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Purpose: This study aimed to develop a radiomic model based on non-contrast

computed tomography (NCCT) after interventional treatment to predict the

clinical prognosis of acute ischemic stroke (AIS) with large vessel occlusion.

Methods: We retrospectively collected 141 cases of AIS from 2016 to 2020 and

analyzed the patients’ clinical data as well as NCCT data after interventional

treatment. Then, the total dataset was divided into training and testing sets

according to the subject serial number. The cerebral hemispheres on the

infarct side were segmented for radiomics signature extraction. After radiomics

signatures were standardized and dimensionality reduced, the training set was

used to construct a radiomics model using machine learning. The testing set

was then used to validate the prediction model, which was evaluated based

on discrimination, calibration, and clinical utility. Finally, a joint model was

constructed by incorporating the radiomics signatures and clinical data.

Results: The AUCs of the joint model, radiomics signature, NIHSS score, and

hypertension were 0.900, 0.863, 0.727, and 0.591, respectively, in the training

set. In the testing set, the AUCs of the joint model, radiomics signature, NIHSS

score, and hypertension were 0.885, 0.840, 0.721, and 0.590, respectively.

Conclusion: Our results provided evidence that using post-interventional NCCT

for a radiomic model could be a valuable tool in predicting the clinical prognosis

of AIS with large vessel occlusion.

KEYWORDS

acute ischemic stroke, machine learning, radiomics signature, computed tomography,

stroke—diagnosis

Introduction

AIS is a neurological emergency with high rates of disability andmortality (Regenhardt

et al., 2018). According to statistics,∼25–35% of strokes manifest as large vessel occlusion,

and this group is the main target for intravascular interventional therapy (Kidwell et al.,

2013). However, the hyperdense areas on postoperative NCCT often confuse clinicians as
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to whether it was a hemorrhage or contrast agent and affect

subsequent treatment and clinical prognosis.

The relationship between the hyperdense area and clinical

outcomes remains uncertain. Some studies have shown that

patients with the hyperdense area had a higher score on the

modified Rankin Scale (mRS) score at discharge or 90 days than

those without the hyperdense area (Payabvash et al., 2014, 2015;

Rouchaud et al., 2014; Chen et al., 2019, 2020), while others

indicated that it did not affect functional outcomes (Lummel et al.,

2014; An et al., 2019). We would like to use a new machine

learning tool that could obtain more information, including the

area of the hyperdense area, the area of concomitant hypodense

infarction, the histogram of CT value distribution, and the degree

of brain parenchyma swelling to make a one-stop prediction of

clinical outcomes.

Radiomics, as a new technology, transforms subjective visual

interpretation into image data-driven objective evaluation in a

non-invasive way. It can extract a large number of quantitative

features, such as shape, intensity, and texture, from images and

further reflect more biological information related to the disease

(Lambin et al., 2012; Yip and Aerts, 2016; Avanzo et al., 2017).

Radiomics has successfully demonstrated the potential for multiple

applications in stroke, and the extracted features can be used to

diagnose stroke lesions, predict early transformation, and assess

the long-term prognosis after stroke onset (Chen et al., 2021;

Jiang et al., 2021). Peter et al. (2017) identified six texture features

from NCCT images that could differentiate ischemic lesions from

their contralateral normal tissues. In addition, Tang et al. (2020)

quantified the penumbra and core area from both the apparent

diffusion coefficient and cerebral blood flow maps in patients with

AIS (<9 h) using radiomic analysis, and in the external dataset, the

constructed radiomic nomogram could strongly predict favorable

clinical outcomes at 7 days and 3 months. Clinically, NCCT is the

first choice for AIS patients after intervention because it is efficient,

non-invasive, and low in cost. Nevertheless, little is known about

the relationship between the radiomics signatures based on NCCT

after AIS intervention and the clinical prognosis.

Therefore, we aimed to develop a radiomics model to predict

the clinical prognosis of AIS patients with interventional treatment.

Then, the correlation between texture features and clinical

outcome was further elucidated to identify potential biomarkers for

clinical prognosis.

Materials and methods

Patients

This study was approved by the Ethics Committee of the

Zhejiang Provincial People’s Hospital. Due to the retrospective

nature of the study, the patient’s informed consent was waived.

