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Introduction: In operational environments, human interaction and cooperation

between individuals are critical to e�ciency and safety. These states are

influenced by individuals’ cognitive and emotional states. Human factor research

aims to objectively quantify these states to prevent human error and maintain

constant performances, particularly in high-risk settings such as aviation, where

human error and performance account for a significant portion of accidents.

Methods: Thus, this study aimed to evaluate and validate two novel methods

for assessing the degree of cooperation among professional pilots engaged in

real-flight simulation tasks. In addition, the study aimed to assess the ability of

the proposed metrics to di�erentiate between the expertise levels of operating

crews based on their levels of cooperation. Eight crews were involved in the

experiments, consisting of four crews of Unexperienced pilots and four crews

of Experienced pilots. An expert trainer, simulating air tra�c management

communication on one side and acting as a subject matter expert on the other,

provided external evaluations of the pilots’ mental states during the simulation.

The two novel approaches introduced in this study were formulated based on

circular correlation and mutual information techniques.

Results and discussion: The findings demonstrated the possibility of quantifying

cooperation levels among pilots during realistic flight simulations. In addition,

cooperation time is found to be significantly higher (p < 0.05) among

Experienced pilots compared to Unexperienced ones. Furthermore, these

preliminary results exhibited significant correlations (p < 0.05) with subjective

and behavioral measures collected every 30 s during the task, confirming

their reliability.

KEYWORDS

approach-withdrawal, cooperation, mutual information, circular correlation,

electroencephalography, human factors, mental workload, neurophysiological
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1 Introduction

In an operational context, most human activities revolve

around the interaction between two or more individuals engaged

in group tasks. Consequently, efficiency and safety in the workplace

depend not only on the individuals’ performance but also on

the collective workers’ capability to cooperate with each other.

In addition, the interaction between the individual and the

surrounding working environment is significantly influenced by

the individual’s cognitive and emotional state. In the last decade,

human factor (HF) research has focused on objectively quantifying

these cognitive and emotional states as well as the way in

which various states from different individuals interact, thereby

influencing processes such as team communication, collaboration,

and decision-making (Cooke and Gorman, 2009; Heaphy and

Dutton, 2008). As a result, the capability to objectively evaluate

the performance and cognitive resources of operators and their

teams becomes critical to prevent fatal and serious human errors,

especially in an operational environment (OE). It is important

to highlight that OE refers to settings where people undertake

particular tasks that demand technical and professional skills,

wherein the level of risk must always be kept under control. In

fact, according to National Transportation Board (NTSB) reports,

in the last 20 years, ∼85% of aviation accidents have been caused

by human error (Risk and Management Handbook, 2022). Other

statistics presented a slightly different percentage, ∼69% (Waraich

et al., 2013), but it remains significantly high and potentially

preventable.

In this context, the HF related to cooperation could play

a crucial role, especially within the field of aviation in which

multiple operators are often asked to act as one by coordinating

and finalizing each action to the same shared goal. Indeed, it

has been demonstrated that in most types of interaction tasks,

group-based systems perform better than individual-based and

mixed systems, encouraging more cooperative behavior (Ladley

et al., 2015). In addition, previous findings have elucidated an

interesting phenomenon: Individuals who perceived heightened

effort from their crew partner, particularly under high effort

conditions, tend to invest more effort in the task and perform

better. These findings are consistent with the idea that appreciating

another person’s effort increases one’s own sense of commitment to

a cooperative endeavor (Chennells, 2018). Thus, the capability to

evaluate cooperation can lead to (i) improving performance, since

better teams’ performance can be induced by the awareness coming

from evaluation of cooperation degree between members, (ii)

improving safety, through the evaluation of cognitive and emotive

mental state large scale mistakes can be avoided, while through

the cooperation evaluation a constant degree of communication

and collaboration can be maintained to avoid wrong management

of emergency, and (iii) improving operators’ wellbeing and

satisfaction by increasing their confidence with respect to the

environment, thereby contributing to improve performance too.

These aspects are particularly valuable when applied in an OE

as it is important that individuals’ wellbeing and performance

remain consistent to avoid human errors that could lead to serious

consequences, including, in some cases, fatalities.

To date, especially in OE, scientific literature shows various

investigated approaches for cooperation assessment. These

approaches consist of methodologies based on subjective or

behavioral measures (Ellis et al., 2023; Lapierre et al., 2023).

