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Optimizing neuroscience data
management by combining

REDCap, BIDS and SQLite: a case
study in Deep Brain Stimulation
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Neuroengineering Group, Institute for Medical Engineering and Medical Informatics, School of Life
Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz,
Switzerland

Neuroscience studies entail the generation of massive collections of
heterogeneous data (e.g. demographics, clinical records, medical images).
Integration and analysis of such data in research centers is pivotal
for elucidating disease mechanisms and improving clinical outcomes.
However, data collection in clinics often relies on non-standardized
methods, such as paper-based documentation. Moreover, diverse data
types are collected in different departments hindering efficient data
organization, secure sharing and compliance to the FAIR (Findable, Accessible,
Interoperable, Reusable) principles. Henceforth, in this manuscript we
present a specialized data management system designed to enhance
research workflows in Deep Brain Stimulation (DBS), a state-of-the-art
neurosurgical procedure employed to treat symptoms of movement and
psychiatric disorders. The system leverages REDCap to promote accurate
data capture in hospital settings and secure sharing with research institutes,
Brain Imaging Data Structure (BIDS) as image storing standard and a
DBS-specific SQLite database as comprehensive data store and unified
interface to all data types. A self-developed Python tool automates
the data flow between these three components, ensuring their full
interoperability. The proposed framework has already been successfully
employed for capturing and analyzing data of 107 patients from 2
medical institutions. It effectively addresses the challenges of managing,
sharing and retrieving diverse data types, fostering advancements in
data quality, organization, analysis, and collaboration among medical and
research institutions.

KEYWORDS
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1 Introduction

Over the past few years, neuroscience research has undergone
a significant transformation. Technological advancements have
enabled acquisition of extensive, multi-modal datasets whose
analysis can elucidate mechanisms underlying neurological
disorders and unveil new treatments (Dipietro et al., 2023).
However, extracting meaningful insights from neuroscience data
is not a trivial problem. A first challenge is posed by dealing with
a multifaceted data landscape (Dash et al., 2019). Neuroscience
studies entail, in fact, the generation of heterogeneous data ranging
from neuroimages to clinical evaluations, to demographics. The
integration of diverse data types plays a crucial role in deriving
clinically relevant conclusions (Sejnowski et al., 2014). Moreover,
such data is sourced from different clinical institutions and is
often gathered at various time intervals to facilitate longitudinal
studies (Dipietro et al, 2023). Data collection within hospital
settings often relies on traditional methods such as paper-based
documentation or static spreadsheets (Poline et al., 2012; Saczynski
et al, 2013). These methods, despite being straightforward and
widespread in clinics, may present some limitations in data
standardization and accessibility (Wilcox et al, 2012). After
collection, data needs to be transferred to research institutes to
perform further analyses. According to data sharing best practices
(Ferguson et al., 2014), data should follow the FAIR (Findable,
Accessible, Interoperable, Reusable) principles (Wilkinson et al.,
2016). However, sharing data recorded using the above-mentioned
methods for collaborative research purposes, raises concerns about
data security and integrity. Therefore, systematic data management
is imperative to leverage the insights derived from neuroscience
multi-modal data. This can be achieved by employing systems
facilitating efficient data capture, organization, management, and
secure sharing (DiEuliis and Giordano, 2016; Dash et al., 2019;
Dipietro et al., 2023).

In the last years several Electronic Data Capture (EDC) systems,
such as REDCap (Harris et al, 2009), CARAT (Turner et al,
2011) and CIGAL (Voyvodic et al, 2011), have emerged to
address the limitations of paper-based and spreadsheet-based data
collection. These systems offer web-based interfaces for multi-
modal data capture and can also provide data verification functions
(Turner and Van Horn, 2012; Li and Liang, 2022). However, EDC
systems do not support image files (Deserno et al., 2013). Medical
images are usually stored in specialized Picture Archiving and
Communication Systems (PACS) (Choplin et al., 1992). While
PACS offer secure storage and retrieval of medical images, they
are not designed for integrating clinical data with imaging data
(Scott et al,, 2011). Furthermore, lack of standardization in file
structures and naming, severely hinders efficient data management
in analysis pipelines, data sharing and study reproducibility (Zwiers
etal., 2022). This issue has been tackled by introducing data storage
specifications such as Experimental Directory Structure (ExDir)
(Dragly et al, 2018) or Brain Imaging Data Structure (BIDS)
(Gorgolewski et al., 2016). The latter is a standard describing how
to organize neuroimaging data and related metadata following
a specific folder structure and naming convention. BIDS was
initially designed to accommodate raw imaging data. Guidelines to
store analysis-derived data have been recently introduced but they
remain quite broad and may not encompass all file types generated
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in the various neuroscience fields. Given its growing usage in
the neuroimaging community, the last years have witnessed the
development of tools providing semi-automated organization of
imaging datasets according to BIDS guidelines (Lopez-Novoa et al.,
2019; Zwiers et al., 2022; Levitas et al., 2024) or bridging between
BIDS datasets and software solutions (Jegou et al., 2022). In order
to exploit the joint power of imaging and clinical data, a recent
work has proposed a solution integrating data collected through
REDCap with imaging data organized according to BIDS (Kuplicki
etal., 2021). However, it lacks the ability to present a comprehensive
data overview. Addressing this last point, several extensive data
management and sharing systems have been developed. They
have adopted diverse strategies to provide functionalities such as
data capture, storage, sharing, import, export, processing, retrieval,
quality control, provenance tracking (Marcus et al., 2007; Keator
et al., 2009; Van Horn and Toga, 2009; Prodanov, 2011; Scott et al.,
2011; Das et al., 2012; Book et al., 2013; Muehlboeck et al., 2014;
Woodman et al., 2014; Grigis et al., 2017). Nevertheless, they may
entail considerable load related to installation, maintenance, and
user training (Kuplicki et al., 2021). Moreover, there is no universal
solution fitting all the possible use-cases arising in the neuroscience
field (Van Horn and Toga, 2009). To achieve the maximum possible
efficiency, a data management system should be tailored to the
workflows generating and using the data stored in it.

