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Decoding of cognitive states aims to identify individuals’ brain states and brain

fingerprints to predict behavior. Deep learning provides an important platform

for analyzing brain signals at di�erent developmental stages to understand brain

dynamics. Due to their internal architecture and feature extraction techniques,

existing machine-learning and deep-learning approaches are su�ering from low

classification performance and explainability issues that must be improved. In the

current study, we hypothesized that even at the early childhood stage (as early

as 3-years), connectivity between brain regions could decode brain states and

predict behavioral performance in false-belief tasks. To this end, we proposed

an explainable deep learning framework to decode brain states (Theory of Mind

and Pain states) and predict individual performance on ToM-related false-belief

tasks in a developmental dataset. We proposed an explainable spatiotemporal

connectivity-based Graph Convolutional Neural Network (Ex-stGCNN) model

for decoding brain states. Here, we consider a developmental dataset, N = 155

(122 children; 3–12 yrs and 33 adults; 18–39 yrs), in which participants watched

a short, soundless animated movie, shown to activate Theory-of-Mind (ToM)

and pain networs. After scanning, the participants underwent a ToM-related

false-belief task, leading to categorization into the pass, fail, and inconsistent

groups based on performance. We trained our proposedmodel using Functional

Connectivity (FC) and Inter-Subject Functional Correlations (ISFC) matrices

separately. We observed that the stimulus-driven feature set (ISFC) could capture

ToM and Pain brain states more accurately with an average accuracy of 94%,

whereas it achieved 85% accuracy using FC matrices. We also validated our

results using five-fold cross-validation and achieved an average accuracy of

92%. Besides this study, we applied the SHapley Additive exPlanations (SHAP)

approach to identify brain fingerprints that contributed the most to predictions.

We hypothesized that ToM network brain connectivity could predict individual

performance on false-belief tasks. We proposed an Explainable Convolutional

Variational Auto-Encoder (Ex-Convolutional VAE) model to predict individual

performance on false-belief tasks and trained the model using FC and ISFC

matrices separately. ISFC matrices again outperformed the FC matrices in

prediction of individual performance. We achieved 93.5% accuracy with an F1-

score of 0.94 using ISFC matrices and achieved 90% accuracy with an F1-score

of 0.91 using FC matrices.
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1 Introduction

Decoding of cognitive states from the brain activity, or simply

the “brain decoding” has emerged as one of the most active

research areas because of its potentially wide-ranging implications

in medical and therapeutic engineering fields (Santhanam et al.,

2006; Hou et al., 2022). Due to its noninvasive approach and

considerable spatial and temporal resolution, functional magnetic

resonance imaging (fMRI) is commonly used to decode cognitive

states. Traditional fMRI techniques use generalized linear models

to predict regional brain activity based on specific behavioral tasks

or cognitive states that a participant performs or experiences.

This approach can mistakenly be interpreted in reverse–assuming

specific activation patterns indicate definite cognitive states

(Poldrack, 2011; Zhang et al., 2021). However, this is often

inaccurate, as patterns of activity by different tasks and states

can be overlapping. It’s been suggested that reverse inference can

be more reliably applied through brain decoding methods, where

spatiotemporal activity is used to predict cognitive states under

various conditions (Poldrack, 2006; Zhang et al., 2021). Across

the wide literature, the terms “cognitive states,” “brain states,” and

“task-states” have been used more or less synonymously. To avoid

any confusion, wemostly stick with the term “cognitive states,” with

few instances of “brain states.” By both, we mean the state of the

brain during specific cognitive processes or behavioral tasks.

Although there have been significant improvements in brain

decoding about specific cognitive states, there exist also genuine

knowledge gap.Previous studies (Haxby et al., 2001; Li and Fan,

2019; Wang et al., 2020) attempted to generate models that could

decode brain states across a wide range of behavioral domains.

Meta-analytic methodologies have been utilized for multi-domain

decoding (Bartley et al., 2018). However, meta-analyses face

several limitations, such as inconsistent samples across cognitive

domains, publication bias favoring positive results, and inflated

effect sizes from small studies (Dubben and Beck-Bornholdt, 2005;

Alamolhoda et al., 2017; Lin, 2018; Zhang et al., 2021). In areas

with limited research, these issues can bias decoding analyses and

lead to incorrect inferences (Lieberman and Eisenberger, 2015;

Lieberman et al., 2016; Wager et al., 2016). An alternate method is

to overcome these biases by training linear classifiers on activation

maps acquired from a group of individuals (Poldrack et al., 2009;

Bzdok et al., 2016; Varoquaux et al., 2018; Zhang et al., 2021).

A few studies have employed Deep Neural Network (DNN)

models, such as Convolutional Neural Networks (CNNs), which are

efficient, scalable, and can differentiate patterns without requiring

manual features. 3d CNN-based models are shown to be efficient

at decoding states of the brain across multiple domains of stimulus

processing (Wang et al., 2020). However, there are some limitations

of DNNs; training DNN architectures with fully connected layers

is challenging, particularly in neuroimaging applications, because

of many free parameters and a limited number of labeled training

data. As a result, these architectures tend to overfit the data

and exhibit poor out-of-sample prediction (Zhang et al., 2021).

Secondly, thoughDNNperforms admirably with grid-like inputs in

Euclidean space, such as (natural) images, the distance in Euclidean

spacemay not adequately represent the functional distance between

different parts of the brain (see similar; Rosenbaum et al., 2017).

Instead, geometric deep-learning (DL) methods, such as graph

convolutional networks (GCNs), would better suit non-Euclidean

data types, such as brain networks (Zhang and Bellec, 2019; Zhang

et al., 2021).

Critically, extant DL approaches do not exploit the dynamic

spatiotemporal characteristics of brain activity during naturalistic

movie-watching paradigms. These paradigms provide a promising

pathway to examine brain dynamics across a diverse spectrum

of realistic human experience(s) and provide a rich context-

dependent array of cognitive states and sub-states to be investigated

with the help of machine learning (ML) models (Simony and

Chang, 2020). Also, DNN models that decode brain data from

the developmental period are lacking. We believe that modeling

stimulus-evoked activity patterns of children and adolescents

from naturalistic movie-watching paradigms can more effectively

characterize states across multiple cognitive domains, especially,

those of higher-order cognition like Theory of Mind (ToM).

To address these challenges, we developed a novel

spatiotemporal graph convolutional neural network model

(stGCNN) that inputs functional connectivity (FC) and inter-

subject functional connectivity (ISFC), derived from BOLD

time-series data from key brain regions. This model effectively

captures the spatiotemporal dynamics of brain activity to

differentiate between brain activation patterns associated with two

cognitive states: the perception of others’ pain and Theory of Mind

(ToM) processing in children and adolescents. Our study aimed

to a) develop an explainable spatiotemporal decoding model to

classify brain activation patterns using connectivity features, FC

and ISFC, during movie watching in children, adolescents, and

adults (control), and b) use contributing features from the previous

model to predict individual performance on false-belief tasks.

The stGCNNmodel is based on a graph Laplacian-based model

that models the brain as a graph treating region-of-interest (ROI)

as nodes and their connectivity as edges. The proposed explainable

spatiotemporal connectivity-based graph convolutional neural

network (Ex-stGCNN) model accurately decodes time courses

during which participants experienced a particular cognitive state

while watching the movie (Refer to Figure 1). The proposed

model could extract features from non-Euclidean data and process

graph-structured signals. We used FC, which reflects inter-

regional correlations arising from a mixture of stimulus-induced

neural processes, intrinsic neural processes, and non-neuronal

noise, and ISFC, which isolates stimulus-dependent inter-regional

correlations bymodeling the BOLD signal of one brain on the other

brain’s exposed to the same stimulus (Simony et al., 2016), as feature

set to train the proposed model. As a result, we achieved an average

of 94 % accuracy with an F1-Score of 0.95. We applied the SHAP

(SHapley Additive exPlanations) method for explainability and

finally identified neurobiological brain features that contributed the

most to the prediction. Then we implemented the unsupervised

Explainable Convolutional Variational Autoencoder model (Ex-

Convolutional VAE) to predict individual performance in false-

belief tasks in which FC and ISFC matrices were used as feature

sets. We obtained 90 % accuracy using FC matrices as a feature

set with an F1-Score of 0.92% and 93.5% accuracy with an

F1-score of 0.94 using ISFC matrices. To validate the results,

we implemented Five-fold cross-validation. We have made a
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FIGURE 1

Illustrative overview of end-to-end explainable deep-learning framework for decoding of cognitive states and prediction on performance of

false-belief task-based pass, fail, and inconsistent groups.

comparison with previously employed models and found that our

Convolutional Variational Auto Encoder (CVAE) model gave the

best prediction accuracy. The final challenge we address here is

one of the most interesting questions in neuroscience related to

identifying neurobiologically meaningful features at the individual

participant level that predict their performance in the cognitive

task. To our knowledge, no previous DL classification study in

mentalization tasks has investigated neurobiologically interpretable

spatiotemporal brain features that robustly predict Theory of

Mind task performance in children, adolescents along with adults,

without feature engineering. This framework not only decoded

brain states for groups of different developmental ages and adults

and highly imbalanced datasets with high accuracy from short-time

course data but also predicted individual performance in false-

belief tasks to classify participants into pass, fail, and inconsistent

groups independent of their behavioral performance ratings. Based

on our theoretical model, we predict that social cognition networks

[comprised of bilateral Temporoparietal Junction (LTPJ and RTPJ),

Posterior Cingulate Cortex (PCC), Ventral and Dorsal-medial

Prefrontal Cortex (vmPFC and dmPFC), and Precuneus] feature

prominently in the prediction of cognitive performance in children

and adolescents during early development.