Patients’ clinical data and NCCT data were obtained from routine

clinical and radiological records. All patients with a clinically

confirmed diagnosis of AIS who underwent interventional

treatment from 1 January 2016 to 31 December 2020 were included.

The inclusion criteria included (1) all patients who were diagnosed

with AIS with large vessel occlusion (ICA isolated or in tandem

with MCA) by preoperative one-stop head CT at admission,

(2) intravascular intervention was carried out within the time

window, (3) NCCT scan was performed immediately after patient

intervention, and (4) complete clinical and imaging data could be

obtained. The exclusion criteria included (1) patients with vascular

malformation, intracranial hemorrhage, infection, or neoplastic

lesions; (2) patients with a history of severe heart, lung, or

kidney disease; and (3) postoperative NCCT images with obvious

motion artifacts.

The mRS and the National Institutes of Health Stroke Scale

(NIHSS) were obtained from clinical records. The primary outcome

measure was defined as whether the postoperative functional status

was classified as a “good prognosis”, defined as a 90-day mRS 0-

2, or “poor prognosis”, defined as a 90-day mRS 3-6, including

severe disability and death. Finally, patients were divided into good

prognosis (n = 84) and poor prognosis (n = 57) groups. At a ratio

of 7:3, all patients were also divided into training (n = 97) and

validation (n = 44) sets according to the subject serial number

(Figure 1).

CT data acquisition

NCCT scans after interventional treatment were performed

using the Siemens Definition AS 128 CT. The routine head scan

protocol: the tube voltage = 120 kV, the reference current =

400mA, and the actual current can be adjusted by using the

combined applications reduce exposure dose 4 dimensions (CARE

dose 4D) technology: acquisition matrix= 512× 512, rebuild FOV

= 300 × 300mm, layer thickness = 1mm, and interslice gap =

0. The emergency head scan protocol: the tube voltage = 120 kV,

the reference current = 400mA, the actual current can be adjusted

using the CARE dose 4D technology, acquisition matrix = 512 ×

512, rebuild FOV= 300× 300mm, and pitch= 0:9 mm.

Segmentation of region of interest

Based on the NCCT images after interventional treatment,

3D slicer software was used to segment 3D ROIs on the

infarcted cerebral hemispheres. The detailed process is shown in

Supplementary Figure S1.

Image preprocessing and extraction of
radiomics feature

The images were preprocessed using AK software (Artificial

Intelligence Kit V3.0.0.R, GE Healthcare), which included image

interpolation, intensity normalization, and gray-level discretization

as described previously. First, the image grayscale intensity

level was discretized and normalized for noise reduction by

downsampling each image into 25 bins. Given these fixed bin

values and numbers, the grayscale range of the image was divided

into equally spaced intervals. Next, we calculated 396 texture

features, including histogram, formfactor, Haralick, run-length

matrix (RLM), gray-level cooccurrence matrix (GLCM), and gray-

level size zone matrix (GLSZM) with AK software. Prior to feature
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FIGURE 1

Flowchart of the recruitment path and research route used in this study.

selection, all the extracted texture features were standardized.

Dimension reduction was performed using analysis of variance and

Mann–Whitney U-test and then we performed a correlation test to

reduce data redundancy. Finally, the least absolute shrinkage and

selection operator (LASSO) was used to further select significant

features (Figure 2).

Comparison of machine learning methods

A variety of machine learning algorithms, including,

multivariate logistic regression (LR), Bayes, random forest,

and decision tree classifiers, were undertaken to construct models

based on the remaining features. The stability of each machine

learning algorithm was quantified using the relative SD (RSD) and

a bootstrap approach. For each classification method, we trained

the model on a subsampled training cohort from the training set or

the testing set and evaluated its performance on the remaining data

using the area under the curve (AUC) of the receiver operating

characteristic (ROC) curve. Subsampling of the training or testing

set was performed 100 times using bootstrapping. RSD is the

absolute value of the coefficient of variation and is often expressed

as a percentage according to Equation: RSD = σAUC/µAUC →

100%, where σAUC and µAUC are the standard deviation and

mean of the 100 AUC values, respectively. It should be noted that

higher stability corresponds to lower RSD values. The calibration

curve was used to describe the goodness-of-fit of radiomic models.