Therefore, this manuscript presents a data management system
providing solutions to handle extensive, heterogeneous data and
designed to support Deep Brain Stimulation (DBS) research
pipelines. DBS is a widely employed neurosurgical procedure for
managing symptoms of a variety of movement and psychiatric
disorders (Hariz et al, 2013; Johnson et al., 2013; Wardell
et al., 2022). During the whole DBS process huge amounts of
heterogeneous data are generated. Group analysis (e.g., analysis
of data collected from multiple patients) is crucial in enhancing
understanding of the relationship between stimulation parameters
and clinical outcomes (Neudorfer et al., 2021; Nordin et al., 2022).
With the aim of enhancing the efficiency and reproducibility of
DBS research, the system described in this paper leverages the
integration of REDCap, BIDS and SQLite.! It offers the following
functionalities:

(1) Straightforward data capture in hospital settings
2) Secure data sharing between clinics and research institutes
(3) Management of clinical and imaging data types
(4) Standard-based imaging data organization
) Linkage of image files and related metadata
(6) Access to heterogeneous data through a unique tool

2 System design and workflows

This section describes data acquired during a typical DBS
procedure and the methodological framework used to create
a data management system for DBS research. The presented
comprehensive data management system combines existing data

1 https://www.sglite.org/
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aggregation platforms and standards, with custom software for data
handling. It utilizes REDCap as EDC system, BIDS as image storing
standard, and an SQLite database as a comprehensive data store.
Custom Python scripts connect the different components, ensuring
efficient platform interoperability.

2.1 DBS procedure and data

2.1.1 Raw data acquisition

DBS entails the implantation of electrodes in specific deep brain
targets (e.g. Subthalamic Nucleus, Zona Incerta), whose electrical
stimulation leads to disease symptom reduction (Lozano et al,
2019). The DBS procedure varies between medical centers but can,
in general, be split into three main phases: pre-operative planning,
implantation and post-operative follow-up (Hemm and Wardell,
20105 Shah et al,, 2020). All three phases include the generation and
acquisition of heterogeneous types of patient data. Pre-operative
planning consists in delineating the precise brain target and
trajectory to reach it, based on pre-operative anatomical images
(D’'Haese et al., 2005; Rezai et al., 2006). Patient demographics,
medical history and anatomical imaging (e.g. CT or MRI) data,
electrode type and targeting information are therefore collected in
this first phase. During surgery electrophysiology techniques, such
as microelectrode recording (MER) and intra-operative stimulation
tests are often applied to identify the optimal electrode position
(Schrader et al., 2002; Miyagi et al, 2009). The DBS leads are
inserted afterwards in the brain for chronic stimulation. Post-
operatively the final electrode position is checked through CT or
MRI imaging (Chabardes et al., 2015). DBS parameters (e.g. active
contact, current amplitude, pulse width) are tuned in a series of
consultations which involve symptom evaluation through disease-
specific clinical scoring scales (Koeglsperger et al., 2019; Wirdell
et al,, 2022). Outcomes of intra-operative and post-operative
stimulation tests are recorded in paper forms.

2.1.2 Data analysis

The data acquired during the DBS procedure constitutes the
input to analysis workflows, which in turn create additional data
streams. In particular, the generation of electrodes, electrode
trajectories and brain tissue models (brain conductivity matrix)
allows to simulate the Volume of Tissue Activated (VTA) by specific
stimulation configurations (Butson et al., 2006; Astréom et al., 2015;
Alonso et al., 2016; Horn et al., 2019; Latorre and Wardell, 2019;
Butenko et al., 2020; Neudorfer et al., 2023). VTAs of multiple
patients can be jointly examined in a common anatomical space,
also called anatomical template or atlas, obtained by fusing together
preprocessed images of several patients (Evans et al., 1994; Lemaire
et al., 2010; Vogel et al., 2020). Sometimes additional anatomical
information such as manually outlined structures (Lemaire et al.,
2010) can be projected and added to the template. Statistical
approaches applied to patient data in a common reference space
allow to extract probabilistic stimulation areas (Butson et al., 2011;
Eisenstein et al., 2014; Reich et al., 2019; Nordin et al., 2022). These
can in turn be used to learn more about the therapeutic targets
or they can be transformed to the image space of new patients
and used to support in determining their optimal stimulation
parameters (Roediger et al., 2021; Nordenstrom et al., 2022).
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2.1.3 Data type categories

DBS data from two medical institutions (University Hospitals
of Basel and Clermont-Ferrand) was collected and analyzed to
validate the system presented in this manuscript. The data types
handled by the system were classified into 2 macro-categories.
The first includes raw data acquired during the DBS procedure,
which can be further subdivided into clinical and imaging data.
The second category encompasses all the data created by the
analysis workflows.

e Raw data:

o Clinical data: detailed patient demographics, medical history,
medication schedules, surgical details (e.g. targeting and
final implanted position information), stimulation parameters,
symptoms scoring.

o Imaging data: pre and post-operative anatomical images (e.g.
CT or MRI scans), labeled anatomical structures.

e Analysis data: preprocessed anatomical images (e.g. skull-
stripped), reconstructed electrode trajectories, electrode
COMSOL? models, brain conductivity matrix, simulated
VTAs, anatomical atlas images, segmented anatomical
structures, probabilistic stimulation maps, images transformed
from patient reference space to atlas reference space and vice-
versa, transforms and warps needed to perform image
transformations.

The main data types collected during the DBS procedure by
the medical centers contributing to this work, are summarized in
Figure 1A. The group analysis workflow schema is represented in
Figure 1B.