2 Materials and methods

2.1 Participants and fMRI preprocessing

To develop models for investigating Theory-of-Mind and Pain

networks across developmental stages, we analyzed a dataset of 155

early childhood to adult participants, available on the OpenfMRI

database. (The childhood group consisted of 122 participants

aged 3–12-yrs (mean age = 6.7 yrs, SD = 2.3, 64 females),

complemented by 33 adults (mean age = 24.8 yrs, SD = 5.3,

20 females) (Astington and Edward, 2010; Richardson et al.,

2018; Bhavna et al., 2023). Participants who participated in the

study were from the surrounding neighborhood and brought

in a signed permission form from a parent or guardian. The

approval for data collection was given by the Committee on

the Use of Humans as Experimental Subjects (COUHES) at

the Massachusetts Institute of Technology. In this experiment,

participants watched a soundless short animated movie of 5.6 min

named “Partly Cloudy” (Refer to Figure 2). Using a dataset that

included developmental age groups (3–12 yrs) and individuals in

adulthood opened the opportunity to propose a framework for

the decoding of cognitive states that could analyze complex brain

dynamics in the early childhood stage and contextualize these

findings from the perspective of adult brains. After scanning, six

explicit ToM-related questions were administered for the false-

belief task to identify the correlation between brain development

and behavioral scores in ToM reasoning. Each child’s performance

on the ToM-related false-belief task was assessed based on the

proportion of questions answered correctly out of 24 matched

items (14 prediction items and 10 explanation items). Based on the

outcome of these explicit false-belief task scores, the participants

were categorized into three classes: Pass (5–6 correct answers),

inconsistent (3–4 correct answers), and fail (0–2 correct answers)

(Reher and Sohn, 2009; Astington and Edward, 2010; Jacoby

et al., 2016; Richardson et al., 2018). A 3-Tesla Siemens Tim

Trio scanner at the Athinoula A. Martinos Imaging Center at

MIT was used to collect whole-brain structural and functional

MRI data (For head coil details, see Richardson et al., 2018).

Children under 5 used one of the two custom 32-channel head

coils: younger (n = 3, M(s.d.) = 3.91(0.42) yrs) or older (n = 28,

M(s.d.) = 4.07(0.42) yrs) children; all other participants used the

standard Siemens 32-channel head coil. With a factor of three

for GRAPPA parallel imaging, 176 interleaved sagittal slices of

1 mm isotropic voxels were used to get T1-weighted structural

images (FOV: 192 mm for child coils, 256 mm for adult coils).

The whole brain was covered by 32 interleaved near-axial slices

that were aligned with the anterior/posterior commissure and

used a gradient-echo EPI sequence sensitive to BOLD contrast

to capture functional data (EPI factor: 64; TR: 2 s, TE: 30 ms,

flip angle: 90) (Richardson et al., 2018). All functional data were

upsampled in normalized space to 2 mm isotropic voxels. Based on

the participant’s head motion, one TR back, prospective acquisition

correction was used to modify the gradient locations. The dataset

was preprocessed using SPM 8 and other toolboxes available

for Matlab (Penny et al., 2011), which registered all functional

images to the first run image and then registered that image to

each participant’s structural images (Astington and Edward, 2010).

All structural images were normalized to Montreal Neurological

Institute (MNI) template (Burgund et al., 2002; Cantlon et al.,

2006). The smoothing for all images was performed using a
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Gaussian filter and identified Artifactual timepoints using ART

toolbox (Astington and Edward, 2010; Whitfield-Gabrieli et al.,

2011).

2.2 fMRI data analysis and extraction of
feature sets

The film features two main characters, Gus, a cloud, and

his stork friend Peck, experiencing bodily sensations (notably

physical pain) and complex mental states (such as beliefs, desires,

and emotions). The depiction of these experiences–categorized

into pain scenes and Theory of Mind (ToM) scenes–serves

to investigate the viewers’ brain networks that are activated

during the understanding of physical and emotional states. These

scenes effectively highlight the developmental changes in neural

circuits involved in percieving others’ physical sensations and

mental conditions. Based on previous studies, we selected twelve

regions of interest (ROIs) six from the Theory of Mind (ToM)

network including bilateral Temporoparietal Junction (LTPJ and

RTPJ), Posterior Cingulate Cortex (PCC), Ventral and Dorsal-

medial Prefrontal Cortex (vmPFC and dmPFC), and Precuneus,

and six from the pain network comprising bilateral Middle

Frontal Gyrus (LMFG and RMFG), bilateral Insula, and bilateral

Secondary Sensory Cortex (LSSC and RSSC) (Mazziotta et al.,

1995, 2001; Baetens et al., 2014). A spherical binary mask of 10

mm radius was applied around the peak activity within these

ROIs during specific scenes, from which we extracted time-

series signals as detailed in Table 1. The selected scenes were

chosen for their ability to elicit the strongest responses in the

ToM and pain networks at specific time points, as illustrated

in Figure 2 and Table 2. Similar to the the main study of the

dataset, we extracted short-duration time-courses corresponding

to peak events–five each from ToM and pain scenes, yielding

a total of ten time-courses and 168 time-points. Finally, we

calculated FC and ISFC as separate feature sets (Refer to

Figure 3).

1. Resting state-functional connectivity: To calculate

functional connectivity matrices for each participant

for different time courses, we calculated Pearson’s

correlation between the average time series BOLD

signals that were extracted from each of the spherical

brain regions.

2. Computation of inter-subject functional correlations: ISFC

has been used to characterize brain responses related to

dynamic naturalistic cognition in a model-free way (Simony

et al., 2016; Kim et al., 2018; Lynch et al., 2018; Demirtaş

et al., 2019). ISFC assesses the region-to-region neuronal

coupling between subjects instead of intra-subject functional

connectivity (FC), which measures the coupling inside a

single participant (Hasson et al., 2004; Nastase et al.,

2019). ISFC delineates functional connectivity patterns driven

by extrinsic time-locked dynamic stimuli (Hasson et al.,

2004; Simony et al., 2016; Xie and Redcay, 2022). We

calculated ISFC to check the coupling between ROIs across all

the subjects.

2.3 Decoding of states using explainable
spatiotemporal connectivity based graph
convolutional neural network

We hypothesized that stimulus-driven brain features, ISFC,

could decode cognitive states (ToM and Pain) more accurately

than FC features. To check our hypothesis, we implemented

the Explainable Spatiotemporal connectivity-based Graph

Convolutional Neural Network (Ex-stGCNN) approach to

classify states evoked during watching stimuli. In previous work

(Richardson et al., 2018), the author applied reverse correlation

analysis to average response time series to determine points of

maximum activation in ToM and pain networks. We accordingly

selected five-time courses (>8 sec), from each ROI, of maximum

activation in ToM and Pain networks (total of ten-time courses)

(Refer to Table 2). Then, we extracted time-series and converted

it into a 2D matrix T ∗ N format for each individual where T

= no. of time steps, and N = no. of regions. We calculated FC

matrices of size 12 ∗ 12 for each time course (10 matrices for each

individual) and the same for ISFC matrices. Finally, we trained our

Ex-stGCNN model in two different ways: (a) using FC matrices

and (b) using ISFC matrices.

2.3.1 Proposed architecture
Using PyTorch and PyTorch Geometric, the proposed model

was developed in which, for every node, the Scalable Hypothesis

tests (tsfresh) algorithm was used for statistical feature extraction

(Kipf and Welling, 2016; Fey and Lenssen, 2019; Paszke et al.,

2019; Saeidi et al., 2022). Using the FRESH algorithm concept

(Christ et al., 2016), the tsfresh algorithm combined the elements

from the hypothesis tests with the feature statistical significance

testing. By quantifying p-values, each created feature vector was

separately analyzed to determine its relevance for the specified

goal. Finally, the Benjamini-Yekutieli process determined which

characteristics to preserve (Benjamini and Yekutieli, 2001). We

utilized node embedding methods to extract the high-level

features associated with each node. We implemented Walklets and

Node2Vec node embedding algorithms to observe node attributes

from graph (Grover and Leskovec, 2016; Perozzi et al., 2017).

Three convolutional layers were used in the proposed Ex-stGCNN

model, where every layer had 300 neurons. The Rectified Linear

Unit (ReLU) and batch normalization layers were implemented

between each CNN layer to speed convergence and boost stability.

After each CNN layer, dropout layers were applied to decrease

the inherent unneeded complexity and redundant computation

of the proposed multilayer Ex-stGCNN model. The final graph

representation vector was calculated by applying a global mean

pooling layer (Refer to Table 3 and Figure 4).

The mathematical formation of the proposed architecture is as

follows: A graph G = (V, E) consists of a set of nodes (v1, v2, ...., vn)

and edges such that Eij = (vi, vj) ∈ E and E ⊆ V × V . Here,

the edge has two end-points, i.e., vi and vj, which are connected

through e and also refer as adjacent nodes. For developing Graph

Neural Network f (X,A), where X is representing feature matrix

of the nodes in the graph and A is indicating adjacency matrix,

we considered spatiotemporal connectivity-basedmultilayer Graph
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FIGURE 2

Movie demonstration: (A) response magnitude that evoked maximum activation in ToM and pain networks. (B) depicts the movie scenes with higher

activation. Ti ∈ [T1,T2,T3,T4,T5] is representing ToM scenes, and Pi ∈ [P1,P2,P3,P4,P5] is representing pain scenes with higher activation.

TABLE 1 ToM and pain brain regions and corresponding MNI-coordinated for extracting time-series signal.

ToM regions Pain regions

Sr. No. ROIs MNI-Coordinates (X,Y,Z) Sr. No. ROIs MNI-Coordinates (X,Y,Z)

1 Posterior cingulate cortex

(PCC)

0, -52, 18 1 Right Middle Frontal

Gyrus (RMFC)

36, 38, 40

2 Left temporoparietal junction

(LTPJ)

-46, -68, 32 2 Left Middle Frontal

Gyrus (LMFC)

–36, 38, 40

3 Right temporoparietal

junction (RTPJ)

46, -68, 32 3 Left Interior Insula (LII) –40, 22, 0

4 Ventromedial Prefrontal

cortex (vmPFC)

4, 48, -4 4 Right Interior Insula

(RII)

39, 23, –4

5 Precuneus 0, –49, 40 5 Left secondary sensory

cortex (LSSC)

–39, –15, 18

6 Dorsomedial prefrontal

cortex (dmPFC)

–10, 58, 24 6 Right secondary sensory

cortex (RSSC)

39, –15, 18

convolutional neural network using Equation (1) that indicated

forward propagation rule (Kipf and Welling, 2016):

Hl+1 = σ ( D−1/2 D−1/2HlW l) (1)

Where A denotes adjacency matrix i.e. A + I for undirected

graph G, whereas Dii = 6j Aij andW
l are a layer-specific trainable

weight matrix. σ (.) denotes an activation function, such as the

ReLU(.) = max(0, ). Hl ∈ RN×D is the matrix of activation at

lth layer.

2.3.2 Spectral based GCN
We consider spectral convolutions on graphs (GCNs), which

are defined as a signal’s multiplication x ∈ RN by a filter

gθ = diag(θ) using Equation (2). The graph Laplacian’s eigen-

decomposition in the Fourier domain was calculated via spectral

GCNs using the Laplacian matrix (Kipf and Welling, 2016).

gθ ⋆ x = UgθU
Tx (2)

Where U denotes eigenvector matrix of normalized graph

Laplacian L = I − D−1/2AD−1/2 = U3UT , and UTx denotes

transformation from graph Fourier to a signal x. gθ represents

function of the eigenvalues of L.
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TABLE 2 Description of movie-clip events with higher activation for ToM and pain networks.

