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Neuroimaging article
reexecution and reproduction
assessment system

Horea-Ioan Ioanas*, Austin Macdonald and

Yaroslav O. Halchenko

Center for Open Neuroscience, Department of Psychological and Brain Sciences, Dartmouth College,

Hanover, NH, United States

The value of research articles is increasingly contingent on complex data

analysis results which substantiate their claims. Compared to data production,

data analysis more readily lends itself to a higher standard of transparency

and repeated operator-independent execution. This higher standard can be

approached via fully reexecutable research outputs, which contain the entire

instruction set for automatic end-to-end generation of an entire article from

the earliest feasible provenance point. In this study, we make use of a peer-

reviewed neuroimaging article which provides complete but fragile reexecution

instructions, as a starting point to draft a new reexecution system which is both

robust and portable. We render this system modular as a core design aspect,

so that reexecutable article code, data, and environment specifications could

potentially be substituted or adapted. In conjunction with this system, which

forms the demonstrative product of this study, we detail the core challenges

with full article reexecution and specify a number of best practices which

permitted us to mitigate them. We further show how the capabilities of our

system can subsequently be used to provide reproducibility assessments, both

via simple statistical metrics and by visually highlighting divergent elements for

human inspection. We argue that fully reexecutable articles are thus a feasible

best practice, which can greatly enhance the understanding of data analysis

variability and the trust in results. Lastly, we comment at length on the outlook

for reexecutable research outputs and encourage re-use and derivation of the

system produced herein.

KEYWORDS

reproducibility, reexecutable workflows, fMRI, neuroscience, FOSS (free and open-

source software), optogeneitcs, automation, publishing technologies

1 Background

1.1 Reexecutable research

Independent verification of published results is a crucial step for establishing and

maintaining trust in shared scientific understanding (Ioannidis, 2005; Open Science

Collaboration, 2015). The property of a research workflow to automatically produce

an output—analogous, even if incoherent, with the original—based on the same input

data and same instruction set is known as reexecutability. This property, though

conceptually simple, has remained largely unexplored as a distinct phenomenon in the

broader sphere of “research reproducibility.” The core distinction between reexecutability

and reproducibility, is that the latter refers to obtaining consistent results when re-

testing the same phenomenon (National Academies of Sciences, Engineering, and

Medicine, 2019), while the former refers to being able to obtain any
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results, automatically, while re-using the same data and

instructions. While the scope of reexecution is thus much

narrower than that of reproduction, it constitutes a more well-

defined and therefore tractable issue in improving the quality and

sustainability of research. In all cases, reexecutability increases the

feasibility of reproduction assessments, as it enables high-iteration

re-testing of whatever parts of a study are automated. Further,

in the case of complex analysis processes with vast parameter

spaces, reexecutability is a prerequisite for detailed reproducibility

assessments. Lastly, reexecution constitutes a capability in and of

itself, with ample utility in education, training, and resource reuse

for novel research purposes (colloquially, “hacking”)—which may

accrue even in the absence of accurate result reproduction.

Free and Open Source Software (Stallman, 2002) has

significantly permeated the world of research, and it is presently

not uncommon for researchers to publish part of their data

analysis instructions under free and open licenses. However,

such analysis instructions are commonly disconnected from the

research output document, which is manually constructed from

static inputs. Notably, without fully reexecutable instructions,

data analysis outputs and the positive claims which they

support are not verifiably linked to the methods which generate

them.

Reexecutability is an emergent topic in research, with a

few extant efforts attempting to provide solutions and tackle

associated challenges. Such efforts stem both from journals

and independent researchers interested in the capabilities which

reexecutable research processes offer to the ongoing development

of their work. Among these, an effort by the eLife journal (Maciocci

et al., 2019) provides dynamic article figures based on the top-

most data processing output and executable code conforming to

journal standards. NeuroLibre (Karakuzu et al., 2022) provides a

Jupyter Notebook based online platform for publishing executable

books along with a selection of related assets, namely code, data,

and a reexecution runtime. Jupyter Notebooks are also used

independently of journal support, yet such usage is indicative of a

focus on interactivity for top-most analysis steps rather than full

reexecution, and characterized by a widespread lack of either data

or software dependency specification (Samuel andMietchen, 2024).

Independent researcher efforts at creating reexecution systems

offer more comprehensive and flexible solutions, yet remain

constrained in scope and generalizability. For example, they may

provide reference implementations which are either applied to

comparatively simple analysis processes (Dar et al., 2019) or

tackle complex processes, but assume environment management

capabilities whichmay not be widespread (Ioanas and Rudin, 2018).