2.2 Data management system use case
analysis

A user-centered design approach was employed to define
system requirements. This involved identifying the various user
roles and their corresponding use cases. By analyzing these use
cases functional requirements were derived. These outline the
specific actions the system should be able to perform. In a
second step, non-functional requirements were added, addressing
the system’s characteristics such as security, performance, and
scalability. The system caters to two primary user groups: clinicians
and researchers, each with distinct use cases.

e Clinician

o Use Case 1.1: Easy Data Entry: clinicians can effortlessly record
patient information through user-friendly, structured forms
within the web interface. This minimizes the data entry burden
and promotes accuracy.

o Use Case 1.2: Data Export for Statistical Analysis: clinicians
can export collected data, either for a single patient or an entire

2 https://www.comsol.com/
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FIGURE 1

Overview of Deep Brain Stimulation procedure and group analysis workflow. The figure shows the various types of data generated at each step, in
light of the DBS protocols followed by the two medical centers contributing to the data collection in this work. (A) The DBS procedure can be split in
three phases: pre-operative planning, implantation and post-operative follow-up. Data generated during pre-operative planning encompasses
patients’ demographic information, medical history, anatomical brain images, the model of DBS electrode chosen for implantation and the planned
target point and trajectory. During implantation recording of brain cells activity (microelectrode recording) and stimulation tests help to determine
the final, optimal electrode position. In the post-operative follow-up additional anatomical imaging data and stimulation parameters evaluations
(screening) data are collected. Moreover, information on the final chosen chronic stimulation configuration is also recorded. (B) The group analysis
workflow firstly requires patients’ anatomical images preprocessing. Subsequently Volume of Tissue Activated (VTA) simulations can be run for each
patient and each stimulation configuration. Several patients” anatomical images can be fused together to create a common anatomical space
(anatomical atlas) (Vogel et al., 2020). Patients VTAs are then transformed into the atlas reference space so that they can be superimposed and
analyzed together to generate Probabilistic Stimulation Maps. These maps indicate brain areas leading to high symptom improvement when
stimulated. When data from a new patient is acquired, the stimulation map can be transformed to their reference space. The data elements in the
left part of image (B) are collected during the DBS procedure, while the ones on the right (gray background) are generated during the data analysis.

cohort. Data can be exported in a format suitable for statistical o Use case 2.3: Data Analysis: researchers can apply processing

analysis using a software of choice. steps to retrieve data, including image processing and
o Use Case 1.3: Data Edit: clinicians can edit data or fill in clinical data analysis.

incomplete records. o Use case 2.4: Results Saving and Sharing: researchers can

integrate generated results back into the system and make
them available to other users.

e Researcher

o Use Case 2.1: Data Retrieval: researchers can access clinician- Use cases 2.1, 2.3 and 2.4 are fundamental steps of the
captured data. They can filter the data according to specific =~ DBS group analysis workflow (see section 2.1.2). The overall
metadata to narrow their analyses to specific patient groups. use case diagram of the data management system is shown in

o Use case 2.2: Data Edit: researchers can correct or update data. ~ Figure 2.
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FIGURE 2

Use case diagram for the DBS data management system. The system features clinicians and researchers as actors. Filled lines without arrow indicate
the association between the actor and the use case. Filled lines with white-filled arrow point indicate that a use case is generalization of another. In
this diagram “Image processing” and “Clinical data analysis” are 2 specifications of the general use case ‘Data analysis'. The dotted lines indicate
‘Include’ relationships between use cases: in order to be able to save and share results a data analysis needs to be performed (‘Data Analysis' is
therefore included by the "Results Saving and Sharing” use case). The “Data Analysis” use case depends, in turn, on the “Data Retrieval” one.

2.3 System components

REDCap (Harris et al., 2009) was chosen as secure EDC web
platform to streamline patient-related clinical data. Its user-friendly
interface allows to create structured forms with data validation, and
role-based access control (Supplementary Figures 1-6). REDCap
serves as a centralized repository, simplifying retrieval and analysis.
It offers real-time data capture, accessibility, and built-in reporting
tools for a better understanding of patient cohorts and treatment
outcomes (Server info: REDCap 14.3.2 PHP 7.4.33 (Linux/Unix
OS) MariaDB 10.5.23).

BIDS (Gorgolewski et al., 2016) was chosen as imaging data
storing standard. It acts as a common language for organizing
brain imaging data, including MRI scans which are vital for
DBS research. This standardized format ensures consistency in
file naming conventions and folder structures across studies,
streamlining collaboration and data sharing (used version: v1.9.0).

SQLite empowers research with its lightweight design. This
self-contained database eliminates server needs and simplifies
deployment, allowing researchers to focus on their work.
Furthermore, SQLite’s SQL compatibility ensures familiar data
management through a proven language (used version: 3.45.2).

Python excels as a data handling tool for research thanks
to its extensive libraries like Pandas and NumPy, which enable
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efficient manipulation and analysis of complex datasets. The open-
source nature of Python’s data engineering ecosystem fosters
collaboration and facilitates the sharing of code and libraries for
data handling tasks.

These components, except for REDCap, are designed for
portability, meaning they can be run on any operating system
without modification. This independence allows them to be easily
rebuilt and deployed across different environments.

2.4 Clinical data management

For each participating center a REDCap project was established
in the REDCap instance, incorporating all relevant user roles and
access rights. Customized forms were designed to best capture
data originating from diverse sources. They encompass patient
information, intra-operative details (e.g. targeting information,
microelectrode recordings, implanted electrode position), and
post-operative data including chronic stimulation settings. The
acquired data is automatically stored on the REDCap server. To
facilitate data retrieval and management, a software pipeline was
developed in Python®. This pipeline utilizes REDCap’s API with

3 https://github.com/IM2Neuroing/REDCap2SQlLite/releases/tag/v1.0.0
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appropriate tokens to automatically pull data from the server.
The retrieved data undergoes a transformation process based on
pre-defined mapping files, using libraries like regular expressions
(regex) for pattern matching and data cleaning, and Pandas for
data handling. Finally, SQL queries are generated and employed to
insert the transformed data into the SQLite database (Figure 3A).
The entire process, from database creation (if necessary) to data
retrieval, cleaning, and import, is encapsulated within the software
pipeline. The generic nature of the code allows its application across
all REDCap projects.

