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Traumatic Brain Injury (TBI) is a prevalent disorder mostly characterized by

persistent impairments in cognitive function that poses a substantial burden on

caregivers and the healthcare system worldwide. Crucially, severity classification

is primarily based on clinical evaluations, which are non-specific and poorly

predictive of long-term disability. In this Mini Review, we first provide a

description of ourmodel-free andmodel-based approaches within the turbulent

dynamics framework as well as our vision on how they can potentially contribute

to provide new neuroimaging biomarkers for TBI. In addition, we report the main

findings of our recent study examining longitudinal changes in moderate-severe

TBI (msTBI) patients during a one year spontaneous recovery by applying

the turbulent dynamics framework (model-free approach) and the Hopf

whole-brain computational model (model-based approach) combined with in

silico perturbations. Given the neuroinflammatory response and heightened risk

for neurodegeneration after TBI, we also o�er future directions to explore the

association with genomic information. Moreover, we discuss how whole-brain

computational modeling may advance our understanding of the impact of

structural disconnection on whole-brain dynamics after msTBI in light of

our recent findings. Lastly, we suggest future avenues whereby whole-brain

computational modeling may assist the identification of optimal brain targets for

deep brain stimulation to promote TBI recovery.

KEYWORDS

traumatic brain injury, nonlinear brain dynamics, turbulence, whole-brain modeling,
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1 Introduction: the turbulent dynamics framework
and whole-brain computational modeling

As such, the physical phenomenon of turbulence in fluids has been an object of

intense study in the scientific community for more than four centuries, starting from

the insightful observations and meticulous drawings by Leonardo Da Vinci (1507) (Deco

et al., 2021a) to the mathematical equations developed by Navier (1823) and eventually

refined by Stokes (1843) in order to describe the turbulent regime at the microscopic level.

However, as already noticed by Da Vinci, the important properties of turbulence are also
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to be found at the macroscopic level. One of these properties

implies the effective and fast transfer of energy across

fluids that Andrey Kolmogorov described in his pioneering

phenomenological theory of turbulence (Kolmogorov, 1941a,b). In

this ground-breaking work, Kolmogorov introduced the concept

of structure functions, which allowed him to quantify the energy

cascades that balance kinetics and viscous dissipation based on the

correlations between two spatial points in a fluid and, as a result,

demonstrate a power scaling law. Importantly, these power laws

provide amathematical foundation for Richardson’s earlier concept

of cascaded eddies (Richardson, 1922), i.e., a cascade of kinetic

energy that is transferred from larger to smaller scales without

loss in the so-called inertial subrange. At a more abstract level,

effective energy transfer can be considered equivalent to efficient

information processing, which makes the study of turbulence in

the human brain particularly appealing as it requires the rapid

integration of information across spatially distant regions.

To study turbulence in a non-hydrodynamic context such as

the human brain, one needs to find an appropriate mathematical

formalism. In this regard, Yoshiki Kuramoto’s theory of coupled

oscillators in the 1980s was crucial (Kuramoto, 1984). In fact,

using coupled nonlinear oscillators, Kuramoto was able to describe

turbulence in many different physical systems. Specifically, in the

coupled oscillator framework, the Kuramoto local order parameter

represents a spatial average of the complex phase factor of the

local oscillators weighted by the coupling. Amplitude turbulence

is then defined as the standard deviation of the modulus of

the Kuramoto local order parameter and can be applied to the

empirical data of any physical system, including the human brain.

Interestingly, brain activity can be computationally modeled using

Stuart-Landau coupled oscillators with a high level of accuracy,

therefore providing some degree of convergence with turbulence as

originated by Kuramoto’s coupled oscillators. Taken together, this

motivated the investigation of turbulence in the human brain by

combining Kolmogorov’s structure functions with Kuramoto’s local

order parameter as well as building a Hopf whole-brain model with

Stuart-Landau oscillators to understand the causal mechanisms

given rise to a turbulent regime.

The discovery that human brain activity is supported by

turbulent dynamics was indeed recently made by using a

high-quality large-scale resting-state dataset of 1,003 Human

Connectome Project’s participants (Deco and Kringelbach, 2020).