ToM clips description Pain clips description

Sr. No. Description Sr. No. Description

T1 Peck flies away to happy cloud P1 Gus pulls porcupine spines from Peck’s head

T2 Peck caught gazing at happy clouds P2 Alligator biting Peck

T3 Baby crying, then happy P3 Peck tossing porcupine

T4 Peck dons gear to show why he left P4 Cloud makes animals (lightning)

T5 Pan from happy clouds to lonely cloud (Gus) P5 Gus makes alligator (lightning)

FIGURE 3

The figure illustrates the calculation of FC and ISFC matrices from movie-watching fMRI data that has been further used as input for decoding of

cognitive state and prediction of individual performance in false-belief task purpose. Here, S represents task-evoked brain activity; I represents

intrinsic brain activity; N represents noise.

Due to the multiplication with eigenvector matrix U is

O(N2), which is a complete matrix with n Fourier functions,

this procedure is computationally expensive. To avoid quadratic

complexity, the authors in Yan et al. (2019) suggested the

ChebNet model, which ignores the eigendecomposition

by utilizing Laplacian’s learning function. The filter gθ
is estimated via the ChebNet model using Chebyshev

polynomials of the diagonal matrix of eigenvalues, as illustrated

in Equation (3):

g
θ
′ ⋆ x ≈

K∑

k=0

θ
′

kTk3̃ (3)

Where diagonal matrix 3 ∈ [−1, 1] and 3̃ =
2

λmax
3 −

I. λmax indicates largest eigenvalue of L, θ
′

∈ RK = vector

of Chebyshev coefficients. Chebyshev polynomial is denoted as

Tk(x) = 2xTk−1(x) − Tk−2(x) with T0(x) = 1 and T1(x) = x.

We calculated convolution of signal x with gθ ′ filter using Equation

(4) (Kipf and Welling, 2016):

g
θ
′ ⋆ x ≈

K∑

k=0

θ
′

kTk(L̃)x (4)

Where L̃ =
2

λmax
L − I, and λmax defines greatest eigenvalue

of L.
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TABLE 3 Table shows an implementation of the proposed GCNNmodel architecture, where O = no. of task, N is = input size, Fi ∈ [F1, F2, F3] = no. of

filters at ith graph convolutional layer, K = polynomial order of filters.

Proposed GCNN model

Layer (Type) Maps
(Filters)

Edges Polynomial
order

Pooling
size

Activation Weights Bias

Input 1 6
(N−1)
i=1 i - - - - -

Convolution (C1) F1 (16) 6
(N−1)
i=1 i K - ReLU 1 ∗ F1 ∗ K N ∗ F1

Max-pooling (M1) F1 (16) 6
(N−1)
i=1 i - 2 - - -

Convolution (C2) F2 (16,32) 6
(N/2−1)
i=1 i K - ReLU F1 ∗ F2 ∗ K N/2 ∗ F2

Max-pooling (M2) F2 (16,32) 6
(N/2−1)
i=1 i - 2 - - -

Convolution (C3) F3 (16,32,64) 6
(N/4−1)
i=1 i K - ReLU F2 ∗ F3 ∗ K N/4 ∗ F3

Max-pooling (M3) F3 (16,32,64) 6
(N/4−1)
i=1 i - 2 - - -

Flatten - - - - - - -

Fully connected (Softmax) - - - - Softmax N/4 ∗ N/4 ∗

F3 ∗ O

O

2.3.3 Training and testing
We trained our model on FC matrices and ISFC matrices

separately. In current study, the dataset was divided using an

80:20 ratio, and this process was carried out in a random

yet controlled manner to ensure non-overlapping subsets (Rácz

et al., 2021). The following steps were undertaken to split

the data:

1. Random Shuffling: The dataset D consisting of N

subjects was randomly shuffled to eliminate any

inherent ordering.

2. Splitting: The shuffled dataset was then divided into training

and testing sets using an 80:20 ratio. Specifically, the

first 80% of the data (after shuffling) formed the training

set Dtrain, and the remaining 20% formed the testing

set Dtest .

Mathematically, this can be represented as follows:

• Let D = d1, d2, ..., dN be the dataset with N subjects.

• After shuffling, the dataset becomes D′ = d
′

1, d
′

2, ..., d
′

N , where

D
′
is a permutation of D.

• The training set Dtrain is defined as Dtrain =

{d′1, d
′
2, . . . , d

′
⌊0.8N⌋}.

• The testing set Dtest is defined as Dtest =

{d
′

⌊0.8N⌋+1, d
′

⌊0.8N⌋+2, ..., d
′

N}.

To ensure robustness and avoid any potential bias from a single

random split, we repeated this process 10 times, each time with

a new random shuffle of the dataset. This procedure ensures that

the subsets are non-overlapping across different splits, and the

performance metrics reported in our results are averaged over these

10 independent splits.

We used learning rate = 0.001, dropout = 0.65, and weight

decay = 0.0, patience = 3 (Saeidi et al., 2022). As batch

size is one of the most crucial hyperparameters to tune, a

set of batch size values was also considered. This study was

implemented using an Adam (Adaptive Moment Estimation)

optimizer with batch sizes of B = [16, 32, 64] across 100 epochs. For

the final prediction, we used the Softmax activation function using

Equation (5):

Softmax(ŷi) =
exp(ŷi)

6O
i=1exp(ŷi)

(5)

Where, ŷi ∈ [ŷ1....ŷO] represents predicted probability of ith
task. Additionally, the optimization function was run using cross-

entropy loss using Equation (6):

Loss = −6O
i=1yi log(ŷi)+

ρ

2NP
‖ W ‖2 (6)

Where yi indicates targetted tasks, W represents

network parameters, NP represents no. of

parameters, and ρ indicates weight decay rate. To

validate the results, we also implemented five-fold

cross-validation.

2.3.4 Identification of neurobiological features
and analysis using five-fold cross validation and
leave-one-out methods

Deep learning models, particularly those involving deep

neural networks, suffer from a significant black-box problem

because they operate in ways that are not easily interpretable.

This complexity arises due to the multiple layers and

numerous parameters involved in these models. Gradient-

based approaches, decomposition methods, and surrogate

methods are some techniques developed to explain existing

GNNs from various perspectives (Yuan et al., 2022). In the

existing studies, the perturbation-based approaches were

implied to identify the link between input characteristics

and various outputs (Ying et al., 2019; Schlichtkrull et al.,

2020; Yuan et al., 2021). However, in decoding applications,

none of these techniques can guarantee the discovery of

plausible and comprehensible input characteristics from a

neuroscience standpoint.
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FIGURE 4

The architecture of proposed Ex-stGCNN model. Firstly, FC and ISFC matrices are converted into adjacency matrices and then into graph Laplacian.

Finally, the graph representation of these matrices is provided as input to the model for training. We trained this proposed model using FC and ISFC

matrices separately. The SHAP approach is used to extract neurological brain fingerprints to check the contribution of each brain region in the

prediction.

In this study, the SHAP (SHapley Additive exPlanations)

feature diagnostic technique was used to determine the

neurological features that contributed most to Decoding

of cognitive states, also referred to as dominant brain

regions. The SHAP value for a feature is calculated as

the average marginal contribution of that feature across

all possible feature subsets. Specifically, the SHapley value

for feature i is computed by summing the contributions

of i in each subset S, where S does not contain i. The

contribution of i is measured by the difference in model

predictions when i is included and when it is excluded

from S, appropriately weighted to account for the different

sizes of feature subsets. We applied SHAP approach using

Equation (7).

φi(v) =
1

N!

∑

S⊆xi ,..,xN\xi

|S|!(|N|−|S|−1)![val(S∪(Xi))−val(S))] (7)

Where: N represents all possible subsets, S is a subset of

features that does not include feature i, S represents the number

of features in subset S, N is the total number of features, val(S ∪

(i)) is the model prediction when feature i is added to subset S,

and val(S) is the model prediction for subset S without feature

i. To reduce the chance of bias and report low variance, we
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implemented a five-fold cross-validation method to evaluate the

models performance (precision, recall, accuracy, F1-score) and

the leave-one-out method to see performance of the model at

individual level.

2.4 Prediction of individual performance in
false-belief task using explainable
convolutional variational autoencoder
model

In a previous study (Richardson et al., 2018), the authors

conducted a ToM-based false-belief task for the 3-12 yrs age

group after fMRI scanning and divided all participants into three

groups, i.e., pass, fail, and inconsistent, based on their performance.

The previous studies (Li et al., 2019a,b; Finn and Bandettini,

2021) reported an association between brain signals and behavioral

scores in resting state and during movie-watching stimuli. We

hypothesized that FC and ISFC between brain regions could

predict individual performance in false-belief tasks. To check our

hypothesis, we used a developmental dataset with 122 participants

in which the age range varies from 3–12 yrs, comprising 84 passers,

15 failures, and 23 inconsistent performers. We conducted this

analysis in three ways: (a) including all 12 brain regions; (b)

including dominant brain regions (Total of 8); and c) including

only six ToM regions. After decoding cognitive states from FCs

and ISFCs, we identified brain regions that contributed the most

to prediction also referred as dominant brain regions. There were

three dominant regions from ToM networks and three dominant

regions from pain networks, overall six regions from ISFC-based

analysis and six regions from FC-based analysis. As there was an

overlap between the set of regions across analysis-type, we ended

up with 8 dominant regions in total. Finally, we proposed an

Explainable Convolutional Variational Auto-Encoder model (Ex-

Convolutional VAE), in which we provided FC and ISFC matrices

of each participant as input and performed prediction of individual

performance in false-belief tasks and categorized them into pass,

fail, or inconsistent groups. Ex-Convolutional VAEmodel included

two components: (1) an encoder, which transforms the original

data space (X) into a compressed low-dimensional latent space (Z),

and a decoder, which reconstructs the original data by sampling

from the low-dimensional latent space. (2) Use of latent space for

prediction using ADAM optimizer.

The proposed Ex-Convolutional VAE model included 2D

convolutional layers with ReLU activation function followed by

flattening and dense layers with ReLu activation (kernal:3, filters:

32, strides: 2, epoch: 50, latent dimension: 32, no. of channel:

1, batch size: 128 for training Ex-Convolutional VAE and 32 for

prediction, padding: SAME, activation function: ReLU for training

and sigmoid for prediction) (Refer to Figure 5 and Table 4). The

dense layer was used to produce an output of themean and variance

of the latent distribution. Using the reparameterization technique,

the sampling function used mean and log variance to sample from

latent distribution. The decoder architecture included a dense layer

followed by a resampling layer, and 2D transposed convolutional

layers with ReLU activation function. We used mean squared error

(MSE) and Kullback-Leibler (KL) techniques to calculate the loss.