In order to optimally leverage extant efforts pertaining to full

article reexecution and in order to test reexecutability in the face of

high task complexity, we have selected a novel neuroimaging study,

identified as OPFVTA (OPtogenetic Functional imaging of Ventral

Tegmental Area projections; Ioanas et al., 2022). The 2022 article is

accompanied by a programmatic workflow via which it can be fully

regenerated based solely on raw data, data analysis instructions,

and the natural-language manuscript text—and which is initiated

via a simple executable script in the ubiquitous GNU Bash (Ramey,

1994) command language. The reexecution process in this effort

relies on an emerging infrastructure approach, RepSeP (Ioanas and

Rudin, 2018), also in use by other articles, thus providing a larger

scope for conclusions that can be drawn from its study.

1.2 Data analysis

One of the hallmarks of scientific data analysis is its intricacy—

resulting from the manifold confounds which need to be accounted

for, as well as from the breadth of questions which researchers

may want to address. Data analysis can be subdivided into

data preprocessing and data evaluation. The former consists of

data cleaning, reformatting, standardization, and sundry processes

which aim to make data suitable for evaluation. Data evaluation

consists of various types of statistical modeling, commonly applied

in sequence at various hierarchical steps.

The OPFVTA article, which this study uses as an example,

primarily studies effective connectivity, which is resolved via

stimulus-evoked neuroimaging analysis. The stimulus-evoked

paradigm is widespread across the field of neuroimaging, and thus

the data analysis workflow (both in terms of data processing and

data evaluation) provides significant analogy to numerous other

studies. The data evaluation step for this sort of study is subdivided

into “level one” (i.e., within-subject) analysis, and “level two”

(i.e., across-subject) analysis, with the results of the latter being

further reusable for higher-level analyzes (Friston et al., 1995). In

the simplest terms, these steps represent iterative applications of

General Linear Modeling (GLM), at increasingly higher orders of

abstraction.

Computationally, in the case of the OPFVTA article as well

as the general case, the various data analysis workflow steps are

sharply distinguished by their time cost. By far the most expensive

element is a substage of data preprocessing known as registration.

This process commonly relies on iterative gradient descent and

can additionally require high-density sampling depending on the

feature density of the data. The second most costly step is the first-

level GLM, as it scales linearly with the number of voxels modeled

individually for each subject and session depending on whether or

not region of interest masks are used, this number can extend to all

voxels in the brain.

The impact of these time costs on reexecution is that

rapid-feedback development and debugging can be stifled if

the reexecution is monolithic. While ascertaining the effect of

changes in registration instructions on the final result unavoidably

necessitate the reexecution of registration and all subsequent

steps—editing natural-language commentary in the article text,

or adapting figure styles, should not. To this end the reference

article employs a hierarchical Bash-script structure, consisting of

two steps. The first step, consisting in data preprocessing and all

data evaluation steps which operate in voxel space, is handled

by one dedicated sub-script. The second step handles document-

specific element generation, i.e., inline statistics, figure, and TeX-

based article generation. The nomenclature to distinguish these

two phases introduced by the authors is “low-iteration” and “high-

iteration,” respectively (Ioanas and Rudin, 2018).

Analysis dependency tracking—i.e., monitoring whether files

required for the next hierarchical step have changed, and thus
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whether that step needs to be reexecuted—is handled for the high-

iteration analysis script via the RepSeP infrastructure, but not for

the low-iteration script.

1.3 Software dependency management

Beyond the hierarchically chained data dependencies, which

can be considered internal to the study workflow, any data

analysis workflow has additional dependencies in the form of

software. This refers to the computational tools leveraged by the

workflow—which, given the diversity of research applications, may

encompass numerous pieces of software. Additionally, individual

software dependencies commonly come with their own software

dependencies, which may in turn have further dependencies, and

so on. The resulting network of prerequisites is known as a

“dependency graph,” and its resolution is commonly handled by a

package manager.

The OPFVTA article in its original form relies on Portage

(Amadio and Xu, 2016), the package manager of the Gentoo

Linux distribution. This package manager offers integration across

programming languages, source-based package installation, and

wide-ranging support for neuroscience software (Ioanas et al.,

2017). As such, the dependencies of the target article itself are

summarized in a standardized format, which is called an ebuild—as

if it were any other piece of software. This format is analogous to the

format used to specify dependencies at all further hierarchical levels

in the dependency tree. This affords a homogeneous environment

for dependency resolution, as specified by the Package Manager

Standard (Bennett et al., 2017). Additionally, the reference article

contextualizes its raw data resource as a dependency, integrating

data provision in the same network as software provision.