In that study, we found that the whole-brain dynamics operates in a

turbulent regime that follows a consistent power law for functional

brain correlations in a broad spatial range similar to that shown

by Kolmogorov in fluid dynamics and thus indicative of a cascade

of information processing. More recently, using the same dataset,

these findings have been extended by incorporating higher-order

structure functions showing that out-of-equilibrium turbulent

dynamics are based on the deviations from scale invariance within

the phenomenological Kolmogorov’s theory (Perl et al., 2023).

An important additional consideration in the turbulent

dynamics framework concerns the concept of the brain vortex

space. In fluid dynamics, the vortices are essentially capturing

the rotational kinetic energy. In contrast, the brain vortex space

refers to the local level of synchronization at a given spatial scale

across spacetime thus capturing the level of rotationality. Based

on this central concept, we can define three additional measures

to study different aspects of information propagation, namely

information transfer, information cascade and information cascade

flow. The information transfer indicates how the information

travels across space at a specific spatial scale. The other two

metrics are interrelated. The information cascade flow measures

how the information travels from a given spatial scale to a

lower scale in consecutive time steps. The information cascade is

the average of the information propagation across spatial scales.

It then follows that, by calculating these additional measures,

we can provide a richer description of turbulent dynamics

and information processing. Since this initial implementation,

the turbulent dynamics framework (Figure 1A) has also helped

to discriminate between different brain states in the healthy

population and altered states of consciousness (De Filippi et al.,

2021; Cruzat et al., 2022; Escrichs et al., 2022), suggesting that is a

valid, sensitive and reliable measure. Noteworthily, this framework

has also been adapted to direct measures of fast neural dynamics

such as resting-state MEG (Deco et al., 2023).

The Hopf whole-brain modeling approach also allows to

calculate other potential neuroimaging biomarkers based on the

brain’s reactivity to external in silico perturbations. Specifically,

one can compute two additional measures: (i) susceptibility, the

sensitivity of the whole-brain model to the processing of external

stimulations, and (b) information capability, the standard deviation

of the difference between the perturbed and unperturbed mean

of the modulus of the Kuramoto local order parameter. In the

context of turbulence, Deco and Kringelbach (2020) demonstrated

that the optimal working point of the Hopf whole-brain model,

i.e., showing the best fit to the empirical data, corresponded to a

region of maximally developed amplitude turbulence. Remarkably,

this was also the point where the information capability reached

its maximum, further supporting the notion that amplitude

turbulence is key for information processing. It is also important to

note that, by incorporating the exponential distance rule (Ercsey-

Ravasz et al., 2013) of anatomical connections as a cost-of-wiring

principle, the Hopf whole-brain model showed an economy of

anatomy that was able to reproduce turbulence. More recent

refinements of this model have proved the benefits of adding the

rare long-range connections found in the mammalian brain, which

improved information processing (Deco et al., 2021b).

In this Mini Review, we first describe the findings from our

recent study that point to potential neuroimaging biomarkers for

TBI using a model-free and model-based approach within the

turbulent dynamics framework. Next, we discuss how the model-

based approach combined with a simulated attack in that study

helped us to understand the effect of structural disconnection.

Finally, we propose that deep brain stimulation treatments for

TBI could benefit from presurgical assessment of clinical outcomes

using whole-brain computational modeling.

2 Potential neuroimaging biomarkers
in traumatic brain injury

Traumatic Brain Injury (TBI) poses a global burden on

death and disability only second to cancer according to a

recent estimate (National Academies of Sciences, Engineering,

and Medicine, 2022), thus representing a significant public health
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FIGURE 1

Whole-brain turbulent dynamics pipeline and its application to a longitudinal dataset of Traumatic Brain Injury (TBI) patients. (A) The implementation

of the whole-brain turbulent dynamics framework requires resting-state functional MRI (rs-fMRI), typically using echo-planar images sampling the