The reason for using KL was its ability to regularize learned latent

distribution to be close to standard normal distribution. We used

trained Ex-Convolutional VAE Latent space for training prediction

model with ADAM optimization technique. We performed the

prediction using the sigmoid activation function and binary-cross

entropy to calculate the loss function (epochs: 50).

2.4.1 Proposed approach
In a variational autoencoder model, the encoder produces

latent space from a given input while the decoder produces output

from this latent space. The decoder inferences that the latent vectors

have a normal probability distribution; the parameters of that which

are the mean and variance of the vectors, calculated using Equation

(8) (Lee et al., 2022):

p(x|z) = N(x|fµ(z), fσ (z)
2 ∗ I) (8)

Where, x represents original data space, z represents

compressed low-dimensional latent space, p(x|z) indicates

assumed probability distribution, fµ(z) indicates the mean of

latent space, and fσ (z)
2 ∗ I represents variance of latent space. In

this particular circumstance, the marginal likelihood estimation

technique can be used to the best of its ability to maximize the

log-marginal likelihood of the model using Equation (9):

log p(x) = log6zp(x|fµz, fσ (z)
2 ∗ I)p(z) (9)

However, it is challenging to maximize the log-marginal

likelihood in this form. As a result, we develop variational inference,

which simplifies the range of possible outcomes by approximating

the posterior probability distribution (Zhang et al., 2018). An

approximately normal probability distribution is an appropriate

approximation for the posterior probability distribution. Applying

the learning method may be challenging if the input has a high

dimension (Lee et al., 2022). To resolve this, the inferred probability

distribution is calculated as a function of x using Equations (10, 11).

q(z) = N(µq, σ
2
q ) (10)

q(z|x) = N(µq(x),6q(x)) (11)

Where q(z) is inferred normal probability distribution, and

q(z|x) is its expression as function of x. Finally, we can obtain

the latent vector z by combining the mean value with the product

of the inferred normal distribution and the variation. The term

“reparameterization trick” refers to the process used to add a new

parameter or feature expressed by Equation (12):

z = µ(x)+ σ (x) ∗ ǫ, ǫ ∼ N(0, 1) (12)

Where z represents latent space, and ǫ represents a normally

distributed random variable.

The Kullback–Leibler divergence is used to calculate loss

function by updating weights and biases that calculate the

difference between the actual posterior distribution and inferred
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FIGURE 5

Architecture of proposed Ex-Convolutional VAE model for predicting false-belief task-based pass, fail, and inconsistent groups. The proposed

architecture first used the 2D convolutional approach to create a 32-dimensional latent space and trained the prediction model using the ADAM

optimization approach (a 32-D latent space was used to train the model). The SHAP approach is used for the explainability of the proposed model.

distribution (Kullback and Leibler, 1951; Kingma and Welling,

2013) using the Equation (13).

DKL(q(z) ‖ p(z|x))

= DKL(q(z|x) ‖ p(z))+ log p(x)− Ez∼q(z)[log p(x|z)]) (13)

Using the above equation, the log-marginal likelihood of the

decoder can be expressed by Equation (14).

log p(x) = Ez∼q(z|x)[log p(x|z)]− DKL(q(z|x) ‖ p(z))

+DKL(q(z|x) ‖ p(z|x)) (14)

A positive value is always returned by the Kullback–Leibler

divergence. As a result, the inequality that results is correct at all

times (refer to Equation 15).

log p(x) ≥ Ez∼q(z|x)[log p(x|z)]− DKL(q(z|x) ‖ p(z)) = ELBO

(15)

This concept is referred to as effective lower bound (ELBO).

Since this inequality is always valid, increasing the ELBO value

leads to an increase in the decoder’s log-marginal likelihood.

Calculating the loss function of the VAE by multiplying the

right-hand side of the equation by a negative value is possible.

The loss function that is used to calculate the training of

the convolutional variational autoencoder model is given by

Equation (16).

LVAE = −Ez∼q(z|x)[log p(x|z)]+ DKL(q(z|x) ‖ p(z))

= LReconstruction + LKD
(16)

Where LReconstruction represents the reconstruction

loss, which is the autoencoder’s cross-entropy calculated

using input and output data, and LKD indicates Kullback

divergence regularizer value, which becomes lower as the

inferred probability distribution gets closer to a zero-mean

Gaussian distribution.
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TABLE 4 Table shows proposed architecture of ex-convolutional VAE model and the parameters with values that have been used on it.

Encoder Decoder

Layer (Type) Output shape Param # Connected
to

Layer (Type) Output
shape

Param #

encoder_ input

(InputLayer)

(12, 12, 1) 0 z_sampling (InputLayer) (32, 1) 0

conv2d_28

(Conv2D)

(6, 6, 32) 320 encoder_input[0][0] dense_55 (Dense) (576, 1) 19008

conv2d_29

(Conv2D)

(3, 3, 64) 18, 496 conv2d_28[0][0] reshape_14 (Reshape) (3, 3, 64) 0

flatten_15 (Flatten) (576, 1) 0 conv2d_29[0][0] conv2d_transpose_28

(Conv2DTranspose)

(6, 6, 64) 36, 928

dense_54 (Dense) (32, 1) 18, 464 flatten_15[0][0] conv2d_transpose_29

(Conv2DTranspose)

(12, 12, 32) 18, 464

z_mean (Dense) (32, 1) 1, 056 dense_54[0][0] decoder_output

(Conv2DTranspose)

(12, 12, 1) 289

z_log_var (Dense) (32, 1) 1,056 dense_54[0][0]

Total params: 39, 392, Trainable params: 39392 Total params: 74, 689, Trainable params: 74, 689

3 Results

3.1 Computation of FC and ISFC matrices

For decoding of the cognitive states, we performed analysis in

two ways: (a) including the complete dataset, and (b) considering

age-wise sub-groups, i.e., 3-yrs, 4-yrs, 5-yrs, 7-yrs, 8–12 yrs,

3–5 yrs, 7–12 yrs, and adults. The dataset was divided into

subgroups to check the effect of age on the model’s performance.

Literature informs that Richardson et al. (2018), networks are

not adequately segregated from each other in early childhood.

While we considered a dataset that included data from 3-yr old

children, it remained a question of whether age is a dependent

parameter on the model’s performance. To overcome above

mentioned hypothesis, we extracted BOLD signal timecourses

from 12 ROIs as listed in Table 1 (6 ToM ROIs and 6 pain

ROIs) from the mentioned 10 time windows with peak activation.

FC matrices of size 12*12 were constructed by calculating

Pearson’s correlation for each individual. Similarly, we calculated

ISFC matrices of size 12*12 for ToM and pain networks.

To validate our results, we performed multiple one-sample t-

tests for each connection with a p-value < 0.01 and applied

FDR correction.

3.2 Decoding of cognitive states using
Ex-stGCNN model

For decoding the cognitive states, we implemented the

proposed Ex-stGCNN model. We used FC and ISFC matrices as

separate feature sets to check whether ISFC, a stimulus-driven

feature set, could decode states better than a non-specific feature

set. The considered datasets could suffer from some issues: (a)

improper network segregation at an early childhood stage, and (b)

activation of other brain networks such as the visual networks and

the default-mode network during naturalistic-stimuli watching. To

clarify how the activation of other networks at the same time

could affect the model’s performance, we performed an analysis on

the whole brain. We compared the results of decoding cognitive

states using 12 ROIs (ToM and Pain networks) with decoding

using the whole brain FCs and ISFCs. We split the data into

ratio of 80:20 (Kahloot and Ekler, 2021; Muraina, 2022). We

carried out the analysis using the ratio of 80:20 and reported

detailed results using the same ratio. We also compared the

performance of traditional existing models like MVPA (Haxby

et al., 2001), LSTM-RNN (Li and Fan, 2019), and CNN (Wang

et al., 2020) with the proposed model. We found better results

from the proposed model than any other existing models (Refer

to Table 5).

3.2.1 Using FC matrices as feature set
1. Analysis on complete dataset: To perform an ablation study

on the proposed model, We implemented two different node

embedding algorithms, i.e., Walklets and Node2Vec, as well as

tuned the model using different batch sizes. Our observations

indicated that Node2Vec outperformed Walklets. Using the

Node2Vec algorithm for 3D-Convolutional layers, we achieved

an average accuracy of 85% with an F1-score of 0.87 for 12 ROIs,

while for the whole brain in the same scenario, we achieved

80% accuracy with an F1-score of 0.79. When Walklets were

employed for 3D-convolutional layers, we attained an average

accuracy of 78% with an F1-score of 0.80 for 12 ROIs and

73% accuracy with an F1-score of 0.72 for the whole brain.

Our results suggest that GCNN with 3D convolutional layers

performs better in decoding cognitive states than 2D or 1D

convolutional layers, as indicated in Table 6. We validated our

results using five-fold cross-validation and achieved an average

accuracy of 75% with an F1-score of 0.76. We also implemented

leave-one-out method and achieved an average accuracy of 78%

with F1-score of 0.75.
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TABLE 5 Table shows the comparison between performance of traditional models and proposed model on complete dataset.

Feature set (Including 12
ROIs)

Sr. No. Models Accuracy F1-Score

FC 1.a MVPA 73.51% 0.74

1.b LSTM-RNN 77.80% 0.76

1.c CNN 79.21% 0.80

1.d Ex-stGCNN (Node2Vec) 85.68% 0.84

ISFC 2.a MVPA 79.23% 0.70

2.b LSTM-RNN 83.55% 0.84

2.c CNN 85.92% 0.86

2.d Ex-stGCNN (Node2Vec) 94.35% 0.95

The proposed model outperforms the existing models. The bold values represent the best performance using the proposed model.

TABLE 6 Table shows the performance of proposed Ex-stGCNNmodel using ISFC and FC matrices.

Feature set Convolutional
layer

Filters Walklets
(whole brain)

Walklets (12
ROIs)

Node2Vec
(whole brain)

Node2Vec
(12 ROIs)

- - - Accuracy Accuracy Accuracy Accuracy

FC 1D 16 58.15% 61.50% 59.71% 60.25%

2D 16,32 65.60% 68.36% 68.48% 75.23%

3D 16,32,64 73.85% 78.72% 80.92% 85.68%

ISFC 1D 16 63.45% 65.66% 65.87% 69.70%

2D 16,32 75.61% 79.01% 82.86% 88.21%

3D 16,32,64 82.46% 92.57% 85.75% 94.35%

We found more accurate results using ISFC matrices as compared to FC matrices. The bold values represent the best performance using the proposed model.