Although subjective measurements are acknowledged to be useful

in various contexts, it is important to be aware of the pertinent

limits of such evaluations due to their inherent subjectivity and

inability to capture the “unconscious” process underlying human

behavior (Borghini et al., 2016; Dienes and Perner, 2004). In

addition, to obtain these measurements from operators, it is

necessary to interact with them, and this leads to difficulties to

evaluate their state throughout particular activities. To address

these limitations, in the last decade, technological developments

have enabled the use of neurophysiological measurements also

in OE (Borghini et al., 2012, 2020a; Vecchiato et al., 2014). As

an example, measuring the brain and autonomic nervous system

activities enables to obtain objective measures of specific mental

states with low invasiveness and without negatively interfering

with the operators (Arico et al., 2017). Moreover, since these kinds

of measures are not subjective, the results could be generalized to

assess the dynamic conditions of different subjects in the same

operational environment.

Electroencephalography (EEG) and autonomic nervous

system-based measures of workers’ mental and emotional

states have already been investigated during the recent decades

to determine brain and autonomic cues of incoming risky

psychophysical states (e.g., stress, drowsiness, inattention, and

overload; Borghini et al., 2012, 2020a,b; Di Flumeri et al., 2022;

Ronca et al., 2022; Vecchiato et al., 2014). Regarding cooperation

assessment, the most recent scientific literature has demonstrated

that specific indexes, such as functional connectivity and phase

synchrony indexes, can reflect the state of cooperation between

individuals (Réveillé et al., 2024). More specifically, the most

proposed indexes to assess cooperation using EEG signals rely on

functional connectivity indexes such as coherence and Granger

causality, and synchrony indexes such as phase locking value

(PLV), phase lag index (PLI), and circular correlation (Ccor;

Réveillé et al., 2024; Sciaraffa et al., 2021). More importantly, these

considered recent scientific contributions demonstrated how in

the last decade cooperation evaluation through neurophysiological

measures was conducted mostly in laboratory contexts and under

hyperscanning conditions. The current limitations of functional

connectivity indexes stem from the underlying hypotheses of these

methods as they necessitate high-quality and high-density data,

prolonged registration periods, and hyperscanning conditions to

ensure accuracy (Bevilacqua et al., 2019; Liu et al., 2018; Richard

et al., 2021; Toppi et al., 2016). In this regard, it has to be underlined

that by hyperscanning condition, it is intended the one that foresees

the simultaneous recording of brain electrical activity between

individuals; hence, this experimental condition guarantees perfect

time synchronization between signals. As presented earlier, other

investigated methods to assess cooperation between individuals

in the scientific literature are based on phase synchrony between

signals (i.e., PLV, PLI, and Ccor). These methods aim to find

similarities between EEG patterns over time that reflect the sharing

of attention or psychological states necessary to coordinate actions

aimed to achieve the same objective; phase synchrony also reflects

a common response to the same environmental stimuli, similar

actions aimed at the same goal, and similar engagement in the task

(Burgess, 2013; Buzsáki and Wang, 2012; Stuldreher et al., 2022).
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Currently, these methods have exclusively been utilized within

hyperscanning contexts (Wikström et al., 2022). However, the

circular correlation (Ccor) method, due to its dependence on the

circular covariance of differences between observed and expected

phases, might demonstrate accuracy even in non-hyperscanning

scenarios. Therefore, this is one of the approaches to be investigated

by the present study.

A secondmethodology for the objective cooperation evaluation

explored in the present study corresponds to one based on mutual

information (MI). Such an approach relies on the information

theory (IT; Cover and Thomas, 2006) according to the concept

of Shannon entropy. The Shannon entropy measures the amount

of information in a signal and provides an estimate of the level

of uncertainty surrounding the signal-related event. In contrast

to other indices based on IT, MI is capable of catching non-

linear pattern similarity between two or more variables (Alonso

et al., 2015); this property makes this methodology suitable for

the study of EEG signals and their correlated features (i.e.,

mental states).

Considering the existing literature and taking advantage of

modern technologies in terms of wearable and comfortable

sensors, which can provide high-quality neurophysiological signals,

the present study aimed to assess pilots’ cooperation degree

while performing flight simulations under realistic conditions

through the use of neurophysiological measures. The cooperation

assessment stands as a highly debated and challenging topic within

scientific literature (Toppi et al., 2016). Currently, the lack of

broadly validated methodologies, especially in real-world contexts,

presents a substantial obstacle to the advancement of this research

field. Particularly, for the application of these methods in OEs,

it is important that the measuring system is non-invasive and

compatible with environmental constraints, but at the same time

it has to guarantee the high quality of the signals recorded.

