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Reproducible supervised
learning-assisted classification of
spontaneous synaptic waveforms
with Eventer

Giles Winchester‡, Oliver G. Steele*†‡, Samuel Liu,

Andre Maia Chagas, Wajeeha Aziz† and Andrew C. Penn*

School of Life Sciences, University of Sussex, Brighton, United Kingdom

Detection and analysis of spontaneous synaptic events is an extremely common

task inmany neuroscience research labs. Various algorithms and tools have been

developed over the years to improve the sensitivity of detecting synaptic events.

However, the final stages of most procedures for detecting synaptic events

still involve the manual selection of candidate events. This step in the analysis

is laborious and requires care and attention to maintain consistency of event

selection across the whole dataset. Manual selection can introduce bias and

subjective selection criteria that cannot be shared with other labs in reporting

methods. To address this, we have created Eventer, a standalone application

for the detection of spontaneous synaptic events acquired by electrophysiology

or imaging. This open-source application uses the freely available MATLAB

Runtime and is deployed on Mac, Windows, and Linux systems. The principle

of the Eventer application is to learn the user’s “expert” strategy for classifying

a set of detected event candidates from a small subset of the data and then

automatically apply the same criterion to the remaining dataset. Eventer first

uses a suitable model template to pull out event candidates using fast Fourier

transform (FFT)-based deconvolution with a low threshold. Random forests are

then created and trained to associate various features of the events with manual

labeling. The storedmodel file can be reloaded and used to analyse large datasets

with greater consistency. The availability of the source code and its user interface

provide a framework with the scope to further tune the existing Random Forest

implementation, or add additional, artificial intelligence classification methods.

The Eventer website (https://eventerneuro.netlify.app/) includes a repository

where researchers can upload and share their machine learning model files

and thereby provide greater opportunities for enhancing reproducibility when

analyzing datasets of spontaneous synaptic activity. In summary, Eventer, and the

associated repository, could allow researchers studying synaptic transmission to

increase throughput of their data analysis and address the increasing concerns

of reproducibility in neuroscience research.
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1 Introduction

Detection, and analysis of, spontaneous synaptic currents

is a frequently chosen method by experimental neuroscience

researchers to evaluate the properties of synapses (Biane et al.,

2021; Williams and Featherstone, 2014; Vyleta and Smith, 2008).

Recordings of spontaneous synaptic currents or potentials are

technically simple to acquire but can be laborious to analyse.

Whilst individual synaptic currents at typical central synapses

are reported to be approximately 10 pA (Auger and Marty, 1997;

Glasgow et al., 2019), this is likely to be an overestimate as

only the larger synaptic currents are detectable above the noise

and vary substantially between labs, even where the conditions

of the experiments are largely consistent. Discerning synaptic

currents from background noise can be a particularly challenging

task and typically involves some element of subjective manual

selection by an experienced researcher. The challenges in the

analysis process are exemplified when the researcher is required

to scrutinize hundreds, if not thousands, of events, increasing

not only the duration of the analysis but also the chance for

human error.

To avoid the burden of manually screening hours of recording

time to identify synaptic currents, several semi-automated

solutions have been developed to break the process down into

two tasks: (1) automatic detection of plausible candidate synaptic

currents, and (2) manually scrutinizing the detections, for example,

labeling the flagged candidate events as true or false positive

detections. The initial automatic step has largely been achieved

using one of two main approaches: those that require a template

waveform of a synaptic current and those that do not. The

template approach computes some measure of “likeness” of the

recording at each time point to the template waveform. The

“likeness” of the template can represent how well it fits to the

data as it slides from one sample point to the next along the

recording in the time domain (Clements and Bekkers, 1997;

Jonas et al., 1993). Alternatively, “likeness” can be derived by

deconvolution and represents how well frequency components

in the template waveform match those in the recording at each

point in time in the recording. FFT-based deconvolution involves

converting the recorded wave and a convolution kernel (i.e., a

template waveform of the synaptic current) to the frequency

domain, dividing them, and then transforming the result back

to the time domain. The result is a detector trace that contains

what resembles a series of sharp spikes, each of which indicates

the time of onset of a synaptic event. Generally speaking,

frequency domain deconvolution is more robust than time domain

template matching in cases where synaptic currents are (partially)

overlapping (Pernía-Andrade et al., 2012). The developments

of these event detection methods (amongst others, e.g., Merel

et al., 2016) have both helped to improve the sensitivity of

detecting small but “true” candidate synaptic currents, and provide

some screening of large, but otherwise implausible waveforms in

the recordings.

Whilst automatic detection methods proceed much faster than

manually screening the recordings, the classification of the synaptic

currents based on those detection criteria alone is seldom sufficient

in accuracy to convince users that manual intervention is not

required. Many users, experts through years of manual analysis,

do not trust automated or semi-automated approaches due to the

output event selection not conforming to the opinion of the user.

Although most commonly used software packages implement one

or more of the above automatic detection methods, they also enable

users to follow this up by editing the detection and/or classification

of flagged candidates. However, expert manual classification of

candidate synaptic currents introduces other issues, particularly

with respect to the ability to reproduce how recordings are analyzed

and the results obtained from them. Furthermore, many of the

automatic detection methods depend heavily on setting a detection

threshold (Ankri et al., 1994; Maier et al., 2011), the decision

of which is effectively a compromise between true positive and

false positive detection rates and therefore also influenced by the

workload anticipated by the user to screen candidates during

manual classification. A solution to these problems is to harness

recent developments in rapid machine learning methods to learn

and emulate our classification strategy. Not only does this have the

potential to save users time and effort by dispensing with most (if

not all) manual screening tasks, but it also opens the possibility

of using common or shared models for event classification. Since

computers are not nearly concerned with how many candidates

need classifying, we can also compromise less on the choice of the

detection threshold by setting the threshold lower.

An the task of classification can be automated using computers

via an approach known as machine learning. Machine learning

aims to fit models to data using statistical algorithms. There are

two broad categories of machine learning, and then a multitude of

classifications thereafter, which are reviewed extensively elsewhere

(Greener et al., 2022). At the most basic level, machine learning

can be supervised, requiring user-labeled training data, or

unsupervised, where the model fitting is done independent of user-

labeled training data. The advent and development of machine

learning offer a potential solution to increase the accuracy and

reliability of synaptic event detection whilst also decreasing the

time required to perform this step. The use of machine learning

in synaptic event detection is expected to remove both human

errors and avoid the possibility of unconscious human bias when

analyzing data from different experimental conditions. Indeed,

synaptic event detection software utilizing machine learning has

emerged recently (Zhang et al., 2021; Pircher et al., 2022). However,

several forms of machine learning can require extensive training

sets and be exceptionally computationally demanding, limiting

their applicability in a basic research environment. Furthermore,

the existing tools are not distributed with a graphical user interface

to facilitate users to engage with the process of training a machine

learning model.