2. Analysis on age-wise sub-groups: Additionally, we analyzed

age-wise subgroups to check effect of age on the model’s

performance (Refer to Figure 6). We achieved the lowest

accuracy of 50% with an F1-score of 0.48 for the 3-yrs age

group using Walklets, and the pattern was the same for 4-yrs.

We observed a change in the model’s performance from the

7-yrs age group with an accuracy of 68% with an F1-score of

0.69 for 12 ROIs and achieved the highest accuracy for adult

groups with an average accuracy of 85% with an F1-score of

0.84. We validated our results using five-fold cross-validation

and achieved an average accuracy of 68% with an F1-score of

0.67.We found an average accuracy of 69%with F1-score of 0.71

using leave-one-out method.

For explainability, we applied SHAP(Shapley Additive

exPlanations), which provided the extent to which each input

feature contributed to the prediction. We computed the median

of feature scores and identified ROIs that contributed the most to

classification. We observed that bilateral Temporoparietal Junction

(LTPJ and RTPJ), Ventromedial Prefrontal Cortex (vmPFC), Left

Interior Insula, and Bilateral Middle Frontal Gyrus (LMFG and

RMFG) contributed most to the prediction (Refer to Figure 6).

3.2.2 Using ISFC matrices as feature set
1. Analysis on complete dataset: We hypothesized that stimulus-

driven measures could better predict the brain state. To test

our hypothesis, we calculated ISFC matrices and trained the

model. During testing, we achieved the highest accuracy of

94% with an F1-score of 0.95 for 12 ROIs and 85% with an

F1-score of 0.87 for the whole brain using Node2Vec for 3D-

convolutional layers (Refer to Table 6). In contrast, we obtained

an average accuracy of 92% with a 0.93 F1-score for 12 ROIs

and 82% accuracy with a 0.83 F1-score for the whole brain using

Walklets for 3D-convolutional layers. Hence, our hypothesis

was correct: ISFC measures provided better results compared

to FC measures. To validate the results, we conducted a five-

fold cross-validation and achieved an average accuracy of 91%

with an F1-score of 0.91. Using the leave-one-out method,

we achieved an average accuracy of 93% with an F1-score

of 0.93. We observed that false-positive cases belonged to

the early childhood age group, i.e., 3-yrs and 4-yrs as shown

in Figure 7.

2. Analysis on age-wise sub-groups: We analyzed age-wise

sub-groups and achieved better results using ISFC matrices.

We achieved the best accuracy of 74% with an F1-score

of 0.75 for 12 ROIs for the 3-yr age group. This proves

that despite incomplete network segregation during early

development, ISFC measures could still predict states to a

reasonable extent.

Using the SHAP explainability method, we observed that bilateral

Temporoparietal Junction (LTPJ and RTPJ), Posterior Cingulate

Cortex (PCC), Right Interior Insula, and Bilateral Middle Frontal

Gyrus (LMFG and RMFG) contributed most to the prediction of

cognitive state.
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FIGURE 6

Performance of Ex-stGCNN model: (A, B) show ROC and precision-recall curves of Ex-stGCNN model using ISFC matrices.

FIGURE 7

Performance using leave-one-out approach: (A) shows performance in terms of accuracy for each individual. It shows average accuracy for all 10

time-course for each participant. The results suggested that as age increases, the performance of the model also increases. (B) shows the weight of

each time-course in the prediction.

FIGURE 8

Functional connectivity between ToM and pain networks for false-belief task-based pass, fail, and inconsistent groups. Pass group showed stronger

connectivity between ToM and pain network, whereas inconsistent group showed moderate connectivity, and fail group showed weaker connectivity.
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FIGURE 9

Inter-Subject Functional connectivity between ToM and pain networks for the false-belief task-based pass, fail, and inconsistent groups. The FC and

ISFC matrices show similar patterns, i.e., stronger connectivity for the pass group, moderate connectivity for the inconsistent group, and weaker

connectivity for the fail group.

TABLE 7 Table shows the comparison between the performance of multiple models and the proposed model for predicting individual performance on

false-belief tasks.

Feature set (Including
12 ROIs)

Sr. No. Models Accuracy F1-Score Precision Recall

FC 1.a Decision Tree 69% 0.68 0.67 0.69

1.b Random-Forest 65% 0.66 0.62 0.63

1.c SVM 61% 0.62 0.59 0.60

1.d Proposed Ex-stGCNN 84% 0.85 0.83 0.81

1.e Proposed Ex-Convolutional VAE 90% 0.91 0.89 0.87

ISFC 2.a Decision Tree 72% 0.71 0.69 0.70

2.b Random Forest 70% 0.72 0.71 0.69

2.c SVM 65% 0.67 0.64 0.61

2.d Proposed Ex-stGCNN 89% 0.90 0.87 0.85

2.e Proposed Ex-Convolutional VAE 93.5% 0.94 0.91 0.90

The proposed Ex-Convolutional VAE model outperforms as compared to Ex-stGCNN and other existing models. The bold values represent the best performance using the proposed model.

3.3 Prediction of individual performance
on false-belief tasks

In the literature Li et al. (2019a,b) and Finn and Bandettini

(2021), an association between brain signals and behavioral

scores has been found. We hypothesized that functional

connectivity and inter-subject functional connectivity between

selected brain regions could predict individual performance

on false-belief tasks. To check our hypothesis, we extracted

FC and ISFC matrices from selected brain regions for each

individual. We observed stronger connectivity for the false-

belief task-based pass group, whereas moderate connectivity

for an inconsistent group and weaker connectivity for the fail

group using FC and ISFC matrices (Refer to Figures 8, 9).

To validate our results, we performed multiple one-sample

t-tests, one for each connection, with a p-value < 0.01,

and applied FDR correction. Here, we referred to stronger

connectivity if the correlation between the regions > 0.5, if

correlation ≈ 0.5, then it indicated moderate connectivity,

and if correlation < 0.5, then it is referred to as weaker

connectivity.

For prediction of individual performance on false-belief tasks,

we trained multiple ML and DL models, for example, decision

tree, random forest, SVM, and proposed Ex-stGCNN. We trained

the mentioned models in 3 ways: (a) using all 12 ROIs, (b) using

8 ROIs that contributed most (dominant ROIs) in decoding of

cognitive state, and (c) using only 6 ToM ROIs. We divided dataset

into 80:20 ratios and provided FC and ISFC matrices seperately

as input to train the model. The mentioned models were not able

to give accurate results as reported in Table 7. To overcome the

limitation of mentioned models, we proposed an Ex-Convolutional

VAE model to predict individual performance on false-belief tasks

and categorized participants into pass, inconsistent, and fail groups.

Using FCmatrices, we achieved 90% accuracy with F1-score of 0.91

using 12 ROIs, 84% accuracy with F1-score of 0.83 using eight

dominant ROIs, and 80% accuracy with 0.79 F1-score using six

ToM ROIs. To validate our results, we performed five-fold cross-

validation and achieved an average accuracy of 87% with F1-score

of 0.88. We also achieved average accuracy of 85% with F1-score of

0.84 using leave-one-out method. We also tried 1D convolutional

and achieved 81% accuracy with 0.80 F1-score using 12 ROIs, 73%

with 0.74 F1-score using 8-dominant ROIs, and 66% accuracy with
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FIGURE 10

Feature importance. (A, B) show brain regions that contributed most to the prediction using ISFC and FC matrices. We extracted three dominating

ToM regions and three dominating pain regions. (C, D) show a relationship between feature values and the impact they have on the model’s

predictions. There is an overlap between the regions identified by ISFC and FC matrices.

F1-score of 0.67 using six-Tom ROIs using FC matrices. Whereas,

using ISFC matrices, we achieved 93.5 % accuracy with F1-score

0.94 using 12 ROIs, 89% accuracy with F1-score 0.87 using eight

dominant ROIs, and 83% accuracy with F1-score 0.82 using ToM

ROIs. We also validated our results using five-fold cross-validation

and achieved an average of 90% accuracy with an F1-score of 0.89.

We achieved average accuracy of 92% with F1-score of 0.91 using

leave-one-out method.

4 Discussion

We identified interpretable dynamic brain features using

a novel stGCNN model that accurately decodes time-locked

stimulus-driven cognitive states during ongoing movie scene

experience, even in children as young as 3-yrs. Children (n =

122, 3–12 yrs) and adults (n = 33) watched a short, engaging

animated movie while undergoing fMRI. The movie highlights the
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FIGURE 11

Performance of GCNN model on Age-wise sub-groups: (A) shows accuracy of proposed Ex-stGCNN model on sub-groups using ISFC matrices. (B)

shows accuracy using FC matrices. Our results suggest that we can achieve considerable performance using ISFC matrices at early childhood stage.

In sub-group analysis, both Walklets and Node2Vec node embedding methods performed approximately the same.

characters’ bodily sensations (often pain) and mental states (beliefs,

desires, emotions) and is a feasible experiment for young children.

We model learned latent dynamic interactions among distributed

brain regions of interest without ad hoc feature engineering,

achieving high classification accuracies in cross-validation analysis

in a naturalistic paradigm. Decoding and mapping cognitive

states of the human brain is an exciting area of research for

learning context-specific and independent cognitive architectures

and their developmental differences. However, identifying and

mapping cognitive states in early childhood and late adolescence

is challenging (Simony and Chang, 2020) as extant literature

(Astington and Edward, 2010; Richardson et al., 2018) suggests that

brain networks are not adequately segregated in the early childhood

stage (as early as 3-yrs). Young children’s brain development and

cognitive abilities undergo substantial transformations during the

initial years of their lives (Schult and Wellman, 1997; Schulz

et al., 2007; Cohen et al., 2011; Richardson et al., 2018). Deep

learning models showed great success in decoding and mapping

diverse cognitive states of the human brain (Wang et al., 2020).

Despite this exciting development, existing models (Zhang et al.,

2021, 2023; Ye et al., 2023) suffer from an issue of low accuracy

and explainability due to their internal architecture and feature

extraction technique. Also, the existing models (Zhang et al.,

2021, 2023; Saeidi et al., 2022; Ye et al., 2023) were tested out

in adult data when brain networks are fully matured. Identifying

the most effective features that could categorize the relationship

between complex naturalistic stimuli and the associated brain

activity in children remains unexplored. Moreover, it is pertinent

to ask how to design deep learning architecture that could

examine the complex representation of brain networks during

early development.