To address these needs, in this study, a wearable device for

high-quality EEG data collection has been employed. Starting

from this premise, the present study investigated the application

and comparison of two novel techniques to assess cooperation

between pilots during a real-flight simulation, contributing to

state of the art by providing new methodologies for objectively

evaluating cooperation in OE usingmobile neurophysiological data

collection systems. The potential innovation characterizing these

methodologies corresponds to their robustness to experimental

environments compatible with out-of-the-lab applications, which

are notably violating the hypothesis of hyperscanning and lacking

the high spatial resolution of traditional EEG measurements

employed in controlled settings.

The present study is structured as follows: The selectedmethods

for the cooperation neurophysiological characterization were

technically described; subsequently, the experimental protocol,

including all the collected data (i.e., neurophysiological, behavioral,

and subjective measurements), was described; the experimental

results and their conceptual implications were first presented and

then discussed; finally, a conclusive section was presented to

underline what are the main research outcomes of the presented

study.

2 Materials and methods

As already mentioned in the Introduction section, the

first proposed approach to evaluate cooperation was based on

phase synchrony analysis of operators’ EEG signals through the

application of the circular correlation (Ccor) technique (Frassineti

et al., 2021; Shahsavari Baboukani et al., 2019).

The second approach was based on empirical evidence

suggesting that cooperation can be assessed as the output of a

multivariate system derived from the cognitive and emotional

states of users (Sciaraffa et al., 2021). Such a multivariate system

was therefore computed through the MI. In this regard, the

cognitive and emotional states were associated with the mental

workload (MW) and approach-withdrawal (AW), respectively.

More specifically, EEG-derived indexes for MW and AWhave been

selected for each individual engaged in the cooperative task since

theMW reflects the level of cognitive effort, while the AW indicates

the emotional tendency to approach or withdraw from a stimulus.

To technically validate both the proposed approaches,

simulated crews (FAKE crews) were constructed, randomizing

pilots within the crews and experimental phases so that their

input in the method would be considered white noise in terms

of cooperation. These simulated crews served to highlight the

sensibility and reliability of the proposed indexes to cooperative

behavior, as by construction, they cannot reflect cooperative

behaviors. Therefore, it was expected that these indexes would

consistently demonstrate a fixed response pattern for FAKE

crews, whereas for REAL crews they must be sensitive to the

cooperation phase. The choice of Ccor and MI-based approaches

among all the most investigated and validated methodologies

within the state of the art is motivated by their ability to capture

both linear and non-linear relationships between time series,

providing a more comprehensive view of information exchange. It

is important to note that both the proposed methods investigate

the same phenomenon from complementary perspectives. To

standardize the terminology in the present study, the cooperation

index assessed through mutual information will be referred to

as the MI-Cooperation Index (MICI), while the one assessed

through circular correlation will be termed the Ccor-Cooperation

Index (CCI).

2.1 Cooperation assessment

As previously mentioned, the cooperation index [C(t)] over

time has been computed through two approaches that will be

described along the respective following subchapters.

2.1.1 Ccor-Cooperation Index assessment
CCI method is based on the similarity between the

instantaneous phases of two time series which are directly

the EEG signals from each pilot involved in the task. Therefore, the

CCI was computed according to the following formula (Berens,

2009; Shahsavari Baboukani et al., 2019).
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TABLE 1 Frequency band definition.

Theta [(IAF – 6): (IAF – 2)] Hz

Alpha [(IAF – 2): (IAF+ 2)] Hz

Beta [(IAF+ 2): (IAF+ 16)] Hz

Ccorϑ ,ϕ =

∑N−1
k=0 sin(ϑk− ϑ̄) sin(ϕk− ϕ̄)

√

∑N−1
k=0 sin2 (ϑk− ϑ̄) sin2(ϕk− ϕ̄)

(1)

• ϑk and ϕk: instantaneaous phases evaluated at k-th sample;

• ϑ̄ and ϕ̄: circular means of ϑk and ϕk computed using 2.

ϑ̄ = arg
(

∑N−1

n=0
ej ϑ̄[n]

)

(2)

Phases have been considered in radians.

CCI has been computed first on the overall preprocessed signal

and second on each individual frequency band as reported in

Table 1. For each individual, individual alpha frequency (IAF) was

computed on the eyes closed EEG signal (Klimesch, 1999).

The percentage of cooperation time has been computed by

determining how long the cooperation neurophysiological index

was above the cooperation threshold. The cooperation threshold

has been established as the CCI median evaluated along the

calibration tasks (i.e., low and high difficulty).

