width of the matrix set to 7, and N represents the number of 
selected important features, which is 3 in this case.

3.2 Pseudo-3DCNN structure learning

The proposed work utilizes a pseudo-3D CNN merged with a 
bidirectional ConvLSTM3D as the primary algorithm. By using 3D 
neural networks, the algorithm can preserve the electrode space 
information and information from multiple features. Assuming a 
conventional 3D convolutional kernel size is k k b∗ ∗ , where k  is the 
spatial dimension of the filter and b is the feature dimension of the filter, 
3D convolution is computationally expensive and memory-intensive 

TABLE 1 Pseudo 3D convolution feature extraction architecture.

Layer Kernel size Output size

P3DConv1 1 × 3 × 3 × 64 3 × 4 × 7 × 1

P3DConv2 3 × 1 × 1 × 64 3 × 4 × 7 × 64

P3DConv3 1 × 3 × 3 × 128 3 × 4 × 7 × 128

P3DConv4 3 × 1 × 1 × 128 3 × 4 × 7 × 128

P3DConv5 1 × 3 × 3 × 256 3 × 4 × 7 × 256

P3DConv6 3 × 1 × 1 × 256 3 × 4 × 7 × 256

TABLE 2 3D RNN feature extraction architecture.

Layer
Size of hidden 

state
Output size

Input sequence – 2 × 3 × 4 × 7 × 512

Bi-ConvLSTM3D layer 3 × 1 × 1 × 64 3 × 4 × 7 × 64

Fully connected layer 1 × 3 × 3 × 128 3 × 4 × 7 × 128

FIGURE 4

Epilepsy different stages state diagram.
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when learning features. In order to solve this problem, we  can 
understand a 3D convolutional filter with a size of k k b∗ ∗  as a k k∗ ∗1 
convolutional filter for 2DCNN and a 1 1∗ ∗b convolutional filter for 
1DCNN. The k k∗ ∗1 convolution filter is used to obtain spatial 
information, while the 1 1∗ ∗b convolution filter is used to obtain 
information about nonlinear characteristics. This method is called 
pseudo-3D (Qiu et  al., 2017). In this study, we  used pseudo-3D to 
extract EEG information from multiple dimensions, including spatial, 
nonlinear, and temporal. This not only reduces the computation and 
complexity of 3D convolution, but also realizes a more sensible feature 
extraction process. In order to extract the feature information of each 
nonlinear feature, each feature uses a convolution kernel with the size of 
k k∗ ∗1. Then, a convolution kernel of the size 1 1∗ ∗b is used to extract 
the information between these features. Pseudo 3D networks can adopt 
different convolution kernel sizes, stride sizes, and padding methods in 
both temporal and spatial dimensions to meet different needs.

3.3 P3DCNN-BiConvLstm3D-Attention3D 
model

It is equally important to extract temporal information for EEG 
while extracting spatial and feature information. Traditional BiLSTM 

is usually used to capture temporal correlations when processing 
temporal data, but it cannot effectively preserve spatial information 
features in the data. In contrast, Bi-ConvLSTM3D can simultaneously 
extract spatial relationships and temporal correlations from the data. 
This type of network is particularly suitable for the data in this study 
and can better handle 3D type data. Therefore, this study used 
Bi-ConvLSTM3D.

The purpose of this study was to determine whether the EEG 
signals belonged to SPH segments. Segments from 15 min before the 
seizure to 5 min before the seizure were designated as positive samples, 
and the remaining segments were designated as negative samples. For 
continuously recorded EEG signals, the data need to be segmented. In 
this paper, the EEG data were segmented into 6-s segments using a 
non-overlapping sliding window method.

The algorithm flow is illustrated in Figures 8–10 and the steps of 
alogrithm as Eqs. (19–24).

ConvLSTM3D is defined as Li et al. (2022):

 i W X W H W c bt Xi t Hi t ci t i= ∗ + ∗ + +( )− −σ 1 1  (19)

 f W X W H W c bt Xf t Hf t cf t f= ∗ + ∗ + +( )− −σ 1 1  (20)

 g W X W H bt X t H t cc c
= ∗ + ∗ +( )−tanh 1  (21)

 c f c i gt t t t t= +− 1  (22)

 o W X W H W c bt Xo t Ho t co t= ∗ + ∗ + +( )−σ 1 0  (23)

 H o ct t t= ( ) tanh  (24)

Where Xt represents the three-dimensional characteristics of each 
time window, and the Ht  represents the hidden state. σ  represents the 
Sigmoid function, and i f o, ,  correspond to the input gate, forget gate, 
cell gate (Li et  al., 2022). The weights and biases indexed by 
X H i f o c, , , , ,  are learned through backpropagation. The symbol 
represents matrix multiplication. The symbol ∗represents the 
convolution operation. Figure  9 illustrates the details of 
this implementation.