The problem of manually screening candidate synaptic events

is essentially a classification problem, which humans solve

presumably by considering many visual features in the waveform

(e.g., shape, scale, etc.). Random forest classification algorithms

are particularly well suited to such binary classification problems,

where a set of (largely uncorrelated) features of the events can be

readily defined and measured. Briefly, this algorithm consists of

generating multiple decision trees with variations between them.

Whereas a single decision tree tends to be overfitted to the

training dataset and thus change dramatically on a new dataset, the
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ensemble classification from multiple decision trees in a random

forest is less prone to overfitting. The problem of overfitting is

partly overcome by generating each decision tree from a replica

of the data generated by random sampling with replacement (i.e.,

bootstrap resampling) from the initial data. Additionally, only

a random subset of the predictors, alternatively called features,

for the final classification is applied within each decision tree.

Not only does this further overcome overfitting bias, but it also

aids in lessening the impact of predictor over-emphasis. In the

specific example of synaptic event detection, the dataset would

be the pool of possible events, and the predictors could be

amplitude, decay, halfwidth, etc. Thus, when applied to synaptic

event detection, random forest classification can offer more robust

ways of classifying events. Random forest classification algorithms

are just that—classification algorithms, not detection algorithms,

and therefore they require candidate events to first be detected.

One particularly robust detection methodology is a deconvolution-

based methodology first proposed by Pernía-Andrade et al. (2012).

In this approach, FFT-based deconvolution is achieved in the

frequency domain, whereby the resultant deconvolution wave

represents how well the frequency components of the recorded

signal match the event template at each point in time. A threshold

is then set on this deconvolution wave, and events are proposed

if the peak of the deconvolution wave passes this threshold.

FFT is an implementation of the discrete Fourier transform

(DFT) in which the relationship between the time domain and

the frequency domain is revealed; however, it is much more

computationally efficient.

In this article, we show that, following FFT-based

deconvolution, a simple machine learning paradigm can effectively

be applied to the problem of classifying synaptic events during the

analysis of spontaneous synaptic currents. Specifically, FFT-based

deconvolution is used initially to identify candidate events before

either training a random forest-based machine learning model or

applying a previously trained model to the classification problem

on new data. Importantly, the users have the option to control

the generation of the model to reproduce their classification in a

reproducible way. The software was developed in MATLAB and

is accompanied with a cross-platform graphical user interface

(GUI) that is intuitive to use and open source. In terms of software

development, Eventer provides a framework with opportunities

for tuning the existing Random Forest implementation (e.g.,

feature set) or even adding different types of machine learning for

classification (Zhang et al., 2021; Pircher et al., 2022; Wang et al.,

2024; O’Neill et al., 2024). In Section 3, Eventer is shown to be able

to accurately reproduce manual detection of synaptic currents and

do so in only a fraction of the time. Furthermore, the use of a single

conserved model trained in Eventer can increase the consistency

of analysis between users. As such, the online model repository

and website created to enable users around the world to deposit

models of their own and use models of others are highlighted.

This article outlines the user workflow for Eventer, provides a

basic description of how it works, evaluates its ability to overcome

some of the issues around consistency and reproducibility of

analysis, and discusses various machine learning approaches

that have been described recently for the purposes of synaptic

event detection.

1.1 Eventer workflows: GUI

1.1.1 Input
The GUI for the Eventer synaptic event detection analysis

software was written in MATLAB’s “Appdesigner.” MATLAB-

based GUI can be compiled for most commonly used operating

systems, thus making Eventer cross-platform. In addition to

being cross-platform, Eventer also supports a wide range of the

most commonly used formats in electrophysiological experiments

(Table 1). Multiple file format support is largely provided by the

“ephysIO.m” code written by Penn A. (2024).

A suggested workflow for working with Eventer is then

presented in Figure 1. Before selecting the raw data file, the user

is advised to consider whether the data file being loaded contains

either continuous or episodic acquisition. Episodic data with each

epoch consistent in duration, or continuous data, can then be split

into waves. It is not possible to split the data once it’s been loaded.

Splitting a data file has several specific benefits that can all be

considered part of the processing of data before analysis; otherwise,

a continuous data recording is loaded as a single wave.

1.1.2 Processing
Once a data file has been loaded, Eventer will load a preview of

the first wave, whether or not the recording is split. This preview

allows the user to determine if the data have been correctly loaded.

If not, the data should be reloaded; otherwise, the user can proceed

to configure the analysis settings. Users can change the local,

wave-by-wave, or global settings, which apply to all waves.

Both the Template and Exclude waves are considered local

settings, so changes made here only apply to the wave currently

selected unless specified otherwise to apply to all waves. In the

Template panel, a user can define time constants of the rise and

decay of the synaptic event if they are known or bring up a pop-up

window to allow time constants to be measured from an exemplary

user-selected event as shown in Figure 2 (top). In the Exclude panel,

users can instead choose to exclude regions of the data that they do

not want to be included in the subsequent analysis. If that data are

from continuous data and split to a value the same as the interval

between repeating recording artifacts such as test pulses or stimuli,

these can be excluded from the analysis here.

The global settings are outlined on the Detection, Advanced,

and Output panels. The Detection panel allows the user to select

settings relevant to event detection mode itself, including filtering

methods, threshold level, and event criteria. The threshold allows

users to specify a threshold, either set as standard deviations of

the background noise of the deconvolution wave (i.e., detector

trace), or an absolute threshold value of the deconvolution wave,

for initial event detection. If the event criterion is set to Pearson’s,

a correlation coefficient can be set here also. If, however, the event

criterion is set to machine learning, a previously trained model can

then be loaded, as shown in Figure 2 (bottom); otherwise, training

mode can be enabled, whereby users can train a machine learning

model of their own. Note that no thresholding of the correlation

coefficient is applied when using the machine learning approach,

the Advanced panel includes several settings outlined further in the

manual, available online (Eventer, 2022). Finally, the Output panel

Frontiers inNeuroinformatics 03 frontiersin.org

https://doi.org/10.3389/fninf.2024.1427642
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Winchester et al. 10.3389/fninf.2024.1427642

TABLE 1 The supported file formats for data input, output and figures within Eventer.