2.1.2 MI-Cooperation Index assessment
Considering the two discrete variables of MW and AW, the

theoretical formulation of MICI is described by the following

formulas (Cover and Thomas, 2006; Kraskov et al., 2004):

I (X;Y)=
∑

i,j

p
(

i,j
)

log
p

(

i,j
)

px (i) py(j)
(3)

I (X;Y)=

∫∫

p
(

x,y
)

log
p

(

x,y
)

px (x) py
(

y
)dxdy (4)

where p(i,j) is the joint probability of the two discrete time series,

px(i) and py
(

j
)

are the marginal probabilities of each time series,

and i,j are bins of the 2D discrete space in which the two series

are defined.

The reported discrete formula (3) is already an approximation

of the continuous MI evaluated on a continuous space (4). To

technically implement the aforementioned formulation, Kraskov

et al. (2004) proposed an estimator of MI based on entropy

(H) concept:

I (X;Y)=H (X)+H (Y)−H(X,Y) (5)

Thus, MICI(t) was assessed as the mutual information between

four time series (i.e., MW index and AW index assessed on both

individuals), using the Kraskov estimator (Kraskov et al., 2004).

This is a KNN-based estimator that aims to estimate the Shannon

entropy of every signal from the average distance of the k-th nearest

neighbor averaged over all other points of the signal. Since the

TABLE 2 Experimental Protocol’s scenario description.

Phases Description

Calibration scenario The pilots were asked to conduct an approach and

landing with low visibility during two adverse

simulated weather conditions, so at two different

difficulty levels—low difficulty (Low diff) and high

difficulty (High diff) phases—each pilot has conducted

this phase individually.

Cooperation scenario During this session, a failure on the landing gears has

been injected during the approach phase. This section

has been designed to induce cooperative

behaviors—This phase was conducted by two pilots at a

time, working together as a crew.

computation of mental workload and approach-withdrawal indices

involves the evaluation of power across distinct EEG signal bands,

the analysis of theMICI index’s contribution was constrained to the

entire preprocessed signal’s band, precluding examination within

specific frequency bands like done with CCI.

The percentage of cooperation time has been computed as

according to the procedure described in the previous paragraph.

2.2 Experimental protocol design and
participants

Sixteen (16) participants have been selected and organized in

eight flight crews, four of which were composed of Unexperienced

pilots (UNEXPs, i.e., pilots that had just got the integrated ATPL—

Airline Transport Pilot License to become commercial pilots)

and four by Experienced ones (EXPs, i.e., pilots working for a

commercial airline for at least 10 years). Every crew was flanked

by an expert trainer with the role of supervising and providing

information about the pilots’ mental states while performing

the experimental tasks. Furthermore, to mimic a more realistic

situation, the expert trainer was designated to act as an air traffic

controller to simulate the communications with the crews. The

flight simulations were performed on the Mechtronix Ascent

XJ Trainer Boeing 737–800 simulator, located at the Urbe Aero

training center in Rome.

The experimental protocol was organized into two major

sections described in Table 2. In the first phase, defined as the

“calibration scenario,” each pilot performed the experimental flight

simulation alone. In the second phase, both pilots shared the

same cockpit to perform a mission designed to induce cooperative

behavior between them. The pilots’ EEG signals were collected

throughout the two mentioned experimental phases. The first

scenario, which was completed by each pilot alone, was designed

to derive a sort of baseline in an uncooperative environment.

This phase was necessary to determine the effective cooperation

threshold for each pilot crew. In addition, two preliminary 60-

s EEG data collections were performed, while the participants

were relaxed with the eyes closed, to evaluate the individual alpha

frequency (IAF; Klimesch, 1999) for each individual, and while

the participants were laying still relaxed, with the eyes open for

calibrating the eyeblink correction algorithm (Di Flumeri et al.,

2016). At the end of each flight mission, the trainer who supervised
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FIGURE 1

On the right is shown the experimental setting in the Mechtronix simulator and on the left the Mindtooth Touch EEG headset (BrainSigns srl, Rome,

Italy). The system has been designed to be wearable, comfortable for a long use, easy to wear, and fully compatible with aviation tools (e.g.,

headphones and glasses).

all the activities provided subjective behavioral assessments every

30 s of the pilots’ cooperation effectiveness through a rating scale on

a tablet (Figure 1). According to the trainer’s behavioral assessment,

a performance index representative of the outcome of the mission

and the mental condition of each crew was assessed as described in

Section 2.4.