While the top-level ebuild (i.e., the direct software dependency

requirements of the workflow) is included in the article repository

and distributed alongside it, the ebuilds which specify dependencies

further down the tree are all distributed via separate repositories.

These repositories are version controlled, meaning that their state

at any time point is documented, and they can thus be restored to

represent the environment as it would have been generated at any

point in the past.

1.4 Software dependencies

The aforementioned infrastructure is relied upon to provide

a full set of widely adopted neuroimaging tools, including but

not limited to ANTs (Avants et al., 2011), nipype (Gorgolewski

et al., 2011), FSL (Jenkinson et al., 2012), AFNI (Cox, 1996),

and nilearn (Abraham et al., 2014). Nipype in particular provides

workflow management tools, rendering the individual sub-steps

of the data analysis process open to introspection and isolated

reexecution. Additionally, the OPFVTA study employs a higher-

level workflow package, SAMRI (Ioanas et al., 2019a, 2021), which

provides workflows optimized for the preprocessing and evaluation

of animal neuroimaging data.

1.5 Containers

Operating system virtualization is a process whereby an

ephemeral “guest” environment is started in and may be reused

between persistent “host” systems. Virtual machines (VMs), as

these “guest” environments are called, can thus provide users with

environments tailored to a workflow, while eschewing the need

to otherwise (e.g., manually or via a package manager) provide

the tools it requires. Once running, VMs are self-contained and

isolated from the host, also eliminating the risk of unwanted

persistent changes being made to the host environment. Perhaps

the most important benefit of virtual isolation is significantly

improved security, allowing system administrators to safely grant

users relatively unrestricted access to large-scale computational

capabilities. However, VMs can also help mitigate issues arising

from package updates by locking a specific dependency resolution

state which is known to work as required by a workflow, and

distributing that instead of a top-level dependency specification

which might resolve differently across time.

Modern advances in container technology allow the provision

of the core benefits of system virtualization, but lighten the

associated overhead by making limited use of the host system,

specifically the hypervisor. Container technology is widespread

in industry applications, and many container images are made

available via public image repositories. While container technology

has gained significant popularity specifically via the Docker toolset,

it refers to an overarching effort by numerous organizations,

now best represented via a Linux Foundation project, the “Open

Container Initiative” (OCI). The OCI governing body has produced

an open specification for containers, which can be used by

various container runtimes and toolsets. Generally, OCI-compliant

container images can be executed analogously with Docker,

Podman, or other OCI compliant tools.

While OCI images are nearly ubiquitous in the software

industry, Singularity (recently renamed to Apptainer) is a toolset

that was developed specifically for high-performance computing

(HPC) and tailored to research environments. A significant

adaptation of Singularity to HPC environments is its capability to

run without root privileges. However, recent advances in container

technology have provided similar capabilities. Further, Singularity

permits the conversion of OCI images into Singularity images, and

recent versions of Apptainer have also added support for natively

running OCI containers—thus making reuse of images between the

two technologies increasingly convenient.

Container technology thus represents a solution to providing

stable reusable environments for complex processes, such as

the automatic generation of research articles. In particular,

containers provide a convenient way of making advanced package

management solutions—as seen in the original OPFVTA article—

available to users which may lack them on their host systems.

1.6 Hardware requirements

The reproduction of computational analyaes may require

specific hardware availability. The OPFVTA study uses processing

instructions that can be executed on Central Processing Units
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(CPUs) and do not require access to a Graphical processing

unit (GPU). Resource usage with respect to CPU cores and

Random Access Memory (RAM) are scaled dynamically by the

workflow, with a system using an i7-8550U CPU and having

16 GB of RAM being the lower bounds of resources for which

usage was documented. In cases of lower resource availability the

workflow adapts by reducing the parallel processing of individual

measurement time series.

2 Results

2.1 Repository

The repository constituting the output of our work is published

openly and with version control based on Git (Torvalds and

Hamano, 2024) via GitHub, a social coding platform (Ioanas

et al., 2024a) and via Gin, an academic code and data sharing

platform (Ioanas et al., 2024b). The most up to date instructions for

accessing reexecuting our work (the original as well as this article)

are found in the README.mdfile on the repository. While the

key focus on reexecution means that the software internal to the

article workflows is provided via containers, software requirements

remain for fetching the software, data, and containers themselves.

These include, prominently, Git, DataLad (Halchenko et al.,

2021a), and a container management system (Docker, Podman, or

Singularity).

In order to prevent resource duplication and divergence, and

to improve the modularity in view of potential re-use of this

system, we have bundled access to all elements of our work into

a parent repository. This structure (Figure 1) uses Git submodules

for referencing individual elements relevant for the workflow, and

DataLad in order to permit Git integration with data resources.