2.5 Imaging data management

A dedicated data processing pipeline integrates the imaging
data into the data management system. DICOM* data from
the neurosurgical planning station of participating centers
is anonymized and exported in DICOMDIR format. This
DICOMDIRs includes pre- and post-operative CT scans, as well
as various MRIs with some labels and trajectories. The pipeline
sets up a root directory for the image data storage. Then it utilizes
a pre-built DICOM to Neuroimaging Informatics Technology
Initiative (NIfTT) format converter. The converter automatically
extracts information from the DICOMDIRs, converts the DICOM
data into the NIfTI format, and stores the converted files
according to the BIDS standard. Finally, a self-developed
Python tool (Image2BIDS2SQLite®) generates image references
through SQL queries and loads them into the SQLite database
(Figure 3B).

The BIDS-compliant data structure (Figure 4) features a
division between raw and analysis data (see section 2.1.3). Data
differing from raw anatomical images is, in fact, saved within
dedicated ‘derivatives’ folders. Inside the ‘derivatives’ folder, files
are categorized according to the subject to which they refer. This
classification is performed in 2 steps: firstly by distinguishing
the type of subject (e.g. ‘Patient, Atlas, ‘Electrode’) and then by
indicating each subject with its unique subject ID. The subject
type ‘Atlas’ includes the group analysis results contained in a
common reference space. Since anatomical atlases are generated
from multiple patients’ images, several atlases can exist. Thus,
the ‘version’ distinguishes atlases generated from different data
or image modalities. The ‘Electrode’ subject type includes the
electrodes used for implantation. Each electrode is characterized
by a different structure and therefore a different model to be used
for electrical field simulations. Within the subjects’ subfolders, files
are organized by content rather than by process. For instance, the
folder ‘Segmentations’ contains segmented anatomical structures.
Naming conventions such as the tag "PatientInAtlas" are used
to facilitate tracking transformations between different imaging
spaces. Such information is also captured in the ‘space’ field of the
transformed image file. For instance, when transforming the file
sub- <subject_id>_ses- <session>_acq- <ppp>_T1w.nii.gz to the
image space of sub-ATLAS_ses- <version>, the output file will be

4 nhttps://www.dicomstandard.org/
5 https://github.com/IM2Neuroing/Image2BIDS2SQLite.git

Frontiers in Neuroinformatics

10.3389/fninf.2024.1435971

named sub- <subject_id>_space- <version>_ses- <session>_acq-
<ppp>_T1w.nii.gz and will be saved in the folder derivatives/sub-
<subject_id>/PatientInAtlas. This structure essentially functions as
a clear legend, allowing researchers to readily identify the data used
and generated during various stages of the workflow.

2.6 Comprehensive data management

The system relies on SQLite, a relational database management
system, to seamlessly integrate clinical data and image paths within
a centralized system. This approach streamlines data organization
and facilitates efficient retrieval of clinical information alongside
corresponding image files.

The patient-centric database schema consists of 28 tables
containing 230 data fields (e.g., patient ID, age, implant position,
image file path) and 33 established relationships between these
tables. These tables can be grouped into specific categories based on
information content (e.g., Clinical Data, Imaging Data, Stimulation
Configuration Evaluations, Targeting). Notably, all groups except
for the Electrode table have a direct connection to the central
patient table (Figure 5).

Clinical data tables encompass information collected during
clinic visits. The "Clinical Data General" table stores medication
data, while three other tables within this group capture data from
relevant DBS clinical evaluations. Tables within the "Stimulation
Configuration Evaluation" group store data regarding intra-
operative or post-operative stimulation settings, their clinical
effects, and potential side effects. "Microelectrode Recordings"
tables specifically house data from intra-operative recordings used
to identify distinct brain regions. The "Targeting" tables contain
data relevant to pre-operative planning and arc settings. "Chronic
Stimulation Configuration” stores information about patients’ post-
operative electrode settings for daily use. The "Implanted Position"
table captures the placement of the electrode after surgery. The
"Electrodes" table stores data about the studies’ relevant electrodes
and links to the "Files" table to establish a direct path to electrode-
specific files.

Imaging data is managed through four tables (Figure 6). The
"Files" table stores the relationship to the patient or electrode,
the file path, and the general file type. If a file originates from
another file, this information is documented in the "source_id"
field, which links to the original file. The "transformation_id" field
describes the relationship to the "Transformations" table, specifying
the transform used to generate the file. The "Transformations" table
stores the "transform_id" representing a transform (warp) file and
the "target_id" representing the target image file (e.g. the reference
image space of the transformation output). The remaining tables,
"Bids" and "Labels,” share the same ID as the "Files" table. They
store additional information specific to file types. For instance,
the "Labels" table includes a field indicating the anatomical brain
structure represented by the label file, while the "Bids" table contains
BIDS-specific details for images, such as acquisition time and
modality.

In conjunction with the database, a collection of Python
functions was designed to facilitate data insertion, updating,
deletion, and querying operations. This approach obviates the
necessity for researchers to write intricate SQL queries while
managing data for analysis.
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FIGURE 3

(A) The clinical data management workflow starts with the filling of customized REDCap webforms. The data is then synchronized with REDCap
server for secure storage. Data is exported in.csv format via APl and then stored in the SQLite database by a python script. (B) Imaging data is firstly
acquired in DICOMDIR format and converted in NifTl format by a custom script. NifTl files are then named according to BIDS and stored in a
repository with a BIDS-compliant structure. Image metadata (e.g., session, acquisition, suffix...) and file paths are saved in the SQLite database by a

python script.

3 System functionalities and
practical application

This paper presents a data management system that leverages
the strengths of REDCap, BIDS and SQLite to streamline
data capture and organization in neuroscience based on an
application example in DBS research. The system effectively
addresses the challenges associated with managing diverse data
types, including patient-related information, medical images, and
post-processing results.

3.1 Data management system overview
The system performs three main tasks:

1. Clinical Data Management
2. Image Data Management
3. Comprehensive Data Management

These components work together seamlessly to ensure efficient
data capture, organization, and retrieval (Figure 7).