2.3 Neurophysiological data recording and
processing

The Mindtooth system (Brain Products GmbH, Gilching,

Germany, and BrainSigns srl, Rome, Italy) has been employed

for EEG signal acquisition. This system was developed within the

homonymous project (H2020-EIC-FTI-GA950998), and it is able

to record high-quality EEG data while maintaining high comfort

for the operator (Sciaraffa et al., 2022). The EEG data were collected

with a sample rate of 125Hz, on eight recording channels (AFz,

AF3, AF4, AF7, AF8, PZ, P3, and P4), referenced to the right

mastoid, and grounded on the left one. Electrodes’ impedance

has been maintained below 50 kOhm (Sciaraffa et al., 2022). All

measurements were subjected to a 50Hz notch filter to remove

main line power interference. AF7 and AF8 channels were removed

from the analysis due to a too high percentage of movement

artifacts coupled with the EEG signal, while the other channels were

preserved with an average artifact percentage below 8% as shown in

Table 3.

The EEG recordings were also band-pass filtered [low-pass filter

cutoff frequency: 30Hz, high-pass filter cutoff frequency: 2Hz] with

a 5-th order Butterworth filter. The Reblinca method was used

to identify the blink artifacts and the ocular component, which

were corrected using a multi-channel Wiener filter (MWF; Di

Flumeri et al., 2016). EEG signals were segmented into epochs of

1 s, and on every epoch, only the threshold criterium was applied

to mark artifactual epochs through the EEGLAB toolbox (Delorme

TABLE 3 Mean artifact percentage on each preserved channel.

Channel Mean artifact %

AF3 6.89

AF4 7.93

AFz 7.93

P3 6.40

P4 5.33

Pz 5.66

and Makeig, 2004). In particular, the EEG epochs were identified

as “artifact” if the EEG amplitude was > ±80 (µV). Once the

artifact-free EEG signal was computed, global field power (GFP)

was estimated for each frequency band as a preliminary step to

compute the evaluation of cooperation-related neurophysiological

metrics (i.e., MW and AW). Frequency bands have been defined in

Table 3.

The GFP-derived (Skrandies, 1990; Vecchiato et al., 2014)

features computed among the aforementioned frequency bands

and EEG channels have been used to assess mental workload index

[W(t)] and approach-withdrawal index [AW(t)] over time:

W (t)=
GFPϑ (AF3,AFz,AF4)

GFPα (P3,Pz,P4)
(6)

AW (t)= GFPα (AF4) − GFPα (AF3) (7)

whereGFPx represents the GFP evaluated on the individual x-band.

The overall preprocessing and cooperation evaluation process

is graphically presented in Figure 2.
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FIGURE 2

Overview of the preprocessing steps and analytical methods applied to EEG signal analysis, including noise reduction, artifact removal, feature

extraction, and cooperation index evaluation. Cooperation indexes are highlighted by a green framework.

FIGURE 3

Percentage of cooperation time evaluated through MICI and trainer performance assessment between EXP and UNEXP pilots. *Indicates the

statistical di�erences between experimental groups (both p < 0.05).

2.4 Behavioral data

As previously anticipated, during each flight mission, an

instructor, acting as subject matter expert (SME), supervised all

the activities and provided a subjective assessment of cooperation

degree between pilots by a rating scale on a tablet (Figure 1) every

30 s.

Crew’s total behavioral cooperation assessment was computed

as the mean between the behavioral cooperation assessment of the

pilots composing the crew.

2.5 Statistical analysis

The Shapiro–Wilk test was used to assess the normality of the

distribution related to each of the considered parameters evaluated

through the pilots’ dyads. If normality was confirmed, Student’s

unpaired t-test would have been performed to pairwise comparing

Experienced (i.e., EXPs) andUnexperienced (i.e., UNEXPs) groups.

Otherwise, the same differences have been tested through the

Mann–Whitney test.

ANOVA test has been applied in different phase comparisons

after verification of the ANOVA assumptions.

In addition, to validate the proposed indexes, the relationships

between each neurophysiological cooperation index (i.e., CCI

and MICI) and crews’ behavioral cooperation assessment were

examined using Pearson’s correlation analyses. Furthermore, an

additional validation method involved comparing the results

obtained from REAL and FAKE crews, assuming that the methods

applied to the FAKE crews would return constant results. This last

analysis was conducted using both ANOVA and Student’s unpaired

t-test to compare between phases and between REAL and FAKE in

each phase.

3 Results

The result paragraph has been organized in two different

subsections to neatly distinguish the results from different

methodologies. The results from MI and Ccor methodologies to

assess cooperation (i.e., the CCI and MICI) will be presented,

respectively, on the first and second subchapters.
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FIGURE 4

Pearson’s correlation between cooperation time and trainer performance assessment (R = 0.78, p < 0.05).