BOLD time course in each voxel in the brain. This is then combined with a parcellation scheme to recreate the regional time courses for each of the

regions in the parcellation, in this case, the fine- grained Schaefer parcellation with 1,000 nodes (Schaefer et al., 2018). This allows for the extraction

of regional time courses that are used to compute the analytic signal. The Kuramoto local order parameter can define the turbulent signatures of

brain activity at di�erent spatial scales in the vortex space. Four turbulent measures based on the Kuramoto local order parameter are calculated as

potential neuroimaging biomarkers: amplitude turbulence, information cascade flow, information cascade and information transfer. (B) Left

subpanel: Amplitude turbulence di�ers between TBI patients and healthy controls (HCs) at long distances in the brain over time, peaking at 6 months

post-injury. Middle subpanel: Render brains representing the absolute di�erence of the node-level metastability between HCs and TBI patients at 6

months post-injury for scale λ = 0.03. Right subpanel: stage-specific resting-state networks “fingerprint” using radar plots for the number of nodes

on the top 15% quantile of the absolute di�erence between HCs and TBI patients at 6-months post-injury comparison for λ = 0.03. Most of the

nodes were ascribed to the SM, DAT, and CNT networks. TR: repetition time; LIM, limbic; CNT, control; DMN, default mode; DAT, dorsal-attention;

VAT, ventral attention; VIS, visual; SM, somatosensory. Figure adapted with permission from Martínez-Molina et al. (2023).

concern. More specifically, recent reports provide an estimate

of 50–60 million people with TBI per year worldwide (Feigin

et al., 2013). TBI can result from diverse causes including falls,

sports injuries, vehicle collisions, intimate partner violence, and

military incidents affecting different age groups, from babies to

the elderly (National Academies of Sciences, Engineering, and

Medicine, 2022). Patients with TBI show a wide spectrum of

symptoms, ranging from physical, behavioral and emotional to

cognitive (Hoofien et al., 2001; Dikmen et al., 2009; Cantor

et al., 2013; Wilde et al., 2022). This wide variation in the

clinical manifestations of TBI is likely due to the complexity

of the brain’s organization, as well as to the patterns and

extent of damage caused by external forces leading to TBI.

In addition to focal brain damage, rapid acceleration and

deceleration forces at the time of brain injury damage the

axonal membrane resulting in the so-called diffuse axonal

injury (DAI) (Martínez-Molina et al., 2022) that is thought

to underlie alterations in brain network connectivity (Sharp

et al., 2014). Moreover, DAI and neuroinflammation after TBI

might influence the development of neurodegenerative disorders

such as Alzheimer’s disease (AD), which is a frequent late

complication in these patients (Sharp et al., 2014). Given

that impairment in executive functioning is one of the most

common symptons after TBI, it is conceivable that DAI affects

the long-range connections that shape the brain’s information

transmission capabilities across time and space (Deco et al., 2021b)
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and contribute to sustain critical dynamics in the presence of

the slow information transfer between neurons (Deco et al.,

2023).

Historically, patients with TBI have been classified into mild,

moderate, and severe diagnostic categories based exclusively on

clinical features such as the level of consciousness as evaluated

with the Glasgow Coma Scale (GCS) (Teasdale and Jennett, 1974)

or duration of post-traumatic amnesia (PTA) (Marshman et al.,

2013). However, both the GCS score and the duration of PTA

have been shown to be poorly reflective of pathophysiological

mechanisms (King et al., 1997; Zuercher et al., 2009). This

makes it clear that patients’ stratification should be informed

by objective measures of pathophysiology such as neuroimaging,

neuroelectrophysiological and fluid biomarkers (Orešič et al., 2016;

Majdan et al., 2017; Thelin et al., 2019). The discovery of new

biomarkers could also help to better monitor the longitudinal

progression of TBI and identify patients at high risk for developing

neurodegenerative disease secondary to TBI. Although blood

biomarkers are accessible cost-effective promising tools for TBI

diagnosis and prognosis in primary care settings, they do not allow

to assess the brain’s abnormality patterns associated with TBI. A

multi-modal approach that integrates neuroimaging biomarkers

can circumvent this limitation and contribute to provide a more

comprehensive understanding of the disease and its progression.

Such an approach including biomarker panels combined with

machine learning algorithms may help to identify specific injury

profiles (Wilde et al., 2022). In this direction, some studies have

started to explore the discriminatory power of a combination of

fluid biomarkers in patients with suspected mild TBI with and

without neuroimaging findings (Gill et al., 2018; Edwards et al.,

2020).