Data Figures

Input format Output format Output format

Binary Binary Raster

pCLAMP Axon binary files 1 and 2 (.abf) Axon binary files v1.83 (∗ .abf, integer-type) PNG (24-bit, ∗ .png)

Axograph binary files (∗ .axgx, ∗ .axgd) Neurodata without borders v2.6.0 (∗ .nwb) BMP (24-bit) (∗ .bmp)

HEKA PatchMaster/Pulse/ChartMaster binary files (∗ .dat) Stimfit binary (HDF5) files (∗ .h5) TIFF (24-bit, not compressed) (∗ .tif)

CED Spike2 binary files (∗ .smr) ephysIO HDF5 (Matlab v7.3) binary files (∗ .phy) TIFF (24-bit, LZW compressed) (∗ .tif)

CED Signal binary files (∗ .cfs) (windows only) Text Vector

LabVIEW Signal Express TDMS binary files (∗ .tdms) Igor text files (∗ .itx) EMFWindows metafile (∗ .emf)

WinEDR binary files (∗ .EDR) Axon text files (∗ .atf) EPS Encapsulated postscript level 3 (color) (∗ .eps)

WinWCP binary files (∗ .wcp) ASCII comma-separated values (∗ .csv) (waves in

columns)

SVG Scalable Vector Graphics (∗ .svg)

Igor Packed experiment binary files (∗ .pxp) ASCII tab-delimited text (∗ .txt) (waves in

columns)

Other

Igor binary wave files (∗ .ibw, ∗ .bwav) (v2 and v5 only) ASCII tab-delimited text (∗ .asc) (waves stacked) MATLAB figure (∗ .fig)

ACQ4 binary (HDF5) files (∗ .ma) (no compression only)

WaveSurfer binary (HDF5) files (∗ .h5)

PackIO binary files (∗ .paq)

GINJ2 MATLAB binary files (∗ .mat)

Neurodata without borders binary (HDF5) file v2 (∗ .nwb)

Eventer analysis file (.evt)

ephysIO HDF5/MATLAB binary files (∗ .phy)

Generic 16-bit integer raw binary files (∗ .dat, ∗ .bin)

Text

Igor text files (∗ .itx,∗ .awav)

Axon text files (∗ .atf)

ASCII tab-delimited text files (∗ .txt) (± header)

ASCII comma-separated values text files (∗ .csv) (± header)

Functionality here for data file formats is largely provided by the ephysIO.m code written by Dr. Andrew Penn. At the time of writing, support for additional binary data formats is enabled

through the use of third-party code listed here, and packaged with ephysIO: readMeta.m from ACQ4 (Luke Campagnola), IBWread.m from Jakub Bialek (modified by AP), import_wcp.m from

David Jaeckeld (modified by AP), importaxo.m from Marco Russo, loadDataFile.m from WaveSurfer, ImportHEKA.m from Malcolm Lidierth and Sammy Katta (modified by AP), abfload.m

from Harald Hentschke, Forrest Collman, and Ulrich Egert (modified by AP), matcfs32 and matcfs64d from Jim Colebatch, SON2 from Malcolm Lidierth, TDMS Reader from Jim Hokanson,

matnwb from Lawrence Niu and Ben Dichter.

allows users to define several output-specific settings, such as the

format to save figures and data in (Table 1).

If the user is happy with the settings and the settings are stored,

the user can then choose whether to analyse the single wave or a

user-selected batch of waves. It is also worth noting at this point

that users can take advantage of the parallel processing capabilities

included as part of Eventer to speed up analysis dramatically by

accessing multiple cores at once.

1.1.3 Output
Following the completion of the analysis, Eventer then displays

a summary of the results in the Summary panel. Files, and figures,

are also saved in the desired output format, as specified before

(Table 1). Finally, a range of summary plots are then plotted

for the user to rapidly interpret the output of analysis and the

suitability of the template fit. It may be advised that if the fit

is not appropriate here, adjust the time constants with those in

the Summary section and iteratively re-run the analysis until the

template fit is appropriate (Figure 1).

1.2 Eventer workflows: analysis

In addition to the intuitive GUI, Eventer utilizes a novel event

detection methodology depicted in Figures 3, 4. Eventer initially

performs FFT-based deconvolution, and then in the frequency

domain, the resultant deconvolution wave is a measure of similarity

to the event template at each point of the recording. The time

points of peaks in the deconvolutionwave exceeding a set threshold,

expressed either as an absolute value, or a scale factor of standard

deviations of the noise, indicates the start times of candidate
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FIGURE 1

Exemplary analysis run workflow using Eventer. (A) Exemplary synaptic recording trace illustrating the di�culty in reliably manually selecting

candidate events from the background noise. (B) Example analysis run illustrates how users are anticipated to work with Eventer. Work sections are

largely split into three distinct regions: input, processing, and output. During the input, a raw data file must be selected, and a decision must be made

to split the data if necessary. In the processing stage, local and global settings can be adjusted before running the analysis. Data are then presented

and saved in the output phase. It is then possible to iterate the analysis and refine the event template, or train a machine learning model and use this

for the classification of candidates detected in test datasets. *Local settings can be applied to all waves, as per the global settings in the GUI, if desired.
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FIGURE 2

Easy-to-use graphical user interface of Eventer event detection software. Eventer features a clean, easy-to-use graphical user interface. (Top) The

template panel is shown here, where users can select exemplary events to generate their parameters from. (Bottom) The detection panel is shown

here, where users can select di�erent event criterion methodologies, such as machine learning and Pearson’s, and also load saved models through

the opening of a file dialog window.

events. A Pearson’s correlation coefficient is then calculated for each

candidate event with respect to the event template. Eventer will

then either declassify events with a Pearson’s correlation coefficient

below a user-defined threshold (between −1 and +1) if the event

criterion is set to Pearson’s before outputting results, or measure

additional event features (depicted in Figure 4) if set to Machine

Learning mode.

In Machine Learning mode, the user has the option to specify

whether this run executes in training mode, whereby the user

will then be provided with a pop-up window to manually label

candidate events selected by the FFT-based deconvolution. The

user’s classification will then be used to train a random forest

machine learning model, which could then be run over new data.

If not in training mode, a previously trained model can be loaded

and run, with events being screened with the preferences included

implicitly in the trained model.

2 Methods

2.1 Simulated events

2.1.1 Accuracy
Data used for the accuracy tests presented in Section 3.1

and Figure 5 were generated by adding simulated miniature
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FIGURE 3

Eventer features a novel event detection protocol. Raw waves are initially deconvoluted by fast Fourier transform (FFT)-based deconvolution and

compared to the event template. The resultant deconvolution wave (a.k.a. detector trace) depicts how similar, in the frequency domain, the data are

at each point to the event template. If candidate events are above the user-defined candidate events are then made available for classification;

otherwise, they are discarded. At this point, Pearson’s correlation coe�cient for each event against the model template is recorded. Next, dependent

on the user-selected detection criterion, candidates will either be screened and saved if above the set Pearson’s threshold and output as results, or

additional event features will be computed if in machine learning mode. If in training mode, manual labeling of candidate events occurs to train a

random forest model; otherwise, a pre-trained model can be loaded and passed over candidate events before outputting the results.

excitatory postsynaptic current-like waveforms to real whole-cell

recording noise using the custom “simPSCs_recnoise.m” script

and the “noiseDB.abf ” data file, which are all available online

at the acp29/Winchester_EVENTER repository on GitHub (Penn

A., 2024). The background recording noise from CA1 pyramidal

neurons in organotypic hippocampal slices (see Methods section

in Elmasri et al., 2022a,b) was acquired with a MultiClamp

700B amplifier (Molecular Devices), low-pass filtered (4 kHz,

low-pass Bessel filter), and digitized (40 kHz) with a USB-X

Series Multifunctional DAQ interface (NI USB-6363, National

Instruments) interfaced through python-based, open-source data

acquisition software, ACQ4 software (v0.9.3) (Campagnola et al.,

2014). The salt compositions of extracellular and intracellular

solutions are described in Elmasri et al. (2022a,b). Ionotropic
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FIGURE 4

Graphical depiction of the analysis workflow. Shown here is a graphic representation of each of the relevant steps of Eventer-based event detection.