3.1 Mutual information approach: MICI
results

Two statistical unpaired Student’s t-tests, regarding the

difference in cooperation time and performance between EXPs

crews and UNEXPs ones, have been performed as shown in

Figure 3. The first analysis (left in Figure 3) aimed to compare

average cooperation time in the two experimental groups, which

was found to be statistically higher in the EXP group (p =

0.017). The second analysis presented on the right side in Figure 3

compares instead the cooperation assessment provided by the

trainer in the same experimental groups, resulting once more to

be statistically higher in the EXP group (p = 0.015). As shown,

both neurophysiological and behavioral assessments reveal the

same trend in the two experimental groups suggesting that the

measurements truly observe directly related phenomena such as

evaluated teamwork and tracked performances.

The Pearson correlation analysis in Figure 4 conducted

between the two cooperation measures (i.e., MICI and the

SME assessment) has shown a high positive and significant

correlation, confirming that the MICI index follows the judgment

of the SME in evaluating cooperation (R = 0.78, p = 0.032).

This result particularly suggests that the two measures describe

the same phenomenon (i.e., neurophysiological and behavioral

cooperation) and serve to validate MICI index as a representative

cooperation index.

Figure 5 represents the REAL vs. FAKE crews ANOVA analysis

revealing statistically significant (p< 0.001, F= 28.697,ω2 = 0.491)

differences in behavior along phases. In addition, the t-test between

FIGURE 5

ANOVA comparison of MICI through di�erent experimental phases

in real and simulated crews. **Indicates the statistical di�erence in

the behavior during the experimental phases between real and

simulated crews (both p < 0.001).

REAL and FAKE on cooperation phase resulted in a significant

difference (p < 0.001).

3.2 Circular correlation approach: CCI
results

All the presented results regarding CCI are

assessed on the overall signal band (i.e., 2–30Hz).
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FIGURE 6

Raincloud of CCI through di�erent experimental phases on the

frontal electrodes. *Indicates the statistical di�erence between the

cooperation condition and the solo ones (i.e., Low and High di�;

p < 0.010).

FIGURE 7

Raincloud plot of percentage of cooperation time between the

experimental groups on frontal electrodes. *Indicates the statistical

di�erence between the EXP and UNEXP condition (p = 0.029).

Individual power band analysis did not result in

significant results.

Figure 6 shows the Friedman statistical comparisons between

cooperative experimental conditions and non-cooperative ones

(i.e., Low and High diff). This statistical analysis demonstrated

that the CCI was significantly higher when evaluated along the

cooperative experimental tasks compared with the non-cooperative

ones (p= 0.005, F = 7.833, ω2 = 0.061) over the frontal area.

By considering the second dimension of comparison, that

is, distinguishing between pilot categories EXPs and UNEXPs

based on their cooperation levels, the statistical analysis revealed a

significant difference in the percentage of cooperation time between

the two groups, with EXP crews demonstrating notably higher

cooperation time on frontal electrodes compared to the UNEXP

group (p = 0.029, W = 16.000). This distinction is represented in

Figure 7, illustrating the percentage of cooperation time assessed on

FIGURE 8

ANOVA comparison of CCI through di�erent experimental phases in

real and simulated crews. *Indicates the statistical di�erence in the

behavior during the experimental phases between real and

simulated crews (p = 0.022).

frontal electrodes, and the Mann–Whitney test has been used for

this analysis. The same analysis conducted on parietal electrodes

did not report statistically significant evidence.

Furthermore, to validate such Cooperation index computed

through CCor, an ANOVA comparison between REAL crews

and FAKE crews has been conducted (Figure 8), demonstrating

statistically significant (p = 0.022, F = 4.340, ω2 = 0.020)

differences in behavior between real and simulated crews during

the experimental phases. Unfortunately, the Pearson correlation

analysis conducted between CCI and SME assessment did not

return any statistical correlation (R= 0.3854, p= 0.3458).

As stated earlier, all the presented statistical analyses were

also conducted according to each frequency band of the EEG

signal described in Table 1 aiming to identify any differences in

the behavior of the CCI across bands. The results underlined any

statistically significant outcomes.

4 Discussion

In this study, the main aim was to investigate the effectiveness

of two indices based on neurophysiological measures in quantifying

the degree of cooperation of crews of pilots during flight operations.

Both methodologies investigate the same phenomenon, but they

present very different properties. The MI approach provides a

psychological interpretation of the pilots’ mental state during the

task, yet it lacks temporal resolution as it relies on a double-derived

measure from the EEG signal. In contrast, the Ccor approach offers

optimal temporal resolution as it is directly derived from the EEG

signal, but its results reflect neurophysiological cortical activation,

whereby it does not provide a psychological interpretation.