Resting-state fMRI (rs-fMRI) data are increasingly being

used in the development of new neuroimaging biomarkers

for neurological and neuropsychiatric populations (Deco and

Kringelbach, 2014) as these sequences have better signal-to-noise

ratio compared to task-based studies, can be acquired in patients

who may not be able to perform tasks and can be automatically

preprocessed with currently available software tools (Whitfield-

Gabrieli and Nieto-Castanon, 2012), which can facilitate their

translation from research into clinical practice. According to the

Food and Drug Administration (FDA), a biomarker can be defined

as “a characteristic that is measured as an indicator of normal

biological processes, pathogenic processes, or responses to an

exposure or intervention, including therapeutic interventions” with

the ideal requirements of a biomarker including being sensitive,

specific, reproducible and operational among others (Wilde et al.,

2022). In this regard, the turbulent dynamics framework holds great

promise to provide new neuroimaging biomarkers as: (i) it can be

easily computed from rs-fMRI data, (ii) captures global functional

brain damage due to structural disconnection at multiple spatial

scales, and (iii) reflects regional abnormalities when calculated

at node-level providing specific “fingerprints” potentially useful

for distinguishing between different subgroups of patients. This

potential is very much in line with the possibility to combine the

turbulent framework with the biotype approach, the latter being a

data-driven strategy to identify clusters of patients (Brucar et al.,

2023). In the field of computational neuropsychiatry, this approach

has been used to cluster patients with major depressive disorder

based on rs-fMRI data (Drysdale et al., 2017). Interestingly, the

authors found different biotypes associated with specific clinical

symptoms that showed a differential response to treatment with

repetitive transcranial magnetic stimulation (rTMS), suggesting the

predictive value of the biotype-based classification.

In addition to improved diagnosis, the turbulent dynamics

framework could also provide prognostic biomarkers to

characterize the longitudinal recovery trajectory after TBI. In

our recent study (Martínez-Molina et al., 2023), we investigated

the potential of the turbulent dynamics framework and whole-

brain modeling to provide us with neuroimaging biomarkers

that uncover TBI progression during one year of spontaneous

recovery using a publicly available rs-fMRI dataset (Roy et al.,

2017) with moderate-severe patients at the chronic stage. In our

study (Figure 1B), we provided evidence of significantly reduced

global amplitude turbulence in TBI patients at long distances in

the brain, which, as mentioned above, suggests disruptions in

the long-range connections that enhance information processing

across time and space (Deco et al., 2021b). Node-level turbulence

revealed specific resting-state networks “fingerprints" showing

the difference between TBI patients and healthy controls (HCs),

which could help to assess the neurobiological effectiveness of

targeted treatments. Furthermore, we explored the behavioral

relevance of these findings by analyzing the correlation between

turbulent brain dynamics and a neuropsychological battery to

evaluate executive function focusing on attention and working

memory. Our results extended previous findings on the association

between metastability and cognitive performance (Hellyer et al.,

2015) by showing that, at baseline, working memory scores in TBI

patients correlated with information cascade flow and amplitude

turbulence in the default mode network at long distances. The

results from the model-based approach showed a decrease in the

global coupling strength in all time points when fitting the model

of TBI patients (Martínez-Molina et al., 2023). TBI patients were

also characterized by a U-shaped reduction in the susceptibility

and information capability during the 1-year recovery trajectory.

This promising preliminary evidence could be further

refined by examining the relationship between turbulent brain

dynamics and genomic information, which would shed light

on the neurobiological basis associated with disruptions in the

turbulent regime with a particular focus on neuroinflammation.

Indeed, the neuroinflammatory response to injury triggered

by microglia activation after TBI can persist for months to

years (Ramlackhansingh et al., 2011; Shitaka et al., 2011;

Johnson et al., 2013). This persistent neuroinflammation might

induce the propagation of abnormal proteins, and could be a

causal factor in the subsequent neurodegeneration and further

cognitive decline often seen after TBI (Gentleman, 2013). Recent

studies have started to incorporate the gene expression profiles

obtained from blood samples in Alzheimer’s disease (AD)

patients and investigated their relationship with neuroimaging

biomarkers (Zhao et al., 2023). A gene-enrichment analysis

revealed that the genes associated with a significant neuroimaging

biomarker for AD were involved in immunity-related processes.

Given the abovementioned neuroinflammatory response and

risk for neurodegeration after TBI, future gene-enrichment
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analysis could help to ascertain whether genes associated with

neuroinflammation and neurodegeneration might play a role in the

underlying neurobiology captured by neuroimaging biomarkers

obtained using turbulent dynamics and whole-brain modeling

perturbation protocols.