These submodules include the original article, the raw data

it operates on, and a reference mouse brain templates package.

Additionally, the top-level repository directly tracks the code

required to coordinate the OPFVTA article reexecution and

subsequent generation of this article. The code unique to the

reexecution framework consists of container image generation and

container execution instructions, as well as a Make file and is

tracked directly via Git.

This repository structure enhances the original reference article

by directly linking the data at the repository level, as opposed to

relying on its installation via a package manager. The OPFVTA

article source code itself is not duplicated as part of our work,

but handled as a Git submodule, with all proposed improvements

being contributed to the original upstream repository. The layout

constructed for this study thus provides robust provenance tracking

and constitutes an implementation of the YODA principles (a

recursive acronym for “YODAs Organigram on Data Analysis”;

Hanke et al., 2018).

The Make system (Figure 2) is structured into a top-level

Makefile, which can be used for container image regeneration and

upload, article reexecution in a containerized environment, and

meta-article production. There are independent entry points for

both this and the original article making both articles reexecutable.

Versioning of the original article reexecution is done via file names

(as seen in the outputs/ subdirectories of Figure 1) in order

to preserve shell accessibility to what are equivalent resources.

Versioning of the meta-article is handled via Git, so that the most

recent version of the work is unambiguously exposed.

The meta-article targets redirect to a Makefile in the

article/ subdirectory, which contains this document’s human-

readable text in TEX format, alongside scripts for generating

dynamical elements based on the reexecution results seen in the

outputs/ directory. The original article reexecution is provided

by two alternative targets, using either the Open Container

Initiative standard, or Singularity. Both original article reexecution

targets wrap the produce_analysis.sh script, which is a thin

compatibility layer accessing theMake system of the original article.

This alternative is introduced in order to assess feasibility as well as

potential variability across virtualization infrastructures.

2.2 Resource refinement

As a notable step in our article reproduction effort, we

have updated resources previously only available as tarballs (i.e.,

compressed tar archives), to DataLad. This refinement affords

both the possibility to cherry-pick only required data files from

the data archive (as opposed to requiring a full archive download),

as well as more fine-grained version tracking capabilities. In

particular, our work encompassed a re-write of the Mouse Brain

Templates package (Ioanas et al., 2019d) Make system. In its new

release (Ioanas et al., 2019c), developed as part of this study,

Mouse Brain Templates now publishes tarballs, as well as DataLad-

accessible unarchived individual template files.

2.3 Best practice guidelines

As part of this work we have contributed substantial changes

to the original OPFVTA repository, based on which we formulate

a number of best practice guidelines, highly relevant in the

production of reexecutable research outputs.

2.3.1 Errors should be fatal more often than not
By default, programs written in the majority of languages

(including e.g., Python and C) will exit immediately when running

into an unexpected operation. The POSIX shell and other similar

or derived shells, such as Bash and Zsh, behave differently. Their

default is to continue with execution of the next scripted command,

and only exit with a non-zero code when the list of commands is

exhausted or the exit command is called explicitly. As a result,

an execution of the script could continue for hours before it

fails, and the original error message might be lost in the flood of

output, making it hard or impossible to localize and address the

original problem. This behavior can be mitigated by prepending

set -e to the respective shell script, which changes the default

behavior so that execution is stopped as soon as a command

exits with an error code. Additionally, shell scripts treat undefined

variables as a variable having an empty value, with empty values

causing no errors. This can lead to numerous ill-defined behaviors,

including a command such as rm -rf “$PREFIX/” removing
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FIGURE 1

The directory topology of the reexecution repository (Ioanas et al., 2024a), highlighting Git submodules. Depicted is the directory tree topology of

the repository coordinating OPFVTA reexecution. Nested directories are represented by nested boxes, and Git submodules are highlighted in orange.

The article reexecution PDF results are highlighted in light green, and the PDF of the resulting meta-article (i.e., this article) is highlighted in light blue.

FIGURE 2

The reexecution system encompasses both the Original Article and Meta-Article as independent make targets. Depicted is the reexecution system

workflow, with two reexecution entry points, the “Original Article” and the “Meta-Article” (i.e., this article, which also performs the reproduction

assessment). Notably, for the generation of the meta-article, the Original Article can be executed, or not—the meta-article will dynamically include

all reexecution results which are published, as well as all which are locally produced. The article reexecution PDF results are highlighted in light

green, and the PDF of the resulting meta-article (i.e., this article) is highlighted in light blue. Optional nodes (such as fetching a container image for

meta-article reexecution) are faded gray.

all files on the system if PREFIX is not defined. This can be

addressed by prepending set -u so that an error is raised

and execution is stopped as soon as an undefined variable is

referenced. To summarize, we recommend including set -eu

at the top of every shell script to guarantee it exits as soon

as any command fails or an undefined variable is encountered.