Initially, a raw wave undergoes fast Fourier transform (FFT)-based deconvolution and comparison against the event template (top), at which point

candidate events are selected if they are above a set threshold (middle). If set to machine learning mode, then additional event features are

measured, including Pearson’s correlation, and used to train a random forest model. Otherwise, when in Pearson’s mode, if events have a Pearson’s

correlation coe�cient below the set threshold, then these events are discarded before the results are output.

glutamatergic and GABAergic channels were pharmacologically

inhibited with (in µM): 10 NBQX, 50 APV, and 10 Gabazine,

respectively, to isolate background noise during whole-cell

recordings (e.g., stochastic ion channel openings, instrument

noise, etc.).

For each of the eight simulations generated, 40 events were

individually simulated using randomly sampled amplitude and

kinetics and added to 9.9 s of whole-cell recording noise. The

procedure to simulate each event went as follows: A value for the

amplitude (in -pA), rise time constant, and decay time constant

(both in ms) were generated by exponential transformation of

the random number sampled from a normal distribution (with

mean and standard deviation) of N(2.46, 0.35), N(−0.31, 0.60),

and N(1.48, 0.46), respectively. These distribution parameters

were chosen based on the log-normal distributions of miniature

excitatory postsynaptic current (mEPSC) parameters obtained

when analyzing recordings of CA1 neurons (without NBQX and

with 1µM Tetrodotoxin) in our lab. The only other constraint on

the parameters of the simulated events was that the sampling for

the decay time of the event was repeated if its time constant was

less than or equal to its rise time constant. The rise and decay time

constants were used to generate a synaptic-like waveform using

the sum-of-two exponential model and then peak-scaled (Roth

and van Rossum, 2009). The sample point for the event onset was

drawn from a random uniform distribution across the total number

of simulation samples (396,000) and represented as a value of 1

in a vector of zeros. No limits were placed on how close events

could be to each other. The event waveform was then simulated

at the random time of onset by fast Fourier transform (FFT)

(circular) convolution using the equal-length vectors defining the
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FIGURE 5

Eventer accurately detects synaptic events. Eventer was able to accurately classify simulated events, either those that were simulated or those that

were classified by manual selection. (A) The four waves represent simulated events (of variable amplitude and time course) added to real whole-cell

recording noise and used as data to assess the accuracy of Eventer (left). The right of the panel shows the mean ensemble average of the 40

simulated events in red plotted over the individual events in gray from the first simulated wave. (B) (top) The total number of events detected in each

of the simulated waves decreases as the threshold of the signal in the deconvolution wave increases. The red dotted line represents the number of

simulated events in the waves (bottom). The true positive rate of event detection decreases as the threshold of the deconvolution wave is increased

above 3. (C) The true positive rate (TPR) shown in black and the false positive rate (FPR) shown in red are plotted as a function of the correlation

coe�cient (r) in Eventer with the threshold of the deconvolution wave set at 3 standard deviations. (D) Graph showing how the results of di�erent

classification methods occupy ROC space, with scores in the bottom-right indicating poor prediction/classification (through high false positive and

low true positive) and top-left indicating better prediction/classification (through low false positive detections but high true positive detections). (E)

Depicts an overall score of accuracy of Eventer to select simulated events. (F) An overall score of accuracy by comparing the events selected by each

parameter relative to manual classified events. (G) The main benefit of Eventer machine learning is a large reduction in the false discovery rate when

trying to reproduce manual classification of synaptic events. Statistical results for this figure are documented in Table 2.
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event onset and the synaptic-like waveform. The resulting vector

was scaled by the event amplitude and added to the equal-length

vector of whole-cell recording noise. The procedure was repeated

40 times in total for each of eight different whole-cell noise and

with different random seeds. To analyse the simulations with the

machine learning method in Eventer, half of the simulated waves

(n = 4) were used exclusively for training four different machine

learning models, and the other half of the waves (n = 4) were

analyzed and used exclusively for the accuracy evaluation tests.

Four different classification methods were compared: Pearson’s

correlation coefficient (r) threshold of 0.5, machine learning using

random forests, manual classification by an expert user, and no

screening/classification (i.e., r = −1). Other non-default settings

used for analyses the conditions were rise and decay time constants

of 0.44 and 6.12ms for the template, and a detection threshold of

three times the standard deviation of the noise in the deconvolution

wave, which was filtered with high- and low-pass cutoffs of 1 and

200 Hz.

The Matlab function “ismembertol” was used to identify

matching times of event onset (within 1.2) for events that were

detected and/or classified vs. those that were originally simulated

(Figures 5B–E) or manually classified (Figures 5F, G). With this

information, the following receiver operating characteristics (ROC)

were computed. A true positive (TP) was determined as a detection

classified as true that was indeed a simulated event. A false positive

(FP) was a detection classified as a true event but was not. A

true negative (TN) was a false detection correctly classified as

false, whilst a false negative (FN) was where simulated events were

incorrectly classified as false. From these values, it was then possible

to calculate the following metrics. First, a false positive rate (FPR),

interpreted as the rate at which Eventer incorrectly classifies an

event to be a true synaptic event, was calculated as follows;

False positive rate (FPR) =
FP

FP + TN

True positive rate (TPR), interpreted as the rate at which Eventer

correctly classified an event as a true synaptic event, was calculated

as follows:

True positive rate (TPR) =
TP

TP + FN

An overall measure of accuracy was then calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Finally, a false discovery rate (FDR), interpreted as the proportion

of all of the events classified by Eventer as true events that are in-fact

not events, was calculated as follows:

False discovery rate (FDR) =
FP

FP + TP

The computations are documented in a script, “invcompE.m,”

which is available online at the acp29/Winchester_EVENTER

repository on GitHub (Penn A., 2024).