The data management system addresses the requirements
of both clinicians and researchers involved in DBS studies.
Specifically, it enabled functionalities that were previously
unattainable with earlier data collection and management
techniques and enhanced the efficiency and automation of
existing functions. This section provides a detailed overview of
the new frameworK’s impact compared to the previously used
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methods, referring to the use case analysis of section 2.2 and the
identified functional system requirements listed in Tables 1, 2. The
system also addresses the non-functional requirements of data
security and integrity, system efficiency, usability, accessibility
and regulatory compliance. Table 3 presents a short description
of such requirements and how they are fulfilled. In all three tables
the requirements are identified by an alphanumeric code (e.g. F.x
indicates functional ones, nF.x indicates non-functional ones).

3.2 Clinician requirements

REDCap’s web-based interface allows clinicians to enter
patient data efficiently through structured forms satisfying all four
requirements from use case 1.1 (Easy Data Entry). On the other
hand, paper or spreadsheet-based data collection does not satisfy
requirements 1.1-F.2 (Identify mandatory data fields) and 1.1-F.3
(Field-level data validation) and requirement 1.1-F.4 (Record data
as batch) is completely not applicable for such methodologies.
REDCap also facilitates exporting relevant datasets (either entire
cohorts or specific records) to enable clinicians to perform further
analyses, satisfying all three requirements from use case 1.2 (Data
Export). Paper or spreadsheet-based data collection methodologies
can satisfy requirement 1.2-F.5 (Export whole data of entire
cohorts) by copying the files. They can also meet requirement
1.2-F.6 (Export filtered data of defined patients) but implying a
substantial manual effort while requirement 1.2-F.7 (Export data in
different formats for statistical analysis) cannot be fulfilled without
the usage of an additional file converter. Moreover, paper and
spreadsheet-based methodologies do not allow to track changed

frontiersin.org


https://doi.org/10.3389/fninf.2024.1435971
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

Stawiski et al.

10.3389/fninf.2024.1435971

. Project/

sub-<subj_id>/

ses-<Pre|Post>/
anat/

®
? sub-<subject_id>_ses-<Pre|Post>_acg-<ppp>_T1w.nii.gz

derivatives/

Patients/
I—Esub-<subj_id>/

Preprocessed/
sub-<subject_id>_ses-<Pre|Post>_acq-<ppp>_ReferenceT1_T1w.nii.gz

— Simulations/

ses-<Pre|Post>/

sub-<subject_id>_ses-<Pre|Post>_acq-<ppp>_VTA_mesh.vtp

»
sub-<subject_id>_ses-<Pre|Post>_acq-<ppp>_conductivity_matrix.txt

Transforms/

AtlasInPatient/

— Segmentations/
o
sub-<subject_id>_ses-<Pre|Post>_acq-<ppp>_L-CGL_label.seg.nrrd

—. Atlases/
L

sub-ATLAS/

ses-<version>/
anat/

»
? sub-<ATLAS>_ses-<version>_acg-<aaa>_T1w.nii.gz

StimulationMaps/

o
? sub-ATLAS_ses-<version>_acq-<aaa>_L-maxStimMap_T1w.nii.gz

i sub-ATLAS_ses-<version>_acq-<aaa>_R-maxStimMap_T1w.nii.gz

—E Electrodes/
E sub-<elec_id>/

I ElectrodeModel/
o

sub-<elec_id>_consolmodel_model.mph

Tl

sub-<elec_id>_contact1_mesh.stl

FIGURE 4

of files generated or used in the different steps of group analysis in Deep Brain Stimulation.
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BIDS-compliant folder structure for Deep Brain Stimulation imaging files and processing outputs. All the files generated from some processing or
analysis step are saved as BIDS 'derivatives’. The derivatives files are grouped firstly by subject type (‘Patient’, ‘Atlas’, ‘Electrode’) and on a second level
by subject ID. The naming convention of files in folders such as ‘PatientinAtlas’ or ‘AtlasIinPatient” allows to keep track of transformations between
different image spaces. Anatomical atlas images are saved as belonging to an ATLAS subject. Anatomical atlases generated from different patient
groups or from data acquired with different imaging modalities are distinguished by the ‘version' parameter. The legend allows identifying the groups

Frontiers in Neuroinformatics 08

frontiersin.org


https://doi.org/10.3389/fninf.2024.1435971
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

Stawiski et al.

10.3389/fninf.2024.1435971

FIGURE 5

Stimulation configurations evaluations Clinical data
| Clinical data Clinical data
general ~ othereval
1 0.N] . 0.N
Stim 0N | Clinicaldata‘ Clinical data
: updrs3 (l)J[;‘\‘)drS4
Imaging data
mmations bels
0.N 0.N
Microelectrode recording Aol Lk 1
1
1 O.N MER 0.N 1 f 1 0.N i 1 1 i
MER }_m Patient }7 ~ Files Bids
1 1 1 0.N
Targeting Electrodes
0.1
Electrodes ‘
O Eplantinfo |
Implanted
position

Patient-centric relational database schema, including clinical data pulled from REDCap and references to raw and processed imaging files stored
according to BIDS. The database schema is designed mirroring the different data types collected during the DBS procedure.

Imaging data
file_id: integer
modality: text

Labels

file_id: integer
hemisphere: text
structure: text
color: text
comment: text

- Bids

protocol_name: text
stereotactic: text
dicom_image_type: text
acquisition_date_time: text
relative_sidecar_path: text
bids_subject: text
bids_session: text
bids_extension: text
bids_datatype: text
bids_acquisition: text
bids_suffix: text

‘ Files

file_id: integer
subject_id: integer
electrode_id: integer
file_path: text
file_type: text
source_id: integer

transformation_id: integer
0.N 0.N

N 0.1
ransformations

transformation_id: integer
identity: text

FIGURE 6

additional information is captured in the table ‘Labels

Relational database tables handling references to imaging files. The table ‘Bids’ contains some BIDS-specific image information, while the table ‘Files’
allows to retrieve the file path and the subject to which the files refer. Moreover, together with the table ‘Transformations’ it allows to keep track of
image transformations between different spaces (e.g., patient, anatomical atlas). Finally, if the file represents a labeled anatomical structure, some

target_id: integer
transform_id: integer

and missing values, not suiting the requirements of use case 1.3.
At the same time, REDCap shows the up-to-date forms status, and
tracks changes in each value field.