4.1 Decoding of cognitive states using
Ex-stGCNN model

Previously the proposed methods, i.e., multivariate pattern

analysis (MVPA) (Haxby et al., 2001), RNN-based method (Li

and Fan, 2019), and CNN-based (Wang et al., 2020) showed

significant results in decoding multiple cognitive states from

fMRI signals of the brain without any burden for handcrafted

features. Among previously proposed methods, RNN with LSTM,
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FIGURE 12

Performance for prediction of false-belief task: (A) Shows importance of features and their SHAP values using ISFC matrices for the proposed

Ex-Convolutional VAE model. (B) shows feature importance using ISFC matrices for proposed Ex-stGCNN model (C) Shows overall performance.

a deep learning method for sequence modeling, ignores spatial

information within the input data (Sepp Hochreiter, 1997). The

2D CNN-based methods cannot encode the 3D nature of fMRI

data. Thus, Meszlényi et al. (2017) and Li and Fan (2019)

methods require functional network-based features as inputs.

Previous studies have also proposed a deep learning framework

based on the graph convolutional neural networks (GCNNs)

presented to enhance the decoding performance of raw EEG

signals during different types of motor imagery (MI) tasks

while cooperating with the functional topological relationship

of electrodes. Based on the absolute Pearson’s matrix of overall

signals, the graph Laplacian of EEG electrodes is built up.

The GCNs-Net constructed by graph convolutional layers learns

the generalized features. The following pooling layers reduce

dimensionality, and the fully connected SoftMax layer derives

the final prediction. The introduced approach has been shown

to converge for both personalized and group-wise predictions

(Hou et al., 2022). Interestingly, several recent works have focused

on identifying individual differences and discovering neurological

biomarkers using a GCNN framework to analyze functional

magnetic resonance images (fMRI) (Li et al., 2021; Saeidi et al.,

2022).

In this study, we proposed a graph-based explainable brain

decoding model that combines information on the dynamics of

the brain’s distributed networks. Here, we designed an Explainable

spatiotemporal Connectivity-based Graph-Convolutional Neural

Network (Ex-stGCNN) model to decode cognitive states that could

represent complex topological relationships and interdependencies

between data. We have used stGCNN model using 12 specified

ROIs of interest (ROIs) [which included bilateral Temporoparietal

Junction (LTPJ and RTPJ), Posterior Cingulate Cortex (PCC),

Ventral and Dorsal-medial Prefrontal Cortex (vmPFC and

dmPFC), and Precuneus] and ROIs from pain network [which

included bilateral Middle Frontal Gyrus (LMFG and RMFG),

bilateral Interior Insula, and bilateral Secondary Sensory Cortex

(LSSC and RSSC)] based on previous work tracking development
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in 3–12 yrs old using the same stimuli (Richardson et al.,

2018). We also trained the stGCNN model at the whole brain

level. Our results revealed simultaneous activation of other brain

networks, e.g., Visual Network, DMN, and FPN. stGCNN could not

accurately decode task-activated states in children and adolescents

in the whole brain analysis, highlighting the model’s specificity.

The simultaneous activation of multiple brain networks may

account for the less accurate results obtained in the whole brain

analysis compared with the accuracy achieved when specifically

implementing decoding ToM and pain networks. We observed

that the Node2Vec node embedding method was giving more

accurate results as compared to the Walklets node embedding

method in the developmental age group dataset. We also observed

the effect of age on the model’s performance, i.e., we were getting

better results from 5 years onwards. To validate the results and

check the performance of the model on an individual level, we

also used five-fold cross-validation and leave-one-out methods. We

found better results using the leave-one-out method; data splitting

might be the case that led to an increase in performance. While

the leave-one-out method trains on the entire dataset except for

one sample at a time, five-fold cross-validation trains on only

a subset of the data in each fold. This difference in training

data distribution could affect the model’s ability to generalize.

We observed that most of the false-positive predictions belonged

to early developmental age groups, i.e., 3-yrs, 4-yrs using the

leave-one-out method.

4.2 Feature identification and brain
fingerprinting using Ex-stGCNN

A challenge of applying any graph neural network models

to neuroimaging research is the black box characteristic of this

approach: No one knows exactly what the graph convolutional

network is doing. A model might achieve high levels of decoding

accuracy but provide no insight into which features are important

for decoding or whether the features are neurobiologically

interpretable in the context of empirical evidence based on GLM-

based or reverse correlation analysis carried out on ToM and Pain

ROIs BOLD time-series signals by previous work (Richardson et al.,

2018). Further, the network segregation and activation of other

networks could affect the model’s performance at a certain level (Li

and Fan, 2018, 2019; Albouy et al., 2019; Gao et al., 2019; Wang

et al., 2020; Cao et al., 2021).

Using a SHAP approach, our graph learning model allowed us

to identify and rank brain connectivity features that distinguish

different decoding model performances as reported in Figures 10,

11). Furthermore, our predictive features identify the brain

fingerprints, which index individual differences and the differential

contribution of different brain areas to the Decoding of cognitive

states and predict individual performance during the false-belief

task.

For the explainability of the proposed model, we implemented

the SHAP approach. We identified three dominant brain regions

from ToM and three dominant brain regions from the pain

functional network based on both FC and ISFC matrices. We

identified that, on average, bilateral Temporoparietal Junction

(LTPJ and RTPJ), Ventromedial Prefrontal Cortex (vmPFC), Left

Interior Insula, and Bilateral Middle Frontal Gyrus (LMFG and

RMFG) contributed most to the prediction using the FC feature set.

In contrast, bilateral Temporoparietal Junction (LTPJ and RTPJ),

Posterior Cingulate Cortex (PCC), Right Interior Insula, and

Bilateral Middle Frontal Gyrus (LMFG and RMFG) contributed

most to the prediction using the ISFC feature set.

Our study represents a significant departure from previous

studies by directly targeting spatiotemporal stimulus-driven feature

sets, i.e., ISFC. Our results showed that even in the early age

groups 3-yrs and 4-yrs, ISFCmatrices could track stimulus-induced

dynamic spatiotemporal brain activation patterns. Notably, the

stGCNN model achieved high state decoding accuracy despite

age differences, and the accuracy levels were considerably higher

than those obtained using conventional methods implementing

MVPA, LSTM-RNN, and different versions of CNN models

(summary in Table 5 and Figure 11). Our stGCNN-based feature

detection analysis identified the bilateral Temporoparietal Junction

(LTPJ and RTPJ), Posterior Cingulate Cortex (PCC), Right

Interior Insula, and Bilateral Middle Frontal Gyrus (LMFG and

RMFG), which anchor the mentalization network important for

differentiating social and non-social stimuli, DMN, as brain areas

whose dynamic properties most clearly distinguished the individual

differences in dynamic patterns. Crucially, these features were

observed in the children and replicated in the adults, further

attesting to the robustness of our findings. Aberrancies in nodes

that anchor the mentalization, self-processing networks, and their

static and dynamic functional interactions contribute substantially

to the differential functional integration of information and belief

about the self and others in the context of the stimuli used in this

study in line with the previous findings. This further suggests that

the proposed Ex-stGCNN model can be used as a research tool

to provide important insights about task/cognition-specific brain

connectivity and dynamics.

4.3 Prediction of individual performance in
false-belief taks

The final challenge we addressed here was to uncover

neurobiologically interpretable features of inter-subject brain

connectivity patterns to predict individual performance in a

false-belief task. Previous studies have shown rTPJ is frequently

associated with different capacities to shift attention to unexpected

stimuli (reorienting of attention) and to understand others’ (false)

mental state [theory of mind (ToM), typically represented by false

belief tasks]. Many studies further suggest that two dominant

subregions, posterior rTPJ seem exclusively involved in the social

domain, and anterior rTPJ is involved in both attention and ToM,

conceivably indicating an attentional shifting role of this region

(Krall et al., 2015; Igelström and Graziano, 2017). A recent study

(Ganesan et al., 2022) reported that behavioral measures related to

visual stimuli could influence themodels performance in classifying

between rest and task states using static and dynamic functional

connectivity. We hypothesized that neurobiologically interpretable

brain features of FC and ISFC between specified brain regions

could effectively predict individual performance in false-belief

tasks. To test our hypothesis, we implemented multiple models

Frontiers inNeuroinformatics 18 frontiersin.org

https://doi.org/10.3389/fninf.2024.1392661
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Bhavna et al. 10.3389/fninf.2024.1392661

in which FC and ISFC matrices were subjected as input as listed

out in Table 7. We were getting moderate results. To overcome

the limitations of tested models, we designed an Explainable

Convolutional Variational Autoencoder (Ex-Convolutional VAE)

model. We observed stronger correlations for the false belief task-

based pass group, moderate connectivity for an inconsistent group,

and anticorrelations for the fail group amongst the 12 selected ROIs

as mentioned in Figures 8, 9, 12). Here, we trained the model using

the FC and ISFC matrices separately for each subject. We observed

that FC and ISFC between ToM and pain networks (identified

features) affected the model’s performance, i.e., improvement in

the model’s performance compared with when only FC and ISFC

within the ToM regions was considered. Across the 5-fold cross-

validation analysis, the bilateral Temporoparietal Junction (LTPJ

and RTPJ), Posterior Cingulate Cortex (PCC), Right Interior

Insula, and Bilateral Middle Frontal Gyrus (LMFG and RMFG)

are the only brain regions whose features strongly predicted the

individual performance in the false-belief task.

Interestingly, we also found that individuals who mostly failed

in the false-belief task belonged to the 3-yrs old and 4-yrs old

age groups. This is largely consistent with previous neuroimaging

findings, which suggest that brain regions involved in ToM in

adulthood already constitute a distinct network in 3-yr old children.

The ToM network gradually becomes more integrated and distinct

from other networks over the next decade. Similarly, the response

time course in the ToM network in response to a social movie is

strongly positively correlated, even between 3-yr olds and adults.

The time course and peak event responses show gradual continuous

development over childhood. Focusing specifically on 3-5 yrs

old children, the neural responses to social movies in children

who systematically fail versus pass explicit false-belief tasks were

similar: there were no differences in the magnitude of response to

the five ToM events (Table 2) identified using reverse correlation

analyses (Richardson et al., 2018), as indicated here by observed

stronger correlation between ToM and the pain network in the

passers and in contrast, anticorrelations in the fail group suggesting

between network correlation is necessary for performing well in the

mentalization task.