2.1.2 Speed and parallel computing performance
The performance test in Figure 6A was performed on the

simulated waves, as detailed in Methods 3.1.1 and illustrated in

Figure 4A. Here, the simulated waves were then analyzed with three

detectionmethods: Pearson, machine learning (pre-trainedmodel),

and manual classification of events, in which a threshold of 3

standard deviations and a Pearson’s r of 0.4 were set and used across

all repeats (five per condition). The total time taken for Eventer to

complete detection was then recorded in seconds.

Simulated events used for the performance tests in

Figure 6B were generated with white noise (RMS = 2 pA)

using the “simPSCs.m” script, which is available at the

acp29/Winchester_EVENTER repository online on GitHub

(Penn A., 2024). We simulated a single 100-s wave containing

300 events from log-normal distributions for amplitude, rise time

constant, and decay time constant with a mean of 20 pA, 0.4ms,

and 4ms, respectively, and a coefficient of variation of 0.5 (i.e.,

50%). Inter-event intervals were constrained to have a proximity

of no <1.5ms. To evaluate performance using different settings

in Eventer, the 100-s simulation was split with the following

denominations (in seconds): 1, 5, 10, 20, 25, and 50, which were

then plotted as percentages of the total time. The number of

workers (i.e., physical cores) dedicated to parallel processing was

then changed from 0 (non-parallel, with figure plotting) to 1 (non-

parallel, but without figure plotting), 2 (two parallel physical cores

without figure plotting), 4 (four parallel physical cores without

figure plotting), and 8 (eight parallel physical cores without figure

plotting). The time taken to analyse the data (from selecting “run”

to the display of summary results) was then recorded in seconds

and plotted against the recorded split percentage and number of

workers. All events, across all conditions, were detected with the

same data and template settings, although, other than the number

of events, our experience is that the properties of the events and the

noise have relatively minor impact on the performance of Eventer.

The computer used for testing Eventer parallel performance had a

Ryzen 7 3800X 4.2 GHz 8 core processor with 32GB DDR4 3200

MHz random access memory (RAM), 1TB non-volatile memory

express (NVMe) solid-state drive (SSD), and was operated using

Windows 11.

2.1.3 Consistency
In the third experiment assessing the consistency of analysis

between users, analysis was conducted on real recordings of

mEPSCs from CA1 neurons in organotypic hippocampal slices,

in which voltage-gated sodium channels were inhibited with

1µM tetrodotoxin and ionotropic GABAergic channels were

pharmacologically blocked with 50µM picrotoxin. Organotypic

hippocampal brain slices were prepared using methods and with

ethical approval as described previously (Elmasri et al., 2022a,b).

Recordings were performed with a cesium methanosulfonate-

based intracellular recording solution containing the following (in

mM): 135 CH3SO3H, 135 CsOH, 4 NaCl, 2 MgCl2, 10 HEPES, 2

Na2-ATP, 0.3 Na-GTP, 0.15 C10H3ON4O2, 0.06 EGTA, and 0.01

CaCl2 (pH 7.2, 285 mOsm/L). Artificial cerebrospinal fluid (aCSF),

perfused over organotypic hippocampal slices at 3 ml/min during

recordings, was maintained at 21◦C, balanced to ∼305 mOsm/L,
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FIGURE 6

Eventer increases speed of synaptic event detection via parallel processing. (A) Eventer with machine learning or Pearson’s correlation coe�cient

threshold for classification was considerably faster than manual classification. (B) Speed (in seconds) taken for analysis to complete and display

results for a 100-s-long recording with simulated events occurring at a frequency of 3Hz on top of physiological recording noise, with multiple split

percentages and numbers of parallel workers. X-axis plotted on logarithmic scale. Split duration is plotted in reverse order, with the left (100%)

indicating no split and the further right suggesting an increasing degree of splitting the data. For example, 5% split of 100 s would equate to 20 × 5-s

waves being generated.

and bubbled with 95% O2/5% CO2 continuously, contained the

following (in mM); 125 NaCl, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4,

1 MgSO4.7H2O, 10 D-glucose, 2 CaCl2, and 1 sodium pyruvate

(pH 7.4). Three 30-s recordings were analyzed, each by a separate

group of five postgraduate neuroscience students (15 in total) who

had a basic familiarity of synaptic event detection. Each student

was asked to select event parameters and manually classify events,

and the details of their individual classification were compared

with the same for each of the other students within their group by

calculating Matthew’s correlation coefficients (MCC).

The equation for the Matthew’s correlation coefficient is

illustrated below:

MCC =
TP × TN − FP × TN

√

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

All students were then given a single model and asked to pass

this model over the same recording without changing their chosen

event parameters, and the comparisons using MCC were repeated.

2.1.4 Statistics
Graphs in figures were created either in GraphPad Prism

(version 8) or GNUOctave (version 8.3). The Statistics-Resampling

package (version 5.5.10) in GNU Octave was used to perform null

hypothesis significance testing, specifically using the “bootlm” (for

the tests in Figure 5) and “randtest2” (for the tests in Figure 7)

(Penn A. C., 2024). Using “bootlm,” p-values for two-way ANOVA

without interaction were calculated by wild bootstrap resampling

of the residuals (with Webb’s six-point distribution). With the

same function, post-hoc test p-values for pairwise differences

were computed using the studentized bootstrap-t method, and

the family-wise type 1 error rate was controlled using the

Holm–Bonferroni step-down correction. The confidence intervals

reported in Table 2 by “bootlm” are asymmetric studentised 95%

confidence intervals after wild bootstrap. For the permutation test

in Figure 7, the “randtest2” function with paired argument set

to true was used to permute the allocation of the sets of event

times for each subject between the manual and machine learning

conditions and calculate a two-tailed p-value from the permutation

distribution of intra-group pairwise differences in Matthew’s

correlation coefficient. See the Data availability statement for

information on how to access and reproduce the statistical analysis.

All statistics reported in the text are mean± SD.

3 Results

3.1 Eventer enables accurate detection and
classification of synaptic events

To evaluate the accuracy of Eventer for the detection and

classification of synaptic-like waveforms, we simulated recordings,

each consisting of 40 events generated by FFT convolution and

added to a unique 9.9-s segment of recording noise measured by

whole-cell patch clamp in CA1 neurons whilst pharmacologically

blocking synaptic receptors (see Section 2.1.1 for details). The

root-mean-square deviation (RMSD, calculated in rolling 100ms

windows) of the recording noise was 2.43 pA (SD = 0.085 pA),

and the log-normal distributions used for random sampling for

the amplitudes, rise time constants, and decay time constants

for the events had a mode [2.5%−97.5% percentiles]: 10.4 [5.9–

23.2] (–)pA, 0.51 [0.23–2.38] ms, and 3.55 [1.78–10.82] ms,

respectively. A further four independent simulated recordings were

created for the purposes of training machine learning models

(Figure 5A).