3.3 Researcher requirements

For researchers, accessing and re-formatting data collected
in hospital settings can be a time-consuming and error prone
task (Use Case 2.1: Data Retrieval). Thanks to REDCap’s secure
API researchers can avoid having to manually transfer clinical
data which is automatically streamed to the SQLite database.
Therefore, requirement 2.1-F.10 (Access clinician-captured data) is
fulfilled in a matter of minutes against the hours or days needed
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when extracting information from paper or Excel-based reports.
Furthermore, the data format is homogeneous across all patients
included in the same REDCap project. On the downside, the
image data currently still needs to be manually moved. Following
the data transfer, the SQLite database enables data storage in a
self-defined data schema. The researcher can then query both
clinical and imaging data with a specific granularity while being
informed of data provenance and modifications. Requirements 2.1-
F.11 (Organize and store data with a well-defined granularity for
efficient management), 2.1-F.12 (Employ search queries to rapidly
retrieve specific clinical or imaging data) and 2.1-F.13 (Be aware
of data provenance and of the transformations applied to data)
are seamlessly satisfied. Even the most well-organized file systems
and spreadsheets would only partially fulfill these requirements.
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FIGURE 7

Overview of the components of the data collection and management framework. Clinical and imaging data is collected in the hospital. Clinical data
is entered in the REDCap web-platform while imaging data is stored and transferred in DICOMDIR format. DICOMDIR data is converted in NifTI
format and stored in a BIDS-compliant repository. References to medical images, images metadata and clinical data are stored in an SQLite database
providing a unified interface to all the heterogeneous types of data.

TABLE 1 Clinician use cases: The table details the functional requirements of the developed data management system related to the clinician use cases.

Requirement definition Fulfilled Comment

Use Case 1.1: Easy Data Entry

1.I-F.1 Record data on a patient-by-patient Yes Yes REDCap’s web-based interface allows
basis clinicians to enter patient data efficiently
through structured forms.

1.1-F.2 Identify mandatory data fields No Yes

1.1-F.3 Field-level data validation (e.g., data No Yes
type restrictions)

1.1-F4 Record data as a batch, by importing - Yes
already collected table-based data

Use Case 1.2: Data Export

1.2-F.5 Export whole data of entire cohorts Yes Yes REDCap facilitates exporting relevant
datasets (entire cohorts or specific
records).
1.2-F.6 Export filtered data of defined patients Yes (manual) Yes (automated)
1.2-F.7 Export data in different formats for No Yes
statistical analysis
Use Case 1.3: Data Edit
1.3-F.8 Track incomplete form entries for easy | No Yes REDCap shows the state of the forms to
follow-up enable clinicians to track their data entries.

1.3-F.9 Track changes in data fields No Yes

Each requirement is identified by an alphanumeric code and is associated to a brief description. The table also shows whether and to what extent each requirement is fulfilled by the proposed
system and whether it was fulfilled by the previously employed data management methodology.

In addition, data retrieval would take tens of minutes to one  (Share research findings with authorized users within the system)
hour depending on the dataset size and domain-expertise of the  and 2.4-F.17 (Save analysis output files according to a defined
user, compared to the few minutes required to query the database  standard). In principle both the SQLite database and a simple file
independently from the user’s familiarity with the data. system can be accessed by processing pipelines and permit to save

Requirement 2.2-F.14 (Edit existing data entries for corrections  output files as desired. The strength of the proposed framework
or updates) is satisfied by both new and old frameworks. resides in the univocity of the data source interrogated by analysis
Nevertheless, the suite of Python functions available for inserting ~ workflows, relieving the user from needing to know each file’s
or updating database entries offers a unique method of interacting  specific location. Furthermore, saving the analysis results according
with the data. This approach eliminates the need to adapt the to the BIDS standard, along with the automatic creation of
methodology based on varying data formats. Similar considerations  references to these files in the database, prevents data duplication:
can be made regarding requirements 2.3-F.15 (Interact seamlessly  a reduction of the total number of files by two-thirds was observed
with external data processing tools for analysis workflows), 2.4-F.16  in the context of this work.
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TABLE 2 Researcher use cases: The table details the functional requirements of the developed data management system related to the researcher use

cases.
Requirement definition Fulfilled Comment
Use Case 2.1: Data Retrieval
2.1-F.10 Access clinician-captured data Yes (manual) Yes (Partially automated) Clinical data can be transferred through
REDCap API. The image data needs to be
manually transferred.
2.1-F.11 Organize and store data with a No Yes The database schema allows the data to be
well-defined granularity stored in patient-specific granularity and
queried with support functions.
2.1-F.12 Employ search queries No Yes
2.1-F.13 Data provenance and transformations No Yes Thanks to the database schema, it is
applied to data possible to see the history of data and the
applied transformations.
Use Case 2.2: Data Edit
2.2-F.14 Editing existing data entries Yes Yes The SQLite database functions allow to
insert or update records.
Use Case 2.3: Data Analysis
2.3-F.15 Interact seamlessly with external data Yes Yes The SQLite database can be easily accessed
processing tools for analysis workflows by processing pipelines.
(data import and export)
Use Case 2.4: Results Saving and Sharing
2.4-F.16 Share research findings with Partial Partial The analysis results are shared, but no
authorized users within the system reports of the individual users.
24-F.17 Save analysis output files according to Yes (manual) Yes (automated) Analysis output data is named according
a defined standard. to BIDS and saved in the BIDS
‘derivatives’ folder.

Each requirement is identified by an alphanumeric code and is associated to a brief description. The table also shows whether and to what extent each requirement is fulfilled by the proposed
system and whether it was fulfilled by the previously employed data management methodology.

Figure 8 shows how the use cases for clinicians and researchers
play out with the support of the presented data management
system.

3.4 Application example

To validate the proposed data management system, data was
collected and analyzed from two medical institutions: University
Hospitals of Basel and Clermont-Ferrand.