Thereafter, we calculated the radiomic score (rad-score) for every

patient in both the training and validation sets using the formula

constructed in the training set.
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FIGURE 2

The main process for constructing the radiomics signature used in this study.

Establishment of the joint prediction model

In the training set, multivariable LR analysis was performed to

select independent predictors of the clinical prognosis of AIS for

each potential predictive variable, including age, gender, smoking,

hypertension, diabetes, atrial fibrillation, use of anticoagulants,

hyperlipidemia, the NIHSS at admission, the Alberta Stroke

Program Early CT (ASPECT) score, bridging treatment, time

of surgery, good revascularization, and rad-scores. Finally, the

independent predictors from the training set were used to construct

a joint prediction model using stepwise LR, and the data in

the testing set were used to verify the performance of the

joint model. Then, the ROC curves were used to visualize the

experimental results, and the AUC was calculated to quantify the

prediction performance.

Statistical analysis

All statistical analyses were performed using SPSS (version

25.0) and R 3.5.1. The Kolmogorov–Smirnov test was used to

test the normality of the data. Normally distributed data were

evaluated using an independent sample t-test, whereas non-

normally distributed data were evaluated using a Mann–Whitney

U-test. The difference between categorical variables was tested with

a chi-squared test. The correlations between mRS and optimal

texture features were used in Spearman’s analysis. Besides, the

subjects were stratified into different subgroups using the median

values of clinical factors and imaging biomarkers for correlation

analysis. The Sankey diagram was used to show the relationship

between these subgroups. A two-tailed P-value of <0.05 indicated

statistical significance.

Results

Patient clinical data

There were significant differences in the history of

hypertension, the NIHSS score, the ASPECT score at admission,

and the incidence of good revascularization between good and

poor prognosis groups (all p < 0.05), as seen in Table 1. In the

training set, there were significant differences in the history of

hypertension, the NIHSS, and the ASPECT score at admission (all

p < 0.05, Table 2).
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TABLE 1 Basic characteristics of good and poor prognosis groups.

Good
prognosis
n = 84

Poor
prognosis
n = 57

P

Age 70.12± 12.26 71.86± 11.11 0.392

Gender (male; %) 42 (50.0%) 36 (63.2%) 0.123

History of smoking 13 (15.5%) 12 (21.1%) 0.395

History of

hypertension

57 (67.9%) 49 (86.0%) 0.015

History of diabetes 10 (11.9%) 11 (19.3%) 0.226

History of atrial

fibrillation

39 (46.4%) 30 (52.6%) 0.470

History of

anticoagulant use

17 (20.2%) 8 (14.0%) 0.344

History of

hyperlipidemia

4 (4.8%) 3 (5.3%) 1.000

NIHSS at admission 18.75± 6.25 24.46± 6.80 0.000

ASPECT score (<6

scores)

26 (31.0%) 38 (66.7%) 0.000

Bridging treatment 39 (46.4%) 21 (36.8%) 0.259

Time of operation

(min)

328.43±

144.56

349.79±

143.42

0.389

Good

revascularization

(%)

76 (90.5%) 44 (77.2%) 0.030

mRS score at 3m 2.37± 0.76 5.07± 0.84 0.000

HDL, high-density lipoprotein; LDL, low-density lipoprotein; APTT, activated partial

thromboplastin time; PT, prothrombin time; HT, hemorrhagic transformation.

Performance and stability of the machine
learning methods

In the training set, the RSD values of the Bayes, LR, Tree, and

Forest algorithms were 13.33, 11.54, 12.21, and 11.93, respectively.

In the testing set, the RSD values for these models were 20.95,

18.50, 18.99, and 21.79, respectively. The LR algorithm showed

better diagnostic performance and stability than the other machine

learning algorithms in the training and test sets (Figure 3).

Construction of the radiomics model

After standardization and dimension reduction, the

four most valuable texture features were selected for the

construction of the radiomics signature, including Range,

Correlation_angle45_offset1, SurfaceVolumeRati, and

VolumeMM. The main process of dimension reduction and

the formula for the radiomics signature are provided in the

Supplementary material. Based on the formula, the rad-scores

were calculated, and it had favorable predictive efficacy in the

training and testing cohorts (the AUC values were 0.863 and

0.840, respectively). The Hosmer–Lemeshow test revealed good

goodness-of-fit of the radiomics model (all P > 0.05), and the

calibration curves demonstrated good consistency in both the

training and testing sets. The relevant results are shown in

Supplementary Figure S2.