This is in line with the “Fail Early” principle advocated in

the ReproNim Reproducible Basics Module (Halchenko et al.,

2021b).

2.3.2 Avoid assuming or hard-coding absolute
paths to resources

Ensuring layout compatibility in different article reexecution

environments is contingent on processes being able to find required

code or data. Absolute paths, which are hard-coded into scripts, are

likely to not exist anywhere but the original execution environment,

rendering the scripts non-portable. This problem is best avoided by

adhering to YODA principle (Hanke et al., 2018) of being able to

reference all needed resources (data, scripts, container images, etc.)
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under the study directory. Use of relative paths within the study

scripts consequently improve their portability. Paths to external

resources (scratch directories or reusable resources such as atlases)

should additionally be parameterized so that they can be controlled

via command line options or environment variables.

2.3.3 Avoid assuming a directory context for
execution

As previously recommended, resources may be linked via

relative paths, which are resolved based on their hierarchical

location with the respect to the execution base path. However,

scripts could be executed from various locations and not necessarily

from the location of the script, thus rendering relative paths fragile.

A good way of making script execution more robust is ensuring

that they set base execution directories to their respective parent

directories. This can be accomplished in POSIX shell scripts by

prepending cd "$(dirname "$0")" .

2.3.4 Workflow granularity greatly benefits
e�ciency

The high time cost of executing a full analysis workflow given

contemporary research complexity and technical capabilities makes

debugging errors very time-consuming. Ideally, it should not be

necessary to reexecute the entire workflow for every potentially

resolved error. It is thus beneficial to segment the workflow

into self-contained steps, which can be executed and inspected

independently. Workflows should as a minimum separate such

large steps as preprocessing, individual levels of analysis (e.g., per-

subject vs. whole-population), and article generation. One way to

integrate such steps is to formulate a workflow which automatically

checks for the presence of results from prior stages, and, if present,

proceeds to the next stage without triggering prior processes. This

property is known as itempotence and is again advocated by the

YODA principles, and implemented in this article via both the

Make system, as well as internally by the original article’s usage of

NiPype.

2.3.5 Container image size should be kept small
Due to a lack of persistency, addressing issues in container

images requires an often time-consuming rebuild process. One

way to mitigate this is to make containers as small as possible. In

particular, when using containers, it is advisable to not provide

data via a package manager or via manual download inside the

build script. Instead, data provisioning should be handled outside

of the container image and resources should be bind-mounted after

download to a persistent location on the host machine.

2.3.6 Resources should be bundled into a
superdataset

As external resources might change, it is beneficial to use data

version control system, such as git-annex and DataLad. The git

submodulemechanism permits bundlingmultiple repositories with

clear provenance and versioning information, thus following the

modularity principle promoted by YODA. Moreover, git-annex

supports multiple data sources and data integrity verification,

thus increasing the reliability of a resource in view of providers

potentially removing its availability.

2.3.7 Containers should fit the scope of the
underlying workflow steps

In order to constrain the workload of rebuilding a container

image, it is advisable to not create a bundled container image for

sufficiently self-contained substeps of the workflow. For example, as

seen in this study, the article reexecution container image should be

distinct from container images required for producing a summary

meta-article. Conversely, if sub-steps share toolkit requirements,

containers can be re-used between different steps by leveraging

different entry points to the same target.

2.3.8 Do not write debug-relevant data inside the
container

Debug-relevant data, such as intermediary data processing

steps and debugging logs should not be deleted by the workflow

or written to an ephemeral location inside the container, but should

instead be written to persistent storage.When using some container

technologies, such as Docker, files written to hard-coded paths will

disappear once the container is removed. As numerous workflow

files beyond the main data output may be relevant for debugging,

they should not be lost. In order to achieve this, intermediary and

debugging outputs should be written to paths which are bind-

mounted to persistent directories on the parent system, from which

they can be freely inspected.

2.3.9 Scratch directories should be
parameterized

Complex workflows commonly generate large amounts of

scratch data—intermediary data processing steps, whose main

utility is being read by subsequent steps or consulted for debugging.

If these data are written to the same hard-coded path on the

host system, multiple reexecutions will lead to race conditions,

compromising one or multiple instances of the process. This can be

avoided by parameterizing the path and/or setting a default value

based on a unique string (e.g., generated from the timestamp).