In particular, the result presented in Figure 3 showed that the

EXP level of cooperation evaluated through MICI was higher than

in UNEXP pilots in both neurophysiological and SME’s evaluation.

This result was expected since experienced pilots have received

intense training in their flight company (the same for each couple
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of EXP pilots), oriented to reinforce cooperative behaviors between

captain and first officer. Consequently, even if two pilots who do

not know each other are required to collaborate, the cooperation

during the flight operation is still high. Concerning the validation of

the MICI index, it is important to note that the correlation analysis

presented in Figure 4 consistently revealed a significant and

high correlation value between neurophysiological and behavioral

cooperation evaluations. In addition, the comparison between

REAL and FAKE crews presented in Figures 5, 8 shows that the two

cooperation indexes were sensitive to cooperative behavior (i.e.,

during the scenario in which the two pilots had to cooperate). This

aspect has been confirmed by a significant decrease of the indexes,

if calculated over the calibration data (each pilot worked alone).

The consistent response to white noise input, observed in FAKE

crews’ analysis, further underscores the sensitivity of these indexes

in capturing real cooperation, thus strengthening their validation.

These results align with our initial hypotheses and provide further

support for the validation of the indexes.

Concerning the circular correlation-based approach, the results

presented in Figure 6 showed that the method can be used for the

cooperation evaluation between two subjects as it is able to capture,

by considering the EEG channels located among the frontal area,

the difference between cooperative (i.e., cooperation) and non-

cooperative conditions (i.e., Low and High diff). The results were

also statistically significant (p = 0.005) despite the limited quantity

of experimental samples (i.e., 8 dyads). These results computed

by considering the EEG frontal channels were also supported by

the analyses shown in Figure 7. Percentual time of cooperation

evaluated on frontal electrodes resulted to be statistically higher

(p = 0.029) in the EXP group respect to UNEXPs one, as already

assumed a priori and confirmed by trainer assessment (Figure 3).

On the contrary, over the EEG parietal channels, there were no

statistically significant results. This did not support the hypothesis

of a major evaluated cooperation degree within the cooperative

experimental phase (i.e., cooperation) with respect to the non-

cooperative ones (i.e., Low and High diff). This result appears to

be robustly coherent with the cooperation time percentage assessed

over the EEG parietal channels, which did not demonstrate a

statistically significant difference, further highlighting the lack of

support for the hypothesized increase in cooperation during the

experimental phase. These findings suggest that, at the best of our

knowledge based on these preliminary results, the sensitive region

in terms of cooperation evaluated through CCI is the frontal one.

The lack of validation for CCI via correlation with trainers’

behavioral assessment, which revealed a positive correlation (R

= 0.38) even if not statistically significant, may be due to the

conceptual definition of the CCI. In fact, the CCI was computed

according to the EEG signal phase similarities between the two

operators cooperating, while theMICI was defined according to the

cognitive and emotional state synchronies between the operators

cooperating. Therefore, it can be hypothesized that the SME

subjective evaluation of the cooperation grade, which obviously

relied on the SME’s cognitive and emotional perceptions, was

more coherent with the MICI than the CCI. Moreover, it has to

be considered that the two proposed methods are characterized

by different temporal resolutions and that the MICI, which was

computed according to the MI involving cognitive and emotional

states (i.e., the MW and AW) calculated in the frequency domain,

was the one among the two more comparable with the SME

subjective evaluations in terms of temporal resolution.

A spectral analysis was conducted within specific frequency

bands to examine the hypothesis to explore whether certain

bands of the EEG signal contribute significantly to cooperation

assessment (only for CCI as described in Sections 2.1.1 and 2.1.2).

Unfortunately, this last analysis reported no statistical significance,

and this may have been caused by the small effect size of the

phenomenon merged with the weak statistical power of the

conducted analysis due to the small amount of analyzed dyads.

It is crucial to acknowledge the limitations encountered in

this last analysis. In the case of MICI, a key limitation arises

from the methodology itself, restricting the analysis of cooperation

exclusively to the overall signal. This constraint is inherent in

the derivation of MICI from the mental workload and the

approach-withdrawal measures, which, by definition, concentrate

on specific frequency bands. Consequently, the application of

MICI cannot extend to a custom frequency range but must

adhere to the requirements of the provided inputs, highlighting a

methodological limitation.

On the other hand, while the methodology of CCI does

not inherently impose limitations, the present results do not

conclusively demonstrate its capability to capture distinct

cooperation behaviors corresponding to the different frequency

bands characterizing the EEG. To resolve this uncertainty, future

studies will exploit a more comprehensive approach, employing

a larger sample size to assess the CCI’s ability to investigate

cooperation across various frequency bands.