4.4 Limitations and future scope

Although the proposed framework provided a promising

avenue for decoding cognitive states and predicting false-belief

performance in developmental dataset, the study had some

limitations. The dataset comprised only 155 participants (age range

3–12 yrs), in which some age ranges did not have enough no.

of participants, for example, the adults group (age range 13–39),

and for 6-yrs age, there were no participants. So, we could not

treat data in a continuous manner. The proposed Ex-stGCNN

was unable to capture brain dynamics for the early childhood age

range, i.e. 3-yrs and 4 yrs which led to decreased performance

in decoding of cognitive states. The proposed model was also

not able to give accurate predictions in whole brain analysis due

to the activation of other brain regions during visual stimuli

watching. We used two different models, i.e., Ex-stGCNN and

Convolutional-VAE models for prediction of performance in false-

belief tasks. We found better results using the Ex-Convolutional

VAE model that opened the door to examine the limitation of

the Ex-stGCNN model for prediction of performance for false-

belief tasks. In the future, we will try to address the mentioned

limitations. We will also try gender differences in the decoding

of states.

5 Conclusion and future aspects

The study aimed to propose a framework that can decode

higher-order brain states and associated cognition using short

time-courses brain signals for developmental age group dataset

collected from single session recordings without using feature

engineering and which can also predict individual performance on

false-belief tasks and categorize them in pass, fail, and inconsistent

subject groups. We trained the model using ISFC and FC matrices

separately and achieved 94% accuracy using ISFC matrices and

85% using FC matrices. We also analyzed age-wise subgroups

to check the effect of age on the model’s performance. Due

to incomplete network segregation at the early childhood stage,

the model gives lower accuracy for early age groups, i.e., 3-

yrs and 4-yrs, as for the 5-yrs and above. We used the SHAP

approach to determine the brain fingerprints that contributed most

to the prediction. We show that our proposed architecture did

perform superior to traditional fMRI decoding, RNN, and CNN-

based models for complex cognitive states during the naturalistic

experience in individuals of early childhood and pre-adolescence,

even with short event time-courses and small datasets. To predict

false-belief task-based pass, fail, and inconsistent groups, we

proposed an Ex-Convolutional VAE model and achieved 90%

accuracy using FC matrices and 93.5% using ISFC matrices.

We validated our results using five-fold cross-validation. our

results suggested that stimulus-driven features such as ISFC

could better capture brain states even in the early developmental

age-group data.
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Demirtaş, M., Ponce-Alvarez, A., Gilson, M., Hagmann, P., Mantini, D., Betti, V.,
et al. (2019). Distinct modes of functional connectivity induced by movie-watching.
Neuroimage 184, 335–348.

Dubben, H.-H., and Beck-Bornholdt, H.-P. (2005). Systematic review
of publication bias in studies on publication bias. BMJ 331, 433–434.
doi: 10.1136/bmj.38478.497164.F7

Dubben, H.-H., Beck-Bornholdt, H.-P., Grover, A., and Leskovec, J. (2016).
“node2vec: Scalable feature learning for networks,” in Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery and data mining, 855–864.

Fey, M., and Lenssen, J. E. (2019). Fast graph representation learning with pytorch
geometric. arXiv preprint arXiv:1903.02428.

Finn, E. S., and Bandettini, P. A. (2021). Movie-watching outperforms rest for
functional connectivity-based prediction of behavior. NeuroImage 235:117963.

Ganesan, S., Lv, J., and Zalesky, A. (2022). Multi-timepoint pattern
analysis: Influence of personality and behavior on decoding context-
dependent brain connectivity dynamics. Human brain mapping,
43(4):1403–1418.

Gao, Y., Zhang, Y., Wang, H., Guo, X., and Zhang, J. (2019). Decoding behavior
tasks from brain activity using deep transfer learning. IEEE Access 7, 43222–43232.
doi: 10.1109/ACCESS.2019.2907040

Grover, A., and Leskovec, J. (2016). “node2vec: scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 855–864.

Frontiers inNeuroinformatics 20 frontiersin.org

https://doi.org/10.3389/fninf.2024.1392661
https://doi.org/10.1186/s13104-017-2768-5
https://doi.org/10.1093/scan/nst048
https://doi.org/10.1016/j.neubiorev.2018.06.009
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1101/2023.08.09.552564
https://doi.org/10.1006/nimg.2002.1174
https://doi.org/10.1371/journal.pcbi.1004994
https://doi.org/10.1371/journal.pbio.0040125
https://doi.org/10.1111/j.1551-6709.2011.01172.x
https://doi.org/10.1136/bmj.38478.497164.F7
https://doi.org/10.1109/ACCESS.2019.2907040
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Bhavna et al. 10.3389/fninf.2024.1392661

Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., and Malach, R. (2004). Intersubject
synchronization of cortical activity during natural vision. Science 303, 1634–1640.
doi: 10.1126/science.1089506

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., and
Pietrini, P. (2001). Distributed and overlapping representations of faces and
objects in ventral temporal cortex. Science 293, 2425–2430. doi: 10.1126/science.
1063736

Hou, Y., Jia, S., Lun, X., Hao, Z., Shi, Y., Li, Y., et al. (2022). “Gcns-net: a
graph convolutional neural network approach for decoding time-resolved EEG motor
imagery signals,” in IEEE Transactions on Neural Networks and Learning Systems.
doi: 10.1109/TNNLS.2022.3202569

Igelström, K. M., and Graziano, M. S. (2017). The inferior parietal lobule and
temporoparietal junction: a network perspective. Neuropsychologia 105, 70–83.

Jacoby, N., Bruneau, E., Koster-Hale, J., and Saxe, R. (2016). Localizing pain matrix
and theory ofmind networks with both verbal and non-verbal stimuli.Neuroimage 126,
39–48. doi: 10.1016/j.neuroimage.2015.11.025

Kahloot, K. M., and Ekler, P. (2021). Algorithmic splitting: a method for dataset
preparation. IEEE Access 9, 125229–125237. doi: 10.1109/ACCESS.2021.3110745

Kim, D., Kay, K., Shulman, G. L., and Corbetta, M. (2018). A new modular brain
organization of the bold signal during natural vision. Cerebral Cortex 28, 3065–3081.
doi: 10.1093/cercor/bhx175

Kingma, D. P., and Welling, M. (2013). Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114.

Kipf, T. N., and Welling, M. (2016). Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907.

Krall, S. C., Rottschy, C., Oberwelland, E., Bzdok, D., Fox, P. T., Eickhoff, S.
B., et al. (2015). The role of the right temporoparietal junction in attention and
social interaction as revealed by ale meta-analysis. Brain Struct. Funct. 220, 587–604.
doi: 10.1007/s00429-014-0803-z

Kullback, S., and Leibler, R. A. (1951). On information and sufficiency. Ann.
Mathem. Statist. 22, 79–86. doi: 10.1214/aoms/1177729694

Lee, S. M., Park, S.-Y., and Choi, B.-H. (2022). Application of domain-adaptive
convolutional variational autoencoder for stress-state prediction. Knowl. Based Syst.
248:108827. doi: 10.1016/j.knosys.2022.108827

Li, H., and Fan, Y. (2018). “Brain decoding from functional mri using long
short-term memory recurrent neural networks,” in Medical Image Computing
and Computer Assisted Intervention-MICCAI 2018: 21st International Conference,
Granada, Spain, September 16-20, 2018, Proceedings, Part III 11 (Springer),
320–328.

Li, H., and Fan, Y. (2019). Interpretable, highly accurate brain decoding of
subtly distinct brain states from functional mri using intrinsic functional networks
and long short-term memory recurrent neural networks. NeuroImage 202:116059.
doi: 10.1016/j.neuroimage.2019.116059

Li, J., Bolt, T., Bzdok, D., Nomi, J. S., Yeo, B. T., Spreng, R. N., et al. (2019a).
Topography and behavioral relevance of the global signal in the human brain. Sci. Rep.
9:14286. doi: 10.1038/s41598-019-50750-8

Li, J., Kong, R., Liégeois, R., Orban, C., Tan, Y., Sun, N., et al. (2019b). Global signal
regression strengthens association between resting-state functional connectivity and
behavior. NeuroImage 196:126–141. doi: 10.1016/j.neuroimage.2019.04.016

Li, X., Zhou, Y., Dvornek, N., Zhang, M., Gao, S., Zhuang, J., et al. (2021).
Braingnn: Interpretable brain graph neural network for fmri analysis. Med. Image
Analy. 74:102233. doi: 10.1016/j.media.2021.102233

Lieberman, M. D., Burns, S. M., Torre, J. B., and Eisenberger, N. I. (2016). Reply to
wager et al.: Pain and the dacc: The importance of hit rate-adjusted effects and posterior
probabilities with fair priors. Proc. Nat. Acad. Sci. 113, E2476–E2479.

Lieberman,M. D., and Eisenberger, N. I. (2015). The dorsal anterior cingulate cortex
is selective for pain: Results from large-scale reverse inference. Proc. Nat. Acad. Sci. 112,
15250–15255.

Lin, L. (2018). Bias caused by sampling error in meta-analysis with small sample
sizes. PLoS ONE 13:e0204056.

Lynch, L. K., Lu, K.-H., Wen, H., Zhang, Y., Saykin, A. J., and Liu, Z.
(2018). Task-evoked functional connectivity does not explain functional connectivity
differences between rest and task conditions. Hum. Brain Mapp. 39, 4939–4948.
doi: 10.1002/hbm.24335

Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., et al. (2001). A
probabilistic atlas and reference system for the human brain: International consortium
for brain mapping (icbm). Philosoph. Trans. R. Soc. London Series B. 356, 1293–1322.
doi: 10.1098/rstb.2001.0915

Mazziotta, J. C., Toga, A. W., Evans, A., Fox, P., Lancaster, J., et al. (1995). A
probabilistic atlas of the human brain: theory and rationale for its development.
Neuroimage 2, 89–101. doi: 10.1006/nimg.1995.1012

Meszlényi, R. J., Buza, K., and Vidnyánszky, Z. (2017). Resting state fmri functional
connectivity-based classification using a convolutional neural network architecture.
Front. Neuroinform. 11:61. doi: 10.3389/fninf.2017.00061

Muraina, I. (2022). “Ideal dataset splitting ratios in machine learning algorithms:
general concerns for data scientists and data analysts,” in 7th International Mardin
Artuklu Scientific Research Conference, 496–504.

Nastase, S. A., Gazzola, V., Hasson, U., and Keysers, C. (2019). Measuring shared
responses across subjects using intersubject correlation. Soc. Cogn. Affect. Neurosci. 14,
667–685. doi: 10.1093/scan/nsz037

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
“Pytorch: an imperative style, high-performance deep learning library,” in Advances in
Neural Information Processing Systems 32 (NeurIPS 2019).

Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J., and Nichols, T. E. (2011).
Statistical Parametric Mapping: the Analysis of Functional Brain Images. New York:
Elsevier.

Perozzi, B., Kulkarni, V., Chen, H., and Skiena, S. (2017). “Don’t walk, skip! online
learning of multi-scale network embeddings,” in Proceedings of the 2017 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining 2017,
258–265.

Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging
data? Trends Cogn. Sci. 10, 59–63. doi: 10.1016/j.tics.2005.12.004

Poldrack, R. A. (2011). Inferring mental states from neuroimaging data: from
reverse inference to large-scale decoding. Neuron 72(5):692–697.

Poldrack, R. A., Halchenko, Y. O., andHanson, S. J. (2009). Decoding the large-scale
structure of brain function by classifying mental states across individuals. Psychol. Sci.
20, 1364–1372. doi: 10.1111/j.1467-9280.2009.02460.x

Rácz, A., Bajusz, D., and Héberger, K. (2021). Effect of dataset size and
train/test split ratios in qsar/qspr multiclass classification. Molecules 26:1111.
doi: 10.3390/molecules26041111

Reher, K., and Sohn, P. (2009). “Partly cloudy [Motion Picture],” in Pixar Animation
Studios and Walt Disney Pictures 2009.

Richardson, H., Lisandrelli, G., Riobueno-Naylor, A., and Saxe, R. (2018).
Development of the social brain from age three to twelve years. Nat. Commun. 9, 1–12.
doi: 10.1038/s41467-018-03399-2

Rosenbaum, R., Smith, M. A., Kohn, A., Rubin, J. E., and Doiron, B. (2017).
The spatial structure of correlated neuronal variability. Nat. Neurosci. 20, 107–114.
doi: 10.1038/nn.4433

Saeidi, M., Karwowski, W., Farahani, F. V., Fiok, K., Hancock, P., Sawyer, B. D.,
et al. (2022). Decoding task-based fmri data with graph neural networks, considering
individual differences. Brain Sci. 12:1094. doi: 10.3390/brainsci12081094

Santhanam, G., Ryu, S. I., Yu, B. M., Afshar, A., and Shenoy, K. V. (2006). A high-
performance brain-computer interface.Nature 442, 195–198. doi: 10.1038/nature04968

Schlichtkrull, M. S., De Cao, N., and Titov, I. (2020). Interpreting graph
neural networks for nlp with differentiable edge masking. arXiv preprint arXiv:
2010.00577.

Schult, C. A., and Wellman, H. M. (1997). Explaining human movements and
actions: Children’s understanding of the limits of psychological explanation. Cognition
62, 291–324.

Schulz, L. E., Bonawitz, E. B., and Griffiths, T. L. (2007). Can being scared cause
tummy aches? Naive theories, ambiguous evidence, and preschoolers’ causal inferences.
Dev. Psychol. 43:1124. doi: 10.1037/0012-1649.43.5.1124

Sepp Hochreiter, J. S. (1997). Long short-term memory. Neural Comput. 9:1735.

Simony, E., and Chang, C. (2020). Analysis of stimulus-induced
brain dynamics during naturalistic paradigms. NeuroImage 216:116461.
doi: 10.1016/j.neuroimage.2019.116461

Simony, E., Honey, C. J., Chen, J., Lositsky, O., Yeshurun, Y., Wiesel, A., et
al. (2016). Dynamic reconfiguration of the default mode network during narrative
comprehension. Nat. Commun. 7:12141. doi: 10.1038/ncomms12141

Varoquaux, G., Schwartz, Y., Poldrack, R. A., Gauthier, B., Bzdok, D., Poline, J.-B.,
et al. (2018). Atlases of cognition with large-scale human brainmapping. PLoS Comput.
Biol. 14:e1006565. doi: 10.1371/journal.pcbi.1006565

Wager, T. D., Atlas, L. Y., Botvinick, M. M., Chang, L. J., Coghill, R. C., Davis,
K. D., et al. (2016). Pain in the ACC? Proc. Nat. Acad. Sci 113, E2474–E2475.
doi: 10.1073/pnas.1600282113

Wang, X., Liang, X., Jiang, Z., Nguchu, B. A., Zhou, Y., Wang, Y., et al. (2020).
Decoding and mapping task states of the human brain via deep learning. Hum. Brain
Mapp. 41, 1505–1519. doi: 10.1002/hbm.24891

Whitfield-Gabrieli, S., Nieto-Castanon, A., and Ghosh, S. (2011). Artifact detection
tools (ART). Cambridge, MA. Release Version 7, 11.

Xie, H., and Redcay, E. (2022). A tale of two connectivities: intra-and inter-subject
functional connectivity jointly enable better prediction of social abilities. bioRxiv,
2022–02. doi: 10.3389/fnins.2022.875828

Yan, Z., Youyong, K., Jiasong, W., Coatrieux, G., and Huazhong, S. (2019).
“Brain tissue segmentation based on graph convolutional networks,” in 2019
IEEE International Conference on Image Processing (ICIP) (IEEE), 1470–1474.
doi: 10.1109/ICIP.2019.8803033

Frontiers inNeuroinformatics 21 frontiersin.org

https://doi.org/10.3389/fninf.2024.1392661
https://doi.org/10.1126/science.1089506
https://doi.org/10.1126/science.1063736
https://doi.org/10.1109/TNNLS.2022.3202569
https://doi.org/10.1016/j.neuroimage.2015.11.025
https://doi.org/10.1109/ACCESS.2021.3110745
https://doi.org/10.1093/cercor/bhx175
https://doi.org/10.1007/s00429-014-0803-z
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1016/j.knosys.2022.108827
https://doi.org/10.1016/j.neuroimage.2019.116059
https://doi.org/10.1038/s41598-019-50750-8
https://doi.org/10.1016/j.neuroimage.2019.04.016
https://doi.org/10.1016/j.media.2021.102233
https://doi.org/10.1002/hbm.24335
https://doi.org/10.1098/rstb.2001.0915
https://doi.org/10.1006/nimg.1995.1012
https://doi.org/10.3389/fninf.2017.00061
https://doi.org/10.1093/scan/nsz037
https://doi.org/10.1016/j.tics.2005.12.004
https://doi.org/10.1111/j.1467-9280.2009.02460.x
https://doi.org/10.3390/molecules26041111
https://doi.org/10.1038/s41467-018-03399-2
https://doi.org/10.1038/nn.4433
https://doi.org/10.3390/brainsci12081094
https://doi.org/10.1038/nature04968
https://doi.org/10.1037/0012-1649.43.5.1124
https://doi.org/10.1016/j.neuroimage.2019.116461
https://doi.org/10.1038/ncomms12141
https://doi.org/10.1371/journal.pcbi.1006565
https://doi.org/10.1073/pnas.1600282113
https://doi.org/10.1002/hbm.24891
https://doi.org/10.3389/fnins.2022.875828
https://doi.org/10.1109/ICIP.2019.8803033
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Bhavna et al. 10.3389/fninf.2024.1392661

Ye, Z., Qu, Y., Liang, Z., Wang, M., and Liu, Q. (2023). Explainable
fmri-based brain decoding via spatial temporal-pyramid graph convolutional
network. Hum. Brain Mapp. 44, 2921–2935. doi: 10.1002/hbm.
26255

Ying, Z., Bourgeois, D., You, J., Zitnik, M., and Leskovec, J. (2019). “Gnnexplainer:
generating explanations for graph neural networks,” in Advances in Neural Information
Processing Systems, 32.

Yuan, H., Yu, H., Gui, S., and Ji, S. (2022). Explainability in graph neural networks:
a taxonomic survey. IEEE Trans. Patt. Analy. Mach. Intell. 45, 5782–5799.

Yuan, H., Yu, H., Wang, J., Li, K., and Ji, S. (2021). “On explainability of graph
neural networks via subgraph explorations,” in International Conference on Machine
Learning (PMLR), 12241–12252. doi: 10.1109/TPAMI.2022.3204236

Zhang, C., Bütepage, J., Kjellström, H., and Mandt, S. (2018). Advances in
variational inference. IEEE Trans. Pattern Anal. Mach. Intell. 41, 2008–2026.
doi: 10.1109/TPAMI.2018.2889774

Zhang, Y., and Bellec, P. (2019). “Functional annotation of human cognitive
states using graph convolution networks,” in Real Neurons {&} Hidden Units: Future
directions at the intersection of neuroscience and artificial intelligence@NeurIPS 2019.

Zhang, Y., Gao, Y., Xu, J., Zhao, G., Shi, L., and Kong, L. (2023). Unsupervised
joint domain adaptation for decoding brain cognitive states from tfmri images. IEEE J.
Biomed. Health Inform. 28, 1494–1503. doi: 10.1109/JBHI.2023.3348130

Zhang, Y., Tetrel, L., Thirion, B., and Bellec, P. (2021). Functional
annotation of human cognitive states using deep graph convolution. NeuroImage
231:117847. doi: 10.1016/j.neuroimage.2021.117847

Frontiers inNeuroinformatics 22 frontiersin.org

https://doi.org/10.3389/fninf.2024.1392661
https://doi.org/10.1002/hbm.26255
https://doi.org/10.1109/TPAMI.2022.3204236
https://doi.org/10.1109/TPAMI.2018.2889774
https://doi.org/10.1109/JBHI.2023.3348130
https://doi.org/10.1016/j.neuroimage.2021.117847
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

	Explainable deep-learning framework: decoding brain states and prediction of individual performance in false-belief task at early childhood stage
	1 Introduction
	2 Materials and methods
	2.1 Participants and fMRI preprocessing
	2.2 fMRI data analysis and extraction of feature sets
	2.3 Decoding of states using explainable spatiotemporal connectivity based graph convolutional neural network
	2.3.1 Proposed architecture
	2.3.2 Spectral based GCN
	2.3.3 Training and testing
	2.3.4 Identification of neurobiological features and analysis using five-fold cross validation and leave-one-out methods

	2.4 Prediction of individual performance in false-belief task using explainable convolutional variational autoencoder model
	2.4.1 Proposed approach


	3 Results
	3.1 Computation of FC and ISFC matrices
	3.2 Decoding of cognitive states using Ex-stGCNN model
	3.2.1 Using FC matrices as feature set
	3.2.2 Using ISFC matrices as feature set

	3.3 Prediction of individual performance on false-belief tasks

	4 Discussion
	4.1 Decoding of cognitive states using Ex-stGCNN model
	4.2 Feature identification and brain fingerprinting using Ex-stGCNN
	4.3 Prediction of individual performance in false-belief taks
	4.4 Limitations and future scope

	5 Conclusion and future aspects
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