Overall validation of the joint model

After stepwise LR, the NIHSS score at admission, hypertension,

and rad-scores were used to build the joint model, as shown in

Table 3. The AUCs of the joint model, rad-scores, NIHSS score, and

hypertension were 0.900, 0.863, 0.727, and 0.591 in the training set,

respectively. In the testing set, the AUCs of the joint model, rad-

scores, NIHSS score, and hypertension were 0.885, 0.840, 0.721, and

0.590, respectively (Table 4; Figure 4).

Correlation between mRS and optimal
texture features

There was a negative correlation between mRS and surface

volume ratio (r = −0.531, p < 0.001). However, the mRS was

positively correlated with rad-scores (r = 0.570, p < 0.001), range

(r = 192, p = 0.022), and volume MM (r = 0.510, p < 0.001), as

shown in Table 5 and Figure 5.

The relationships among clinical factors (NIHSS,

hypertension), imaging biomarkers, and clinical outcomes

were shown in the Sankey diagram (Figure 6). Each of the three

imaging biomarkers that were correlated with mRS was divided

into high (H) and low (L) based on their median values. The

Sankey diagram shows that most subjects with imaging LHL

characteristics, which indicate a low range, high surface volume

ratio, and low volume MM, have a good prognosis, whereas

subjects with imaging-HLH phenotype, which denotes high range,

low surface volume ratio, and high volume MM, have a poorer

prognosis. In addition, subjects with higher NIHSS scores and

hypertension have a poor prognosis.

Discussion

The innovation of our study was to develop and validate

a new machine learning model based on reviewed NCCT after

AIS intervention for predicting the clinical prognosis. According

to our knowledge, this is the first study to construct integrative

predictive modeling based on clinical data. Meanwhile, standard

visual radiological and radiomic features of NCCT after AIS

interventions were used to predict the clinical prognosis of patients,

which showed good calibration and discriminatory ability in

both the training and testing sets. In this study, we used NCCT

and clinical data to predict the clinical prognosis of AIS after

intervention, and the results demonstrated that comprehensive

predictive modeling of rad-scores, the NIHSS score at admission,

and history of hypertension with machine learning algorithms

could accurately predict the clinical prognosis at 3 months

for AIS patients after intervention. Moreover, our study found

strong associations between radiographic markers (rad-scores and

optimal textural features) and mRS at 3 months, which implied

Frontiers inNeuroinformatics 05 frontiersin.org

https://doi.org/10.3389/fninf.2024.1400702
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Gu et al. 10.3389/fninf.2024.1400702

TABLE 2 Clinical and imaging information on training and testing sets.

Training set (n = 97) Testing set (n = 44)

Good N = 58 Poor N = 39 p Good N = 26 Poor N = 18 p

Age 67.97± 11.99 70.62± 11.91 0.287 74.92± 11.69 74.56± 8.87 0.911

Gender 29 (50.0%) 25 (64.1%) 0.170 13 (50.0%) 11 (61.1%) 0.467

Smoking 11 (19.0%) 8 (20.5%) 0.851 2 (7.7%) 4 (22.2%) 0.208

Hypertension 40 (69.0%) 34 (87.2%) 0.039 17 (65.4%) 15 (83.3%) 0.303

Diabetes 4 (6.9%) 10 (25.6%) 0.017 6 (23.1%) 1 (5.6%) 0.211

Atrial fibrillation 25 (43.1%) 17 (43.6%) 0.962 14 (53.8%) 13 (72.2%) 0.346

Use of anticoagulants 7 (12.1%) 5 (12.8%) 0.912 10 (38.5%) 3 (16.7%) 0.182

Hyperlipidemia 2 (3.4%) 2 (5.1%) 1.000 2 (7.7%) 1 (5.6%) 1.000

The NIHSS at admission 18.88± 6.01 24.38± 6.70 <0.01 18.46± 6.88 24.61± 7.20 0.007

The ASPECT at

admission (<6 score)