Another interesting consideration can be done regarding the

potential application of machine learning-based techniques in this

research field. In fact, since the proposed MICI approach involves

the research of linear and non-linear combination of various

neurophysiological features, the application of machine learning

could be promising, although it has not yet been extensively

explored by the scientific community. Unfortunately, in the context

of the presented research, it was not possible to investigate a

machine learning approach due to the lack of data, since this

kind of algorithm requires large amount of data for training

and testing. Furthermore, considering the realistic environment

and the particularly specialized experimental sample, such as

real-flight pilots, it is even more challenging to collect data

on a scale sufficient to enable a machine learning approach.

Indeed, this aspect constitutes one of the most promising potential

directions for future research in the context of the cooperation

neurophysiological modeling.

5 Conclusion

The presented neurophysiological-based indexes (i.e., the

MICI and CCI) were designed to overcome the limitations

characterizing the subjective measurements highly investigated in

scientific literature as cooperative dynamics indicators, even in

OE. The cooperation neurophysiological assessment could mitigate

the subjective’ inability and bias for capturing the unconscious

mechanisms of human behavior (Borghini et al., 2017; Dienes and

Perner, 2004).
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Based on these results, it is evident that objectively quantifying

cooperation among pilots involved in real tasks through

neurophysiological-based methods is achievable. The higher

level of cooperation observed over the EEG channels located

within the frontal area among experienced pilots supports the

initial hypothesis, which suggested that Experienced (i.e., EXP)

who underwent a cooperation training course would exhibit

enhanced cooperative skills. On the contrary, the results obtained

by applying the proposed CCIs over the EEG parietal channels and

the frequency analysis encourage a more complete investigation by

considering a larger sample size to support the statistical analysis.

Thus, this result obtained from CCI suggests that the frontal area

is the most involved area in cooperative processes, at least in this

specific environment. This hypothesis is confirmed by the fact

that both features used to evaluate MICI (i.e., MW and AW) are

evaluated as combination of GFP over bands specifically on the

frontal electrodes, confirming what frontal CCI analysis found.

Substantially, these results demonstrated how the MICI and

CCI endow promising methods for an objective evaluation of users’

cooperation degree while dealing with realistic tasks since their

capability for statistically discriminating between cooperative and

non-cooperative behaviors.

The presented study provides advancement with respect to

the cooperation estimation state of the art. In fact, the presented

approach demonstrated to be reliable in evaluating brain dynamics

within realistic scenarios and sensible to different cooperation

grades (i.e., experienced and non-experienced pilots engaged in

flight simulation tasks), regardless of hyperscanning constraints.

It is important to note that, among the scientific literature, the

utilization of a phase synchrony-based index such as Ccor to

assess brain synchronization has been addressed only in a limited

way, and it has not been employed to evaluate cooperation in

real environments. This field represents the focus of the current

research, aspiring to make a substantial contribution. However, it

is important to acknowledge certain limitations of the proposed

indexes such as their inability to underline different frequency band

contributions to the cooperation estimation.

In conclusion, these findings highlight the potential of

neurophysiological measures as valuable indicators of cooperation

in operational environments. The ability to objectively quantify

these aspects opens opportunities for targeted interventions,

training programs, and improvements in team dynamics. By

integrating both objective and subjective measures, a more

comprehensive understanding of teamwork can be achieved,

facilitating the identification of factors that contribute to effective

collaboration and ultimately enhancing performance and outcomes

in high stake tasks. This will contribute to improving the wellbeing,

safety, and performance of working teams, allowing both public

and private industries to achieve greater efficiency, which saves

time, money, and limits environmental impact in specific cases. For

example, in pilots’ training, the capability to monitor the emotional

and mental state, as well as the cooperation degree during training,

would allow for the creation of individual customized training

sessions, by consequently reducing the team’s total flight time

required for the training completion. Moreover, within working

industrial environments, such as the manufacturing industry, the

cooperation and continuous monitoring among team members

would enable optimized and more efficient dynamic management

of work schedules, ensuring that tasks’ execution would be

concentrated exclusively within high-performance workflows. This

approach would certainly reduce downtime and inefficiencies

within industrial operational processes. Such promising results

pave the way toward employing wearable EEG systems, such as the

one used in this study, formonitoring operators in their operational

environment. Taking specifically into account pilots, the capability

to objectively quantifying cooperation can lead to improvement in

training program, security, and efficiency.
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