Separate REDCap projects were created for each institution,
ensuring consistency while allowing for some customization. Both
projects utilized forms with a similar structure, but specific fields
were adapted to each center’s data collection needs. Notably,
the forms were designed with direct data validation in mind.
For example, in the targeting information section text entries
were restricted to prevent insertion of invalid X, Y, and Z
coordinate inputs.

Collaborating physicians diligently filled out these forms.
For each patient, completion of 10 distinct forms was required.
The process began with the patient information form, capturing
demographics and relevant medical history. Subsequent forms
documented pre- and post-operative clinical evaluations and
medications, available imaging data with accompanying metadata,
planned electrode placement parameters, intra-operative
microelectrode recordings, details of stimulation procedures
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and their effects, final electrode positioning, and post-operative
screening results. Importantly, many forms were filled out multiple
times throughout the process.

In addition to data entry in REDCap, physicians also identified
research-relevant images and plans from the neurosurgical
planning stations (Brainlab Elements®) and exported those.
Following data collection by physicians and image data transfer,
the system seamlessly integrated the information into the database.
This integration was achieved using the two pipelines described in
Methods sections 2.4 and 2.5.

The system allowed to successfully collect data from 107
Essential Tremor (ET) and Parkinson’s Disease (PD) patients,
including an average of 35 imaging files per patient. These files
encompass MRI and CT scans, along with labeled anatomical
structures. The data is securely stored and managed within
the data management system. An illustrative scenario where
database-driven data integration is crucial occurs during the
simulation of brain tissue volume activated by specific stimulation
parameters. This process involves generating a patient-specific
brain tissue model from their MRI scan and inputting the
stimulation configuration into the simulation software. The
developed database serves as a centralized repository for all
necessary information: stimulation parameters can be accessed

6 https://www.brainlab.com/radiosurgery-products/elements/
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TABLE 3 The table details the non-functional requirements of the developed data management system. These requirements are more general and
therefore apply to all actors.

Requirement definition Fulfilled Comment
Non-Functional Requirements
3.0-nF.18 Data Security and Integrity: the system Partial Yes REDCap system which is accessible from the
prioritizes robust security measures to web fulfills these conditions and the rest of our
safeguard data confidentiality and prevent database management system is only
unauthorized access. Data integrity is ensured accessible within the personal network.
through validation checks and version control
mechanisms.
3.0-nF.19 System Efficiency: The framework is designed No Yes All parts of our data management system show
for optimal performance, minimizing data outstanding efficiency, whether via the web
processing times and ensuring responsiveness using REDCap or directly with the SQLite
for all users. database.
3.0-nF.20 User-Friendliness (Usability): Ease of use for Partial Partial REDCap fulfills the conditions of good
users with varying technical backgrounds. usability with its graphical user interface.
However, the rest of the data management
system is not equipped with a graphical user
interface.
3.0-nF.21 Accessibility: users can access the system from Yes Yes As a web server, REDCap is accessible to
any location with an internet connection, doctors entering data from anywhere. The rest
facilitating remote data entry and retrieval. of the data management system is only
accessible locally for the research group.
3.0-nF.22 Regulatory compliance: The system adheres to - Yes With REDCap and the rest of the data
relevant data privacy regulations such as management system, the system fulfills all the
GDPR (General Data Protection Regulation) necessary regulatory aspects.
and HIPAA (Health Insurance Portability and
Accountability Act) to ensure patient data
protection.

Each requirement is identified by an alphanumeric code and is associated with a brief description. The table also shows whether and to what extent each requirement is fulfilled by the proposed
system and whether it was fulfilled by the previously employed data management methodology.

via querying the ‘Stimulations’ table, while the file path to the
patient’s brain image is retrievable from the ‘Files’ table. Upon
generation of simulation files, references to them are stored in both
the ‘Files’ and ‘Bids’ tables. Furthermore, the system’s true power
lies in its ability to facilitate group-level analysis. Its design allows
the streamlined selection of all requisite files for the generation
of disease-specific anatomical atlases or stimulation maps in a
singular, efficient step. Additionally, the system processes and
stores files generated during post-processing steps, guaranteeing
data integrity and enabling clear traceability throughout the
research process. The repository NeuroDataManagementSystem’
contains extracted sample REDCap data and image files, together
with the BIDS project folder and populated SQLite database
resulting from the application of the REDCap2SQLite and
Image2BIDS2SQLite pipelines.

4 Discussion

Streamlining data capture and management is critical for
advancing neuroscience research. Tackling the challenges posed
by handling extensive volumes of heterogeneous data collected
across multiple sites requires the implementation of a robust data
management system. Such a system can bring enhancements in

7 https://github.com/IM2Neuroing/NeuroDataManagementSystem.git
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data quality (I), organization (II), analysis (III) and collaboration
(IV) among medical and scientific institutions. The system
presented in this manuscript offers progress in all of these points.
The usage of a web-platform facilitates the transition away from
paper or spreadsheet-based data collection methodologies. Data
validation functionalities allow to minimize errors associated with
manual data entry, ensuring data accuracy and consistency (I).
Intuitive web forms require minimal computer proficiency by the
user. Furthermore, the compliance to General Data Protection
Regulation (GDPR) guarantees secure data sharing between
researchers and clinicians, fostering collaborative research efforts
(IV). All of these attributes, coupled with its cost-free accessibility,
made REDCap the optimal selection for clinical data acquisition
(Harris et al., 2009).