When using containers, this should be done at the container

instantiation level, as the relevant path for such potential conflicts is

the path on the parent system, and not the path inside the container.

2.3.10 Dependency versions inside container
environments should be frozen as soon as
feasible

The need for full image rebuilding means that assuring

consistent functionality in view of frequent updates is more difficult

for containers than interactively managed environments. This is

compounded by the frequent and often API-breaking releases

of many scientific software packages. While dependency version

freezing is not without cost in terms of assuring continued real-life

functionality for an article, it can aid stable re-execution if this is

done as soon as all required processing capabilities are provided.
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How this is accomplished differs greatly based on the package

manager used inside the container. Gentoo’s Portage package

manager allows freezing versions both explicitly, or—as done in

this study—by checking out a specific commit of the dependency

tree, in view of which the package manager will resolve the same

versions. Other distributions (such as Debian and Neurodebian), or

language-specific package managers (such as Python’s pip), provide

analogous functionality, via e.g., nd_freeze or pip freeze ,

respectively.

2.4 Reproduction quality

As a top-level view of reexecution results we have produced a

simple infrastructure to analyze reproduction quality. This provides

both quality control for successful reexecution as well as a showcase

of how automatic article reexecutability can be leveraged to evaluate

reproducibility at a glance.

For this purpose we compare the difference between the

Historical Manuscript Record—a product of the original executable

article generation—and multiple results generated via the new

reexecution system. Reproduction differences between the article

versions are extracted by evaluating rasterized page-wise PDF

differences (Figure 3).

This overview shows a consistent minimum baseline of

differing pixels between reexecutions, around 10−4 (i.e., 0.01%),

best seen in pages 6 to 10. When examined closely (Figure 4A),

this difference corresponds to the modified date of the Historical

Manuscript Record (2022-07-25) and the new reexecution system

results (2023–...). While otherwise inconsequential, this difference

provides a good litmus test for whether the article was indeed

reexecuted or simply preserved, and should be expected throughout

all comparisons. Throughout other pages we see difference

percentages which are broadly consistent across reexecutions and

environments, but vary from page to page over almost 2 degrees

of magnitude. Upon inspection, more variable but comparatively

lower-percentage differences (pages 4 and 5, detail depicted in

Figure 4B) are revealed as text differences. This is caused by the

target article being fully reexecuted, including the reexecution

of inline statistic summaries (e.g., p and F-values). Higher-

percentage differences (detail depicted in Figure 4C) correspond to

dynamically generated data figures, in which the high variability of

nondeterministic preprocessing results in changes to the majority

of figure pixels.

Notably, inspecting these differences reveals a strong coherence

at the qualitative evaluation level in spite of high quantitative

variability. This coherence manifests in the statements from the

original article remaining valid with regard to statistical summaries

which emerge from de novo data processing (as seen in Figures 4B,

C). This is particularly true for p-values, the magnitude of which

can vary substantially at the lower tail of the distribution without

impacting qualitative statements.

Further, we find that text differences are well-localized, as

a function of the original article implementing fixed decimal

rounding and magnitude notation for statistical outputs (Figure 4).

Thus, changes in inline statistic values do not impact text length

and do not generally propagate to subsequent lines via word shifts,

where they would be recorded as false positives.

3 Methods

3.1 Data acquisition

No new animal data was recorded. The data forming the

substrate for the reproduction analysis was produced by extracting

the output article.pdf files from iterative reexecutions of the

original article code.

3.2 Computing environments

Article reexecution was performed on a Debian 6.1.8-1 (2023-

01-29) system using the x86_64 architecture, inside containers

handled by Podman version 4.3.1 and Singularity version

3.10.3 . Git version 2.39.2 and DataLad version 0.19.2 were

used for data and code orchestration. The top-level make targets

were executed via Bash version 5.2.15 .

3.3 Data sources

The raw data for the article was sourced in BIDS form from

Zenodo, an open data repository, via the identifier specified by the

original publication (Ioanas et al., 2019b). Mouse brain templates

were sourced via a Git repository, "Mouse Brain Templates," which

was updated as part of this study to allow individual file fetching

(Ioanas et al., 2019c).

4 Discussion

In this article and its accompanying source code (Ioanas et al.,

2024a) we present an automated workflow for full, end-to-end

article reexecution. We generate the full research communication

output (including inline statistics, figures, and brain maps) from

solely the raw data and automatically executable code. This

work substantiates the feasibility of article reexecution as a

process, based on a real-life peer-reviewed study example. To this

end, we also detail important and transferable principles, and

document common pitfalls in creating a reexecution workflow.

Lastly, we leverage the capabilities of this reexecution system in

order to provide a simple reproducibility assessment, showcasing

the relevance of reexecutable research outputs for investigating

reproducibility.