18 (31.0%) 27 (69.2%) <0.01 8 (30.8%) 11 (61.1%) 0.046

Bridging treatment 25 (43.1%) 12 (30.8%) 0.220 14 (53.8%) 9 (50.0%) 0.802

Time of operation 339.81± 155.52 368.51± 165.35 0.387 303.04± 115.17 309.22± 63.97 0.838

Good revascularization 55 (94.8%) 32 (82.1%) 0.084 21 (80.8%) 12 (66.7%) 0.288

mRS score at 3m 2.38± 0.81 5.00± 0.86 <0.01 2.35± 0.63 5.22± 0.81 <0.01

HDL, high-density lipoprotein; LDL, low-density lipoprotein; APTT, activated partial thromboplastin time; PT, prothrombin time.

FIGURE 3

(A, B) Densities of AUCs from in silico validation of the machine learning models. (C) The relative standard deviation (RSD) of four algorithms, the

lower RSD values correspond to the higher stability of the model. (D) Violin plots of rad-scores for the good and poor prognosis groups.
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TABLE 3 Stepwise logistic regression analysis predicting prognosis at 3 months.

Univariate logistic regression Multivariate logistic regression

OR (95% CI) P OR (95% CI) P

Age 1.013 (0.984, 1.043) 0.390

Gender 1.714 (0.862, 3.409) 0.124

Smoking 1.456 (0.611, 3.473) 0.396

Hypertension 2.901 (1.208, 6.970) 0.017 4.380 (1.351, 14.199) 0.014

Diabetes 1.770 (0.697, 4.494) 0.230

Atrial fibrillation 1.282 (0.653, 2.515) 0.470

Use of anticoagulants 0.643 (0.257, 1.611) 0.346

Hyperlipidemia 1.111 (0.239, 5.163) 0.893

The NIHSS at admission 1.142 (1.077, 1.211) <0.01 1.155 (1.067, 1.250) <0.01

The ASPECT at admission (<6

score)

4.462 (2.173, 9.159) <0.01 / /

Bridging treatment 0.673 (0.338, 1.339) 0.259

Time of operation 1.001 (0.999, 1.003) 0.389

Good revascularization 0.356 (0.137, 0.927) 0.034 / /

Rad-score 2.611 (1.889, 3.609) <0.01 2.918 (1.969, 4.323) <0.01

HDL, high-density lipoprotein; LDL, low-density lipoprotein; APTT, activated partial thromboplastin time; PT, prothrombin time.

TABLE 4 Diagnostic performance of the joint model, radiomics signature, NIHSS score, and hypertension.

Training group Testing group

All Rad-
score

NHISS Hypertension All Rad-
score

NHISS Hypertension

AUC 0.900 0.863 0.727 0.591 0.885 0.840 0.721 0.590

Sensitivity 0.846 0.769 0.718 0.872 0.778 0.722 0.667 0.833

Specificity 0.931 0.879 0.621 0.310 0.885 0.808 0.808 0.346

Negative

predictive value

0.900 0.850 0.766 0.783 0.852 0.808 0.778 0.750

Positive predictive

value

0.892 0.811 0.560 0.459 0.824 0.722 0.706 0.469

True positive rate 0.846 0.769 0.718 0.872 0.778 0.722 0.667 0.833

False positive rate 0.069 0.121 0.379 0.690 0.115 0.192 0.192 0.654

True negative rate 0.931 0.879 0.621 0.310 0.885 0.808 0.808 0.346

False negative rate 0.154 0.231 0.282 0.128 0.222 0.278 0.333 0.167

False discovery

rate

0.108 0.189 0.440 0.541 0.176 0.278 0.294 0.531

Accuracy 0.897 0.835 0.660 0.536 0.841 0.773 0.750 0.545

Precision 0.892 0.811 0.560 0.459 0.824 0.722 0.706 0.469

Youden index 1.777 1.649 1.339 1.182 1.662 1.530 1.474 1.179

that biomarkers based on radiomic characterization of post-

interventional NCCT could also be used to predict the severity of

AIS outcome.

It is worth noting that our study showed a high correlation

between optimal texture features based on NCCT and the mRS

score. In overseas stroke clinical trials, the mRS is currently the

most frequently used scale for assessing functional outcomes and

can be a valid indicator of prognosis (McArthur et al., 2014).