3 Whole-brain models to evaluate the
impact of focal lesions and for
neurosurgical planning

By simulating normal spontaneous brain function, whole-

brain computational modeling can provide a unique tool for

understanding and predicting the impact of structural connectivity

damage on brain dynamics and, more specifically, the effect

of anatomical location and extent of the lesion (Alstott et al.,

2009). Such an endeavor is particularly relevant to understand the

functional consequences of lesions in stroke (Idesis et al., 2023)

and TBI patients (Martínez-Molina et al., 2023), often presenting

a heterogeneous pattern of lesions. Using the abovementioned

longitudinal rs-fMRI dataset, we applied a simulated attack

approach (Medaglia et al., 2022) to explore the influence of focal

lesions on the brain’s responsiveness to in silico perturbations of

the whole-brain model (Martínez-Molina et al., 2023). In brief,

the overlap between the patient’s specific lesion mask and the

parcellation schemewas calculated and used to create a group lesion

mask to which we applied two structural disconnection methods:

one weighted and one binary, the latter being more aggressive with

a full deletion of the lesioned node’s connectivity. Both approaches

of structural disconnection applied to TBI patients led to decreased

reactivity to external perturbations. Of note, the lowest values were

found for the most aggressive binary approach. This indicates that,

at the group level, the effects of lesions on the brain’s reactivity are

more prominent when there is a great degree of lesion overlap in

the patients under study.

Although at present there is no gold standard treatment to

promote the recovery of TBI-related cognitive impairments, deep

brain stimulation (DBS) within the central lateral (CL) nucleus

of the thalamus and the associated medial dorsal tegmental tract

has been recently shown to improve executive function in six

moderate-severe TBI patients at the chronic stage (Schiff et al.,

2023). The CL thalamic neurons project to frontal and striatal

regions and might contribute to reverse the cognitive deficits

associated with disrupted frontostriatal connectivity after TBI

(De Simoni et al., 2018). Despite the beneficial effects of the

DBS therapy, there was considerable interindividual variability in

the level of efficacy. In this regard, whole-brain computational

modeling could help to predict the clinical outcomes of DBS

presurgically in order to inform the decision to undergo such

an invasive procedure. On the other hand, the selection of the

stimulation target was based primarily on their previous work

with a single patient in the minimally conscious state (Schiff

et al., 2007) and non-human primates studies (Baker et al.,

2016; Janson et al., 2021). While this is a scientifically valid

approach, whole-brain computational modeling combined with

individual structural connectivity could enable the exploration of

the optimal brain targets for an individual patient. Although with

less spatial resolution than implantable DBS, transcranial temporal

interference stimulation (tTIS) (Grossman et al., 2017; Violante

et al., 2023) stands as a non-invasive alternative that could also

be used to electrically estimulate the striatum (Wessel et al., 2023)

and might improve executive dysfunction in TBI patients with

altered caudate connectivity (De Simoni et al., 2018). Regardless of

the neurostimulation technique used, much more future research

is needed before the translation of whole-brain modeling to the

clinical setting for optimal brain targeting. In this sense, we

envisage three main avenues for future work: (i) improve patient-

specific whole-brain computational models to mitigate the impact

of overfitting and measurement noise, (ii) study and predict the

DBS- or tTIS-induced structural and functional changes as in van

Hartevelt et al. (2014), and (iii) evaluate how well the whole-brain

model is able to replicate the changes induced by DBS or tTIS after

in silico stimulation of the same brain targets.

4 Conclusions

In summary, in this Mini Review, we have tried to show

some progress in the discovery of neuroimaging biomarkers for

TBI based on model-free and model-based approaches within

the turbulent dynamics framework that have strong potential for

application in future clinical practice and treatment trials. The

complexity and heterogeneity of TBI calls for a combination of

clinical variables and objective pathophysiological biomarkers to

improve diagnosis—which to date relies primarily on non-specific

clinical evaluations that poorly predict long-term disability—,

prognosis and prediction of treatment efficacy. Furthermore,

we have discussed how whole-brain computational models can

increase our understanding of the effect of focal lesions and to

identify optimal stimulation targets which, ultimately, can help to

alleviate the long-term suffering associated with TBI.
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