Frontiers inNeuroinformatics 11 frontiersin.org

https://doi.org/10.3389/fninf.2024.1427642
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Winchester et al. 10.3389/fninf.2024.1427642

FIGURE 7

Eventer increases consistency of analysis between users when classifying synaptic events with a single machine learning model. (A) (left) Whole 30-s

traces of miniature excitatory postsynaptic currents (mEPSCs) recorded from CA1 pyramidal neurons in organotypic hippocampal slices that students

in the groups below (Groups A–C). Highlighted in red are the voltage step test pulses to observe changes in access resistance that were excluded

from the analysis. (Right) Individually detected events are shown in gray with the ensemble average overlaid in red. (B) Three groups (Groups A–C) of

five students were asked to detect and classify events as either true events or false positive detections. Shown in the upper-right half of the grids

Matthew’s correlation coe�cients (MCCs) are plotted against the users’ own classifications for the intra-group pairwise comparisons (left, Manual).

The users then all loaded a machine learning model generated by a single expert user and then re-ran the event classification (right, machine

learning). (C) Values of the o�-diagonal MCC scores are plotted for each pair of student comparisons. (D) Permutation distribution for the di�erence

in MCC scores between manual and machine learning classification.
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TABLE 2 Statistical results for Figure 5.

Comparison Mean [lower CI, upper CI] p-Value Sig.

Classification of simulated events (Figure 5E)

No screening – Pearson’s (r = 0.5) −0.457 [−0.520,−0.393] <0.001 ∗∗∗

No screening – machine learning −0.498 [−0.559,−0.437] <0.001 ∗∗∗

No screening – manual classification −0.451 [−0.533,−0.369] <0.001 ∗∗∗

Pearson’s (r = 0.5) – machine learning −0.042 [−0.083,−0.001] 0.145 ns

Pearson’s (r = 0.5) – manual classification +0.006 [−0.068,+0.080] 0.883 ns

Machine learning – manual classification +0.048 [−0.030,+0.123] 0.452 ns

Accuracy of classified events compared to manually classified events (Figure 5F)

No screening – Pearson’s (r = 0.5) −0.399 [−0.466,−0.331] <0.001 ∗∗∗

No screening – machine learning −0.437 [−0.531,−0.342] <0.001 ∗∗∗

Pearson’s (r = 0.5) – machine learning −0.038 [−0.105,+0.030] 0.364 ns

False positive rate of identifying manually classified events (Figure 5G)

No screening – Pearson’s (r = 0.5) +0.354 [+0.293,+0.416] <0.001 ∗∗∗

No screening – machine learning +0.513 [+0.445,+0.579] <0.001 ∗∗∗

Pearson’s (r = 0.5) – machine learning +0.159 [+0.085,+0.233] <0.001 ∗∗∗

The mean differences are summarized along with 95% bootstrap-t confidence intervals. The p-values for the mean difference are from post-hoc tests using the Holm–Bonferroni method (see

Methods). All detection used a lower threshold of 3 SD for the initial FFT-based deconvolution. ∗∗∗p ≤ 0.001.

Event detection in the simulated waves was conducted with

the multiple modalities of event detection and classification that

exist in Eventer. The most rudimentary form uses threshold-

crossing of the detector trace after FFT-based deconvolution

(Pernía-Andrade et al., 2012), without any further screening or

classification (i.e., switching off Pearson’s correlation coefficient

in Eventer to −1). In order to compare classification methods,

we first established a detection threshold for the deconvolution,

that is sensitive enough to detect all (or most) of the simulated

events whilst also providing opportunity for alternative screening

or classification of candidate events. The number of events detected

dropped steeply as the detection threshold was raised from 1 to 3

standard deviations of the noise, and more slowly for thresholds

of 3 to 5 standard deviations (Figure 5B). However, a decline

in the rate of true positive event detections became increasingly

apparent at thresholds of about 3 and above (Figure 5B). Whilst

higher thresholds for deconvolution (e.g., 4 SD) can provide

good accuracy in the tests we describe hereafter (Pernía-Andrade

et al., 2012), they do not yield a sufficient number of candidate

events for further tuning the classification process. Therefore,

a threshold of 3 standard deviations (SD) was used for the

subsequent tests. Eventer can compare candidate events detected

by the FFT-based deconvolution, discarding those events where the

Pearson’s correlation coefficient drops below a set threshold. We

found that setting higher thresholds for the correlation coefficient

reduces the number of false positive classifications, albeit at the

cost of missing true positive events (Figure 5C). Indeed, the TPR

dropped rapidly as the threshold for the correlation coefficients

exceeded 0.5 (Figure 5C). We next examined the receiver operating

characteristics (ROC) with these settings (3 SD with or without r =

0.5) compared with those using a detection threshold of 3 SD and

manual or machine learning event classification.

Manually classifying candidate events after deconvolution

resulted in very similar FPR and TPR scores compared to

screening using the Pearson’s correlation coefficient threshold of

0.5 (Figure 5D). However, the threshold of r = 0.5 may not

always be optimal for event screening in any given context and

could vary depending on the variability of event time course

kinetics and signal-to-noise ratio. A benefit of using Eventer is the

option to reproduce the accuracy of manual event classification

by using a trained machine learning model; thereby, users can

avoid arbitrarily setting a threshold for the matching of the

template time course with the events. To test the machine

learning capabilities of Eventer, four machine learning models

were generated by training four independent waves created using

different segments of background noise recordings and the same

data-generating process as the test simulations with different

random seeds (see Section 2.1.1). Each model was trained on

83–107 candidates (detected by the FFT-based deconvolution),

of which 37–40 represented the originally simulated events. The

out-of-bag classification error for the trained models, which is

used to estimate the prediction error of the random forests, was

typically ∼5%, suggesting that even using relatively little data

to train the models, reasonable predictions could be made for

classification. Each of the original four test simulations was then

analyzed with a different machine learning model, and ROC

metrics were calculated and compared with the other detection

and screening/classification methods. The similar ROC metrics

suggest that using Eventer withmachine learning correctly classifies

events at a comparable rate to manual event classification by an

expert user without the need to define an arbitrary threshold

(Figure 5D).

The ROC metrics of correct and incorrect event detection

can be quantified as a singular accuracy score as defined in
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Methods 3.1.1 and illustrated in Figure 5E. Event detection with

no additional screening of events detected using a low threshold

(3 SD) of the deconvolution signal is the least accurate event

detection method (0.43 ± 0.070). Additional screening using a

threshold of 0.5 for Pearson’s correlation coefficient increases the

overall accuracy of detecting simulated events (0.88 ± 0.062),

which is to a similar extent as manual event selection (0.88

± 0.039) in this example. Importantly, the machine learning-

based event classification seemed to be similar in accuracy as

manual event detection by an expert user (0.92 ± 0.029). The

classification methods differed significantly in their accuracy for

identifying simulated events [F(3,9) = 119.3, p < 0.001, Table 2]

after accounting for overall differences between the simulations

(bootstrapped two-way ANOVA without interaction). Post-hoc

pairwise comparisons indicated that the accuracy of detecting

simulated events was significantly different from the group with no

screening or classification of events (p < 0.001, Holm–Bonferroni

tests). However, we could not resolve differences between the

other classification methods, suggesting that they are all capable

of performing similarly well (p > 0.05, Holm–Bonferroni tests).