The whole model includes the construction and input of three-
dimensional EEG, spatial and nonlinear feature extraction, temporal 
feature extraction, channel attention mechanism and classifier. The 
training process is as follows: Use the features selected by mRMR to 
construct 3D features. The time-step is set to 2 and each step lasts for 3 s. 
The time distribution layer is used to wrap the pseudo-3DCNN, which 
can independently apply the layers or networks of the neural network to 
each time step of the sequence. We use Keras’ TimeDistributed layer to 
achieve this function. Then, the data is extracted through a temporal 
feature extraction layer to obtain temporal correlations. Finally, useful 
channels are enhanced by the 3D channel attention mechanism, and then 
it is sent to the full connection layer to determine the category of data 
segments. Table 1 illustrates the architecture of the pseudo-3D CNN 
layers; the temporal feature extraction layer takes two 3D blocks from the 
output of the convolutional layers as input, and the Bi-ConvLSTM3D 
layer captures temporal features and spatial information while preserving 
spatial information. Table 2 illustrates the architecture of RNN.

The attention mechanism was also changed to a 3D type of 
attention mechanism, as the focus of this paper is on the 3D module. 

FIGURE 5

23 electrodes scalp localization map.

FIGURE 6

2D electrode channel positioning matrix diagram.

https://doi.org/10.3389/fninf.2024.1354436
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Liu et al. 10.3389/fninf.2024.1354436

Frontiers in Neuroinformatics 08 frontiersin.org

The specific operation of the channel attention mechanism is as 
follows: Squeeze-Excitation-Scale (Hu et al., 2018). The squeeze is the 
use of global average pooling to compress the three-dimensional 
features of each channel into a real number. The excitation is to 
generate a weight value for each channel, use two fully connected layers 
and an activation layer to construct the correlation between channels, 
and output the same number of weights and channels. The Scale is the 
process of weighting the active weights to each channel. Figure 11 
shows the network structure of the channel attention mechanism.

In the P3DCNN model, batch normalization is performed after 
every two pseudo-3DCNN layers. In this paper, the number of 
parameters for pseudo-3DCNN is 364,720, the number of parameters 
for Bi-ConvLSTM3D is 1,050,624, and the number of parameters for 
Attention3D is 66,112.

3.4 Evaluation criteria

In present work, the performance of the classification model is 
evaluated using the cross-validation method, the main idea of which is 
as follows: for all the data, divide it into k  subsets of unrelated samples, 
i.e., D D D D D D i jk i ji

= ∪ ∪…∪ ∪ =∅ ≠( )1 2 , , and then each time 
select a subset of samples to be used for testing, and the rest of the data 
are all used for training, and after k  times of training in this way, 
average the k  results and calculate the final result. In this paper sets k  
to 5. And independently conduct five 5-fold cross-validation to obtain 
the average ACC and STD to evaluate the performance of the model.

Choosing appropriate evaluation criteria is beneficial for enhancing 
the credibility of model performance. In addition, to evaluate the 
effectiveness of the epilepsy prediction models in this study, accuracy 
(Acc), sensitivity, precision and specificity were used as evaluation 
metrics, these metrics as Eqs. (25–28).

 
Acc TP TN

TP TN FP FN
=

+
+ + +  

(25)

 
Sensitivity TP

TP FN
=

+  
(26)

 
Precision TP

TP FP
=

+  
(27)

 
Specificity TN

FP TN
=

+  
(28)

Where TP, TN, FP, FN represents true positives, true negatives, 
false positives, and false negatives.

4 Results and discussion

The proposed model in this paper is compared with other baseline 
methods on the CHB-MIT dataset. The details and parameters of 
these methods are as follows.

FIGURE 7

3D feature map.

https://doi.org/10.3389/fninf.2024.1354436
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Liu et al. 10.3389/fninf.2024.1354436

Frontiers in Neuroinformatics 09 frontiersin.org

SVM: Support Vector Machine is a supervised machine learning 
model for general linear classification. It is widely used for both 
classification and regression tasks. SVM maps the feature vectors of 
instances into points in space and then separates these points with a 
hyperplane for classification. SVM is suitable for small to medium-
sized datasets, as well as nonlinear and high-dimensional 
classification problems. Since this study involves a three-dimensional 
feature structure, SVM was chosen as one of the baseline methods. 
The kernel of SVM is set to ‘rbf ’, and the decision_function_shape is 
set to “ovo”.

K-Nearest Neighbors (KNN): The basic idea of this algorithm is 
to compare the attribute features of the test dataset with the 
corresponding attribute features in the training dataset. In the training 
dataset, it finds the k nearest “neighbors” and determines the class of 

the test dataset sample based on the majority class among these k 
neighbors. In this comparative experiment, the value of n_neighors 
used for KNN is set to 5, and the metric is set to ‘minkowski’.

Figure  12 shows the performance of KNN, SVM, and 
P3D-BiConvLstm3D-Attention3D on the CHB-MIT dataset. From 
Figure 12, it can be observed that the proposed model in this study 
demonstrates effectiveness and generalizability on the CHB-MIT 
dataset. The top two rows and the last row of Table 3 depict the average 
ACC and STD of these methods. We can observe that compared with 
the other baseline methods, our model achieves the highest ACC and 
the lowest STD. Our model has an accuracy of 98.13%, which is 1.72% 
and 0.74% higher than KNN and SVM, respectively.