The surface volume ratio, as the name suggests, was the ratio of

surface area to volume of ROIs. A lower value indicated a more

Frontiers inNeuroinformatics 07 frontiersin.org

https://doi.org/10.3389/fninf.2024.1400702
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Gu et al. 10.3389/fninf.2024.1400702

FIGURE 4

ROC curves of the joint model, radiomics signature, and clinical risk factors in the training (A) and testing (B) sets.

TABLE 5 Correlation between mRS and optimal texture features.

mRS score at 3 m

Correlation index p

Rad-score 0.570 <0.01

Range 0.192 0.022

Surface volume

ratio

−0.531 <0.01

Volume MM 0.510 <0.01

Correlation_angle45_

offset1

0.097 0.255

compact (sphere-like) shape, a more swollen brain hemisphere,

a higher mRS score, and a poorer prognosis. Similarly, a more

swollen brain hemisphere indicated a larger number of ROIs and

a poorer outcome, and our results also suggested that volume

MM, a feature representing volume, was positively correlated

with mRS scores. This was consistent with previous findings that

cerebral infarct volume was highly correlated with brain damage

and prognosis (Dastidar et al., 2000). In addition, the range of

gray values in the ROI, had a slight positive correlation with

the mRS score. We speculated that if there were both high

density representing hemorrhage or contrast agent and low density

representing infarction in the ROIs, the range of gray values

would increase, and the corresponding clinical prognosis would

be worse.

The NIHSS score and history of hypertension at admission

were also independent predictors of the clinical prognosis of AIS

after the intervention. Severe hypertension can lead to hemorrhagic

transformation of the infarct, hypertensive encephalopathy, as well

as cardiopulmonary and renal complications (Herpich and Rincon,

2020). A retrospective cohort study suggested that maintaining a

range of 70–90mmHg during endovascular therapy would improve

functional outcome (Rasmussen et al., 2020). Anadani et al.

(2019) showed that blood pressure control after revascularization

was associated with an improved functional prognosis. The

NIHSS score was also one of the central predictors that reliably

predicted mRS-3m. Brugnara et al. (2020)found that the most

important parameter for predicting mRS 90 was the NIHSS

score after 24 h (importance = 100%); this was consistent with

our findings.

We acknowledge that the current study has several limitations.

First, the retrospective nature of our study could not negate the risk

of information and selection bias. However, the results obtained

from this study enabled the development of a preliminary detection

model. Second, the sample size of the model was relatively small; if

we add further data in the follow-up, we will add more advanced

machine learning methods, or even deep learning, to further

improve our research. In the future, multi-center prospective

studies with larger sample sizes would validate the accuracy

of our model. Then, our inclusion of clinical data was largely

limited to a simple clinical history and lacked detailed laboratory

metrics, such as blood glucose fluctuations, blood pressure control,

renal function, and cardiac conditions that may affect prognosis.

Finally, owing to the difficulty of recognizing the real extent

of acute cerebral stroke (ACS) after intervention by the naked

eye, we designated the ipsilateral cerebral hemisphere region as

the ROI.

In summary, our results showed that a predictive model had

been identified by combining radiomic signatures, the NIHSS

score at admission, and a history of hypertension. This model

had the strongest power to individualize the prediction of future

clinical outcomes for patients with AIS after interventional

procedures. Instead of the classical mismatch concept, with

advanced imaging technology, clinical guidance with radiomics

methodology could add more value to the current clinical

decision-making process. We expect that our model will be

instrumental in the accurate prediction of AIS. Future prospective

multi-center studies should aim to validate the efficiency of

this model.
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FIGURE 5

The correlation between mRS and optimal texture features. The mRS was positively correlated with Range (A) and Volume MM (C). There was a

negative correlation between mRS and Surface Volume Ratio (B).

FIGURE 6

The Sankey diagram shows that most subjects with imaging LHL characteristics, which indicate a low range, high surface volume ratio, and low

volume MM, have a good prognosis, whereas subjects with imaging HLH phenotypes, which denote high range, low surface volume ratio, and high

volume MM, have a poorer prognosis. Besides, subjects with higher NIHSS scores and hypertension have a poor prognosis.
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