Data structure standardization strongly impacts cross-lab
collaborations and study reproducibility (Zehl et al., 2016; Zwiers
et al,, 2022). Considering its expanding adoption within the
neuroscience community, we structured our imaging data in
accordance with the BIDS standard (Gorgolewski et al., 2016).
A customized tool automates the conversion of image files
from DICOM to NifTT format and arranges them in a BIDS-
compliant structure, taking care of the laborious task of manually
naming and saving files. BIDS was initially designed to facilitate
the organization of raw imaging data and associated metadata.
Nonetheless, judicious usage of the derivatives folder allowed
to incorporate additional files generated by analysis pipelines
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Graphical representation of how the use cases for clinicians and
researchers play out with the support of the presented data
management system. During data acquisition REDCap allows
clinicians to easily carry out use case 1.1 (Data Entry), use case 1.2
(Data Export) and use case 1.3 (Data Edit). The file organization
according to BIDS and storage of both clinical data and references
to imaging files in the SQLite database enables researchers to
efficiently retrieve specific data (use case 2.1). Such data is fed to
processing pipelines for analysis (use case 2.3) and results are saved
back into the database and the BIDS project folder (use case 2.4).

while preserving adherence to the standard. As a result of
this implementation, output files deriving from group analysis
and transformations across various image spaces can be readily
monitored and accessed (II). Recently, BIDS has also been adopted
by Lead-DBS (Neudorfer et al., 2023). Lead-DBS is a neuroimaging
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platform allowing to perform image processing and electrical
field simulation operations. Their folder structure also features a
first subdivision by subject. However, files are then grouped by
processing step rather than by content. Moreover, files belonging
to a common anatomical space (e.g. atlas files) are not collected
in a group analysis folder but they are included in patient folders.
This highlights an alternative perspective: the utilization of BIDS
derivatives offers flexibility in organizing files and accommodating
various data types within the standard, albeit leading to increased
variability in folder structures across different research groups.
Consequently, the implementation of additional guidelines for
organizing derivatives could prove advantageous.

Group and longitudinal analyses can strongly benefit from
the joint power of demographics, clinical and imaging data.
Nevertheless, a problem which frequently arises when dealing
with heterogeneous data is maintaining the connections between
metadata and the data objects to which they refer (Zehl et al., 2016).
Recently, a solution for integrating data collected via REDCap with
imaging data structured according to BIDS has been presented
(Kuplicki et al., 2021). It consists in exporting clinical measures
stored in REDCap in tsv files saved in the BIDS folders. However,
this solution does not optimally facilitate data retrieval and fails to
provide a holistic picture of the collected data. To overcome these
limitations, we modeled and implemented an SQLite relational
database. Self-developed tools enable the automatic population of
database records with data sourced from REDCap and references
to imaging files. This approach allows the database to provide
a complete overview of the available data and to serve as a
unified interface for accessing it. In recent years, data management
systems based on a relational database backend have emerged
within the neuroscience community (Marcus et al., 2007; Keator
et al., 2009; Van Horn and Toga, 2009; Prodanov, 2011; Scott
et al., 2011; Das et al., 2012; Book et al., 2013; Muehlboeck et al.,
2014; Woodman et al., 2014; Grigis et al., 2017). Nonetheless, a
considerable portion of these systems currently lacks compatibility
with BIDS-compliant data standards. Furthermore, although these
systems primarily focus on improving neuroscience data sharing
among researchers, they have not been specifically designed with
consideration for specific clinical and research workflows such
as inherent to DBS. Consequently, their adoption would have
required significant effort in user training and adaptation to DBS-
specific use cases and pipelines. The database presented in this
manuscript employs a DBS-specific data model, structured to
correspond with the various sources of data involved in the DBS
procedure. Moreover, a patient-centric approach was followed, as
was also done in Neuroinformatics Database providing a platform
for storing, analyzing and sharing neuroimaging data [NiDB (Book
et al, 2013)] and Longitudinal Online Research and Imaging
System [LORIS (Das et al, 2012)], dealing with multi-center,
heterogeneous data acquisition, organization and dissemination.
This decision was made considering its compatibility with both
clinical procedures and analytical frameworks.

By harnessing the synergy between REDCap, BIDS, and
SQLite, a data management system fostering heterogeneous data
integration and handling for collaborative research purposes has
been successfully engineered. In addition, although the database
schema is DBS-specific, the pipelines enabling inter-platform
communication and the overall framework concept can be easily
employed in other neuroscience fields. The adoption of such a
system holds the potential to substantially enhance the speed,
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efficiency, and robustness of research advancements reliant on
large-scale data analyses. One of the advantages of utilizing a system
comprising three interoperable yet independent components is that
the temporary failure of one element does not compromise the
functionality of the others. For instance, a temporary unavailability
of the SQLite database does not entirely impede data retrieval:
clinical data can still be directly exported from REDCap, and
imaging data can be retrieved from the BIDS project folder, together
with the relevant metadata contained in the JSON sidecar files.
Although this would increase the complexity and time required
for data integration, it would not completely halt workflows or,
more importantly, result in data loss. Nonetheless, this system
still constitutes the initial prototype of a comprehensive data
management platform. Moving forward, some limitations will
require attention and resolution in subsequent developments.
The database is presently equipped with a suite of Python
functions facilitating straightforward data query, insertion, update,
and deletion. An initial enhancement would involve integrating
a graphical user interface (GUI). This augmentation would
enable researchers lacking coding proficiency to query data and
visualize the query results, thereby enhancing the usability and
user-friendliness of the system. A subsequent step would entail
integrating statistical analyses or processing procedures with the
system. In this way such analyses could be directly executed
from the GUI rather than using external scripts. Finally, analyses
outcomes data are currently accessible exclusively to authorized
users within our institution. Implementing web-based access to the
database would facilitate retrieval of DBS research output data by
members of the scientific community. This would thus increase
accessibility and utilization of such data.

5 Conclusion

Modeling and managing workflows play a crucial role
in both present and future neuroscience endeavors. This is
especially noticeable in light of big data continuous evolution
and increasing collaborations in the scientific community. This
work demonstrates the successful integration of a translational tool
for streamlining data collection and organization between clinics
and research institutes in the field of Deep Brain Stimulation.
The proposed framework captures both standardized imaging data
and comprehensive patient-metadata within a unified system. The
system has demonstrably achieved successful validation through
data collection and analysis from two medical institutions. It
offers efficient storage and management of large-scale clinical and
imaging data, while simultaneously simplifying data retrieval for
group-level analysis. This approach enables researchers in the field
of DBS to leverage the richness of diverse data types, potentially
leading to improved clinical decision-making and ultimately, better
patient outcomes.
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