4.1 Reexecutability

We argue that reexecutability is a core aspect of reliable

research output creation. Reexecutability implies that instructions

are formulated in such a way that they can be automatically

deployed without human operator bias. In contrast to arbitrary
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FIGURE 3

Page-wise pixel di�erences between the Historical Manuscript Record and new reexecution system outputs gauge overall reproduction fidelity, and

highlight pages with noteworthy di�erences. Depicted are rasterized document di�erences, weighted 1 for changes in any pixel color channel, and

rounded to four decimal points. Error bars represent the 95th percentile confidence interval. Colors indicate the reproduction environment,

Singularity, and Podman—the latter being an OCI implementation analogous to Docker.

reporting standards, the property of reexecutability implicitly

guarantees that required instructions are fully recorded.

We demonstrate the feasibility of full research output

reexecution by integrating cutting-edge technological capabilities,

and publish all resources for open access, inspection, re-use, and

adaptation. The article reexecution system which we produced

isolates data and original resources, and does notmake assumptions

about the internal structure of a reexecutable article, and is of

course, not domain-specific. Our system initiates article execution

via a Bash entry point, meaning it itself is programmatically

accessible for integration into higher-order reexecutable research.

We demonstrate the feasibility of this by integrating the original

article reexecution with the reexecution of the meta-article.

Dependency resolution for the original article is provided via an

ebuild-style specification present in the original article code. This

means that its dependencies are resolved seamlessly with all lower-

level dependencies, and could be resolved seamlessly with higher-

order dependencies making use of the reexecutable article as a piece

of software.

We sharply distinguish between reexecutability and

reproducibility. The former refers to the capability of producing

an analog research output from the same data through automatic

execution of data analysis. The latter refers to the coherence

between an analog research output (whether automatically

reexecuted or manually recreated) and an original research finding.

We further distinguish those two terms from replicability, which

describes an identical reproduction of a finding.

4.2 Reproducibility

We supplement the reexecution workflow description of

this article with a brief demonstration of how it can be used

to provide a reproducibility assesment. For this purpose we

use a difference computation tool (in computational contexts

known simply as “diff”) which summarizes and visually displays

mismatches between a historical manuscript record and multiple

reexecutions over various environments. Such a process makes

mismatches visible at-a-glance throughout the article figures

and text, rendering them easy to locate and interpret via

human inspection.

Based on these results we lay out a few key findings for

further reproducibility assessments. In particular, we notice that

figures which directly map output data are highly and to a

consistent extent variable across multiple reexecution attempts.

However, in as far as such figures are accompanied by statistical

evaluations, we find these to be qualitatively consistent. This

indicates that reproduction quality is not only reliant on whether

or not data processing is deterministic, but also on which

aspects of the top-level data the authors seek to highlight. While

the above observations describe the current article specifically,

we suspect that they may reflect a phenomenon of broader

relevance.

In neuroimaging workflows, the most notorious source for

non-deterministic data analysis behavior is the registration.

This process commonly operates via a random starting point—

specified by a seed value—and iterates according to a gradient

descent algorithm. While the toolkit used by the OPFVTA

article allows the specification of a particular seed, this was

not done for the Historical Manuscript Record, nor is it a

feature commonly used by operators. In light of our results,

the question emerges whether or not seed specification should

be introduced as a best practice. While a fixed seed would

aid in numerical reproducibility, it is possible that a specific

seed—whether by coincidence or ex post facto selection—may

result in anomalous conclusions. It may then be that a stronger

finding is one which is statistically robust with respect to

preprocessing variability, even if this comes at the cost of
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FIGURE 4

The article di�erences showcase expected quantitative and metadata variability, while maintaining overall validity of qualitative statements. The

figures are extracted from a full article diff , with tinted highlighting (blue for the Historical Manuscript Record, and orange for the new reexecution

system result). (A) The date change is correctly identified throughout the document, as seen in this example from page 1 of the article. (B) Statistical

summary values change, but maintain qualitative evaluation brackets with respect to e.g., p-value thresholds, as seen in this example from page 4 of

the article. (C) In regression analysis, data points are highly variable, the slope and significance remain constant, as seen in this example from page 14

of the article.
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compromising numerical replicability. Conversely, it could be

argued that reproduction analysis can be better targeted and more

concise, if seed values were fixed to universally accepted numbers

(analogous to the usage of nothing-up-my-sleeve numbers in

cryptography). Additionally, fixed seed values might consolidate

quality control, as quality control and data exclusion based on

post registration data would be consistent across executions.