These data suggest that the machine learning capabilities included

in Eventer make it comparably accurate in the detection of

simulated events for the expert human user (when trained by the

expert user).

To confirm whether the same events were being detected by

the different detection methods and the expert user, and thus

act as an effective substitute for manual selection, the individual

events detected by each detectionmethod were then compared with

the events detected by the expert user (Figure 5F). No screening

produced the lowest accuracy scores (0.45 ± 0.084). Screening

with the threshold of 0.5 for Pearson’s correlation coefficient

increased accuracy considerably (0.85, ± 0.037), only just shy

of the accuracy for classification with a machine learning model

(0.89 ± 0.049). There was a significant difference in accuracy

across the various methods in their ability to identify manually

classified events [F(2,6) = 80.9, p < 0.001, bootstrapped two-

way ANOVA without interaction]. However, post-hoc pairwise

tests showed that only the comparisons to the group with no

event screening/classification were significantly different (p <

0.001, Holm–Bonferroni tests). Examination of the ROC metrics

indicated that properties of these classification methods did

differ in some respects, notably in their false discovery rates

[F(2,6) = 179.7, p < 0.001, Bootstrapped two-way ANOVA

without interaction] with statistical significance for all pairwise

comparisons (p< 0.001, Holm–Bonferroni tests). Not surprisingly,

detection without screening had the highest false discovery rate

(0.55 ± 0.084), whereas classification using a threshold for the

correlation coefficient of 0.5 (0.19 ± 0.109) was ∼4 times higher

than for the machine learning model (0.03 ± 0.046) (Figure 5F).

These data suggest that Eventer is effective at acting as a substitute

for manual expert user selection.

Taken together, these results suggest that not only is

machine learning-based event detection with Eventer reliable

at correctly classifying simulated synaptic events without the

requirement of tuning an arbitrary threshold, but Eventer is

also able to reliably reproduce the event selections of an

expert user.

3.2 Eventer increases the speed of synaptic
event detection

For Eventer to be used in place of manual event selection, it

would also need to reduce the time taken to perform analysis.

To test the speed of Eventer relative to manual event selection,

simulated recordings were then analyzed using Eventer with both

Pearson’s screening and a machine learning model, and the amount

of time taken was measured (see Section 2.1.2). This duration was

then compared to the amount of time taken to manually classify

the same number of events. Figure 6A illustrates the time taken to

analyse recordings across these conditions. The mean amount of

time taken for Pearson’s detection (5.87 ± 0.228 s) and machine

learning detection (5.84 ± 0.567 s) in Eventer were comparable

and dramatically lower than the time taken to manually classify

the same number of events (63.3 ± 6.663 s). These data suggest

that not only can Eventer reliably reproduce the selection of an

expert user, but it can also do so in a tenth of the time. In this

experiment, parallel processing was not used to be as comparable as

possible for other users. Utilizing parallel processing could further

increase the speed benefits when data are required to be split

into epochs for analyzing and summarizing changes in synaptic

properties over time.

To illustrate how splitting the data and using parallel processing

influence the speed of event detection, Eventer then detected

events in a 100-s-long recording with 300 simulated events.

Figure 6B (black trace, NP) then illustrates the amount of time

taken to complete the event detection with various split times

as a percentage of the total recording length in the absence of

parallel processing. Here, it is perhaps fastest to not split the data

(100 s analyzed, 300 events detected in 18.61 s), and inappropriate

splitting of the data to 1% of its length (i.e., 100 × 1-s-long

waves) dramatically increases the time taken (192.28 s). However,

increasing the number of parallel workers increases the speed of

analysis, regardless of the split duration. When increasing the

number of parallel workers to 8, the speed of event detection

dramatically increased from 192.86 s to 42.69 s when the split

duration remained at 1%. Indeed, it is possible to fine-tune the

number of parallel workers and split duration in Eventer. As shown

here, Eventer was able to detect 300 events in 100 s worth of

recording in 14.69 s when utilizing eight parallel workers, and the

data are split to 20% of the total length. Taken together, these data

suggest that Eventer is not only able to reliably and accurately

classify synaptic events but also to do this faster than manual

event classification.

3.3 Eventer increases the consistency of
synaptic event detection between users

Eventer has been shown to decrease the time taken for event

classification and to be accurate in doing so, relative to manual

event detection. However, the other major issue remaining with the

detection of spontaneous synaptic events is that detection methods

between labs and users are inconsistent. By training a machine

learning model in Eventer, it is then possible for other users to use
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this model to analyse their data. It is hypothesized that doing so

should increase the consistency of event detection between users.

To test whether using a single machine learning model will

increase consistency between users, three groups (A, B, and C) of

five students were supplied with a simulated recording and asked to

define their event templates and manually (MAN) classify events.

All students were at a similar stage of education (postgraduate

research) and were provided with equal amounts of training prior

to starting classification. The students” classifications were then

compared to each other within groups, and a Matthew’s correlation

coefficient (MCC) was generated to assess similarity. Immediately

after this, the students were given a single machine learning model

(MLM) trained by an expert user and asked to re-run their analysis

with thismodel instead of their ownwithout changing their selected

event time constants. These values were then compared within the

group again, and another set of MCCs was generated. Figure 7A

then plots these MCC grids. A darker color here represents a

correlation in the classification. Excluding self-comparisons (i.e.,

the diagonals of the MCC grids), the classifications of users

were consistently more like one another when using a single

machine learning model (MCC = 0.76) than without (MCC =

0.45), as shown in Figure 7B. Since the MCCs represent pairwise

comparisons between users, the MCCs themselves are correlated

and therefore violate the assumption of independent observations

made by most common statistical tests. To evaluate whether the

observed +0.31 improvement in the MCC by machine learning

is statistically significant, we created and analyzed 215 unique

replicate samples by exchanging sets of the detected event times

between the MAN and MLM conditions for each user to simulate

the sampling distribution of the difference in the MCC under

the null hypothesis (Figure 7C). The probability of observing an

absolute difference in MCC at least as large as the observed 0.31

under the null hypothesis was 0.00018. This significant difference

between manual and machine learning classification of synaptic

events strongly suggests that using a single machine learning model

can increase the consistency of analysis between users.

4 Discussion

The data presented provide proof of concept that Eventer is

capable of accurately and correctly classifying candidate synaptic

currents at a comparable level to that of an expert human

researcher. Moreover, Eventer achieves the classification task far

more rapidly than any human, and in a way that is reproducible

between different users. In the current section, we will discuss the

results in the context of alternative, existing approaches.