Our model outperforms KNN and SVM in most patient 
metrics, with accuracy, sensitivity, specificity, and precision metrics 

FIGURE 8

EEG segmentation and 3D feature construction.
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of over 95% across all patients. Regarding the performance of the 
method proposed in this study on the dataset, the accuracy of this 
method is 98.13%, sensitivity is 98.03%, precision is 98.30% and 
specificity is 98.23%. Therefore, we have reason to believe that our 
proposed model is reliable. The experimental results show that our 
p3DCNN-BiConvLSTM3D-Attention3D model achieves better 

performance than traditional machine learning algorithms (SVM 
and KNN).

Table  4 presents a comparison of the results between this 
study and other research papers. Zhang et al. (2020) used Pearson 
correlation coefficients as features and then employed a 
convolutional neural network for prediction, achieving an 

FIGURE 10

Overall architecture of the model.

FIGURE 9

the structure of ConvLSTM3D cells.
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accuracy of 89.98%, which is lower than the accuracy achieved in 
this study. This suggests that incorporating spatiotemporal 
features can indeed improve the accuracy of epilepsy prediction. 
Das et  al. (2020) utilized a framework consisting of various 
feature extraction algorithms (lower threshold, target point 
selection, and current maxima), energy features, and pattern 
matching (segment and domain). The authors’ model proposal, 
power, homogeneity, maxima, energy, and physiological traits 
have been employed. The algorithm achieved an accuracy rate of 
92.66%, a F1-score rate of 94.86%. Muhammad Usman et  al. 
(2021) utilized a three-layer custom convolutional neural 
network in combination with handcrafted (temporal and 
spectral) features. The feature set was used to train an ensemble 
classifier, which integrated the outputs of SVM, CNN, and 
LSTM. On the CHB-MIT dataset, the average sensitivity rate 
achieved was 96.28%, the average specificity rate achieved was 
95.65%. Muhammad Usman et  al. (2020) utilized short-time 
Fourier transform (STFT) to extract frequency-domain and time-
domain information from 30-s EEG windows. A neural network 
was utilized to classify segments between pre-seizure and 
interictal periods. On the CHB-MIT dataset, the sensitivity rate 
achieved was 92.7%. the specificity rate achieved was 90.8%. 
Singh and Malhotra (2022) proposed a two-layer LSTM network 
model that utilized the spectral power and average spectral 
magnitude features of α, β, γ, θ, δ bands from a 23-channel EEG 
spectrum. The model achieved an average accuracy rate of 
98.14%, an average sensitivity rate of 98.51%, an average 
specificity rate of 97.78%. Zhang et  al. (2021) combined with 
multidimensional sample entropy and Bi-LSTM, the seizure 
prediction accuracy was 80.09% and the FPR was 0.26/h. 
Prathaban and Balasubramanian (2021) reconstructed the EEG 
with sparsity and converted it into a two-dimensional image. 
Then, to account for the relationship between channels, the 

two-dimensional image was converted into a three-dimensional 
image of time, signal value, and channel representation, and a 
three-dimensional optimized convolutional neural network was 
used to predict seizures with an accuracy of 0.98%, sensitivity of 
0.99%, and False Prediction Rate (FPR) of 0.07 FP/h.

5 Conclusion

We have proposed a seizure prediction algorithm that combines 
multiple feature selections and pseudo-3D neural networks. This 
method extracts multiple features and combines them to form 
unique 3D features. It uses multi-layer pseudo-3D convolutional 
neural networks, BiConvLSTM3D, and 3D channel attention 
mechanisms for automatic detection. The accuracy of this method 
is 98.13%, sensitivity is 98.03%, precision is 98.30% and specificity 
is 98.23%. The method outperforms most advanced similar methods 
with high sensitivity and a prediction time of 15 min in advance. 
Compared to other methods, our results indicate that our model 
has similar or better predictive accuracy, sensitivity, accuracy and 
specificity, which further validate the effectiveness of our method. 
However, there is still room for improvement in many areas. Grid 
search can be applied to the model to systematically search for the 
optimal combination of hyperparameters for optimal performance. 
In this study, all scalp electrode channels were used, and future 
research will further investigate the optimization of multi-channel 
epilepsy. In three-dimensional neural networks, parameters can 
be  reduced, computational efficiency can be  improved, and the 
maximum information can be expressed with the least number of 
electrodes. In addition, the gender and age distribution of patients 
will be incorporated into the three-dimensional features to further 
investigate the relationship between gender, age, and epilepsy  
prediction.

FIGURE 11

The architecture of convolutional block attention module.
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FIGURE 12

Shows the metrics for each subject under different models. (A) Accuracy (B) Sensitivity (C) Precision (D) Specificity. (A) The Accuracy metric is used to 
compare KNN, SVM, and the research proposed in present work. (B) The Sensitivity metric is used to compare KNN, SVM, and the research proposed in 
present work. (C) The Precision metric is used to compare KNN, SVM, and the research proposed in present work. (D) The Specificity metric is used to 
compare KNN, SVM, and the research proposed in present work.
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