This is a significant concern, since incidental data distortion

is a well-documented phenomenon with registration workflows

(Ioanas et al., 2021).

4.3 Challenges

For this meta-article we have selected an original neuroimaging

article which already published all of the instructions needed

to reproduce it in its entirety from raw data and automatically

executable instructions. Even in light of this uncommon advantage,

setting up a portable reexecution system has proven to be an ample

effort.

Difficulties arose primarily due to the instability of the software

stack. As researchers become involved in open source software

development, it is becoming increasingly common for scientific

software to be subjected to frequent interface changes and loss of

support for older dependency versions. In this article we propose

version-frozen container technology as a mitigation method for

such fragility. However, this is not without draw-backs, as it can

make introspection more challenging. In view of this, we defined

interactive container entry points (make targets), whereby the user

may enter the container dedicated to automatic reexecution to

inspect and test changes in the environment. Even so, on account

of these containers being dedicated to automatic execution, features

such as an advanced text processor are missing, and the inclusion

of such features may not be ultimately desired.

A more easily surmountable challenge was data management.

Whereas the original article strove to integrate all provision

of computational requirements with the package manager, the

usage of containers made the cost of this all-encompassing

solution prohibitive. As such, Git submodules and DataLad were

used, providing enhanced functionality for e.g., data version

specification, but at the cost of spreading requirements provision

over different technologies.

A further and unavoidable challenge consisted in the execution

time-cost. While not prohibitive, the time cost not only slows

iterative development work, but presages a potential decrease in the

feasibility of reexecution given the trend toward larger and larger

data. This means that process complexity and experimental data

size may need to be evaluated in light of the diminished accessibility

to such processes as reexecution.

Lastly, a notable barrier to execution may be produced

by hardware requirements. While this is not manifest in the

current study, increasingly many processes may require Graphical

Processing Unit (GPU) access as a hardware requirement which

cannot be virtualised. The handling of such situations would be

a significant concern for making the reproduction of studies with

specific hardware requirements more broadly accessible.

4.4 Outlook

We propose a few key considerations for the further

development of article reexecution—though we note that practical

reuse of this system might identify promising enhancements better

than theoretical analysis.

In particular, we find that reexecutable article debugging in

a container environment can be a significant challenge, and one

which will only be more severe if such an environment is already

implemented in the development phase of an article. In order

to provide seamless integration of both flexible development

and portable reexecution, we envision a workflow system which,

for each analysis step, permits either usage of locally present

executables, or entry points to a container. These two approaches

may also be integrated by bind-mount overloading of container

components with their local counterparts. We implement a

version of this concept for the meta-article generation, where the

make article target which generates this article will use the

local environment, and the make container-article target

executes the same code via an entry point to a TEX container.

The reproduction quality assessment methods provided in

this study serve as a starting point for assessing full article

reexecution. We argue that for the reproducibility assessment

of a specific article, there is currently no substitute for the

human-readable article as the foremost output element, as it

most accurately documents all variable elements in the context of

the statements they underpin. However, it should be noted that

crude pixel-diff comparison, as showcased here, cannot provide

automatic evaluation of differences (i.e., determining whether

or not statistical thresholds have been crossed)—so machine-

readable outputs are necessary for numerical comparisons. There

are ongoing efforts, such as NIDM (Maumet et al., 2016), to

establish a framework and language for describing numerical

results in neuroimaging. This requires custom tooling to export

result descriptors in a language aiming to approximate but distinct

from human readable commentary, and was not yet implemented

in our analysis workflow. There are also supplementary outputs

which may provide additional capabilities, not in lieu of, but

in addition to the article text. The foremost among these—

specifically pertaining to neuroimaging—are statistical brain maps.

Such supplementary data would not only let studies generate

reusable outputs, but would also aid the inspection of the original

article. Our workflow produces and records all of the top-level

data (statistical maps, data tables, etc.) from which the article

extracts elements relevant to its statements. We have uploaded the

main statistical map of reexecution results to NeuroVault, and are

working to provide a corresponding template for our mouse brain

data. Integration between the present reexecutable article system

and statistical map libraries is thus a promising endeavor for further

development.

Lastly, we highlight the relevance of reexecutable articles for

reuse and adaptation. Their key strength is that they can easily

be derived based on a reliable starting point with respect to

successful process execution. This pertains not only to reuse of

reexecutable article code for novel or derived studies, but also

reuse for the inspection of specific parameter or data modifications.

In view of this we recommend a practical approach to the
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work described herein (Ioanas et al., 2024a), whereby the parent

reexecution system repository can be considered immediately and

freely available for inspection, personal exploration, and re-use by

the reader.
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