4.1 Alternate classification approaches

Eventer, which was first officially released in 2020 (Winchester

et al., 2020), is not the only event detection software now to

utilize machine learning, although it is one of the few to provide

a graphical user interface. Zhang et al. (2021) developed software

to detect excitatory postsynaptic potentials in vivo that they term

machine learning optimal-filtering detection procedure (or MOD).

This approach utilizes the Wiener-Hopf equation to learn the

optimal parameters for a Wiener filter that can subsequently be

applied to data to detect EPSPs. Since the MOD approach makes

the assumption that synaptic currents will summate linearly, it is

not clear to what extent the method will be robust to the presence

of non-linearities, for example, introduced by voltage escape during

the near coincident activation of nearby synapses. The random

forest approach of Eventer is inherently more robust to such

complex non-linearities due to its ensemble learning nature, and

the initial detection of the candidates tolerates overlap, and some

variation in the time course, of the synaptic waveforms (Pernía-

Andrade et al., 2012). Another approach, using deep learning,

was introduced by O’Neill et al. (2024). In this approach, a

joint convolutional neural network and long short-term memory

(CNN-LSTM) network were trained on cerebellar mossy fiber

mEPSCs. The output of this model is probabilities as to the

existence of synaptic events within a sliding window, which can

be thresholded to identify synaptic events. Similarly, Wang et al.

(2024) introduce a deep learning approach that trains an artificial

neural network (ANN) to differentiate between noise and signals

within mEPSC recordings, outputting a confidence value, similar

to the CNN-LSTM approach. A peak-finding algorithm is then

applied to the confidence values to identify mEPSCs within the

recording data. Whilst both deep learning approaches demonstrate

promising accuracy in detectingmEPSPs andmEPSCs, they require

substantially more data for model training. This makes both

approaches less accessible for users wishing to retrain the models

to better suit their own training data over the original, potentially

unsuitable, training data. Using the Random Forest approach

employed by Eventer, we typically trainmodels using a few hundred

candidate events from a combination of short segments of multiple

representative recordings (note that those short segments are not

included in test sets later on). The requirement of Random Forests

for less training data in this application may reflect the fact that

a small number (currently 10) of carefully chosen features have

already been defined to learn the pattern of how these features relate

to the user’s classification. Distinct from the supervised approaches,

Pircher et al. (2022) present an unsupervised approach for

detecting spontaneous synaptic currents. This method employs an

autoencoder to learn low-dimensional representations of recording

segments. These representations are then grouped using K-means

clustering to identify common patterns of states in the data. A

classifier is then trained to associate the low-dimensional encodings

with specific cluster labels to allow the classification of windows

to specific states, such as those that contain synaptic events. The

advantage of this approach over supervised methods, including

Eventer’s Random Forest implementation, is that candidates from

a training dataset do not need to be expertly labeled. This labeling

which can be a time-consuming step, introduces user biases to the

models, whether these are intentional or not, as they are in the case

of Eventer learning the classification of an expert user. However, the

unsupervised approach requires significantly more training data

than any of the supervised approaches; training and clustering

on such large datasets could be prohibitively computationally

expensive. Additionally, the approach could be susceptible to noisy

or outlier data, which Random Forest would be more robust to due

to its use of ensemble learning.
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FIGURE 8

A website for Eventer that includes an online, publicly accessible model repository. A website has been built to increase the accessibility of Eventer,

featuring a quick-start guide and full user manual. Additionally, a publicly accessible model repository has been established to enable users to upload

and share their own trained models whilst also being able to download the models of others.

Although alternative machine learning methods for identifying

synaptic events offer certain benefits, Eventer’s Random Forest

implementation stands out for its streamlined and user-accessible

training process and reduced need for annotated data. Additionally,

unlike other machine learning approaches, Eventer provides

a functioning GUI to aid analysis, along with an approach
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for semi-automated generation of labeled data during the pre-

processing phase by extracting candidate events for users to screen.

In fact, Eventer does not necessarily directly compete with recent

machine learning approaches. Supervised approaches can still make

use of Eventer’s candidate event procedure for labeling datasets

before being exported for model training. Indeed, such approaches

could be incorporated into the framework of Eventer alongside the

currently implemented Random Forest to provide a wider array of

functionality to users.

Importantly, the Eventer detection methodology could be

appropriate for any type of synaptic recording. Indeed, Eventer has

been used for the detection of miniature excitatory and inhibitory

postsynaptic currents and potentials in brain slices and dissociated

neuronal culture within our lab. With relatively small changes to

user-accessible analysis settings, users in the lab have also used

Eventer to detect synaptic transmission events measured using

spontaneous fluorescent synaptic reporters. It is expected that

Eventer would also be suitable for use on in vivo recordings;

however, this has not been tested.

4.2 Consistency and reproducibility
between users

Using a single model was shown to increase the consistency

between users; however, it is worth noting that the MCC score

never reached exactly 1 in any case. This is likely because users

were allowed to generate their own initial template from a freely

chosen exemplar event from the recording, which slightly changes

the candidates available from the initial detection. As such, the

model applies the preferences of the expert user to a set of

candidate events generated by different sets of event templates.

It is indeed possible to save event template settings as a pre-

set and pass this onto other users, bundled with a machine

learning model if preferable. Nonetheless, these results indicate

that machine learning model trained by one expert user can be

used by others to replicate that expert user’s selection preferences.

This therefore inherently increases the reproducibility of analysis

between users, which is otherwise a major problem in analyzing

electrophysiological data between labs and individuals. To further

increase the reproducibility, and indeed accessibility, of analysis

between users, a dedicated website for Eventer has been built,

as illustrated in Figure 8. This Eventer website (Eventer, 2022)

features a quick-start guide, full manual, and download links

to the open-source Eventer software. Furthermore, an online

model repository has been created to allow users to upload their

trained models and for others to download and replicate the

selection criteria of other expert users on their own data. A brief

description of the conditions the model was trained in is also

included here so that those who download the model can use it in

appropriate scenarios.

5 Concluding remarks

This article describes software for the automated detection

and classification of spontaneous synaptic currents, with proof

of concept for machine learning-based classification using

Random Forests. Training the machine learning models using the

implementation of this approach in Eventer can be achieved with

relatively little training data and a one-off manual classification

step. The software is run from a graphical user interface to

facilitate all steps of the analysis, including the training step, and

all analysis settings are to facilitate revisiting (and reproducing)

specific analyses. Through a series of experiments, we show

that Eventer is effective in learning user classification synaptic

currents, decreases the time taken to perform analysis, and

provides better reproducibility of analysis between users. This

software provides a framework that is also capable of integrating

additional classification methods using alternative artificial

intelligence approaches.
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