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The Religious Order Study and Memory and Aging Project (ROSMAP) is an

initiative that integrates two longitudinal cohort studies, which have been

collecting clinicopathological and molecular data since the early 1990s. This

extensive dataset includes a wide array of omic data, revealing the complex

interactions between molecular levels in neurodegenerative diseases (ND)

and aging. Neurodegenerative diseases (ND) are frequently associated with

morbidity and cognitive decline in older adults. Omics research, in conjunction

with clinical variables, is crucial for advancing our understanding of the

diagnosis and treatment of neurodegenerative diseases. This summary reviews

the extensive omics research—encompassing genomics, transcriptomics,

proteomics, metabolomics, epigenomics, and multiomics—conducted through

the ROSMAP study. It highlights the significant advancements in understanding

the mechanisms underlying neurodegenerative diseases, with a particular focus

on Alzheimer’s disease.

KEYWORDS
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1 Introduction

Neurodegenerative diseases (ND) are becoming an increasingly significant cause

of mortality and morbidity, particularly among the elderly. These disorders differ in

their epidemiology, clinical manifestations, neuropathology, and treatment approaches.

Although individual NDs exhibit diverse clinical presentations and underlying

physiological mechanisms, they often share overlapping characteristics (Erkkinen et al.,

2018). Diagnostic tests for these diseases are typically expensive, complex, and time-

consuming to conduct.

The advent of advanced molecular analysis technologies has revolutionized biological

research by enabling the simultaneous investigation of a vast number of biomolecules.

Comprehensive profiling of their intricate interactions has paved the way for the emergence

of the omics sciences, a flourishing field dedicated to the holistic examination of

diverse biological components within organisms (Veenstra, 2021). There has been a

substantial increase in the depth and breadth of multi-omics data generated to study
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Alzheimer’s disease (AD). Some examples of projects that

assembled together different omic experimental sources are the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller

et al., 2005), The Mount Sinai Brain Bank study (MSBB) (Coleman

et al., 2023), The Mayo Clinic Brain Bank (MCBB) (Allen et al.,

2016), The National Institute on Aging Genetics of Alzheimer’s

Disease Data Storage Site (NIAGADS) (Kuzma et al., 2016), The

National Alzheimer’s Coordinating Center (NACC) (Beekly et al.,

2004), and the Religious Orders Study and Memory and Aging

Project (ROSMAP) (De Jager et al., 2018). Rather than limiting

their perspective to a single data type, these collections weave

together a multilevel molecular landscape.

This is of relevance since the availability, study and integration

of clinical and omics data is essential for biomedical research and

the development of precision medicine, especially in the study,

prevention and treatment of complex diseases (Jaumot et al.,

2018), such as those of neurodegenerative nature. The integration

of omics data, facilitated by advanced computational tools, has

emerged as a powerful approach for dissecting complex biological

systems. This synergistic strategy enables researchers to bridge

the gap between molecular pathways and organism function by

comprehensively analyzing information across multiple biological

layers (Abdelnour et al., 2022; De Jager et al., 2018; Levine

et al., 2018). This has the potential to revolutionize diagnostics

by facilitating the identification of molecular signatures, novel

biomarkers and improving the molecular characterization of

diverse pathologies. The use of omics data analysis in studying

the nervous system shows promise in understanding the causes

of age-related cognitive decline and dementia. This understanding

can help develop effective public health strategies and specialized

medical care for these common conditions (Livingston et al.,

2020).

The Religious Orders Study and theMemory and Aging Project

(usually referred to by its acronym ROSMAP) is a longitudinal

study composed by two parallel cohort studies that emerged in the

early 1990s as a resource for understandingmechanisms underlying

aging, memory, cognitive decline, chronic diseases of aging, and

other health outcomes. Both studies are specifically designed to

study aging and risk factors for cognitive decline and incident

Alzheimer’s type dementia. Since 1994, it has recruited individuals

over the age of 65 in two groups: the ROS (Religious Order Study)

group, which studies nuns, priests and lay people from across

the United States, and the MAP (Memory and Aging Project)

group, which studies lay people from across northeastern Illinois.

Both cohorts are standardized for clinical, mental, genetic, imaging

and other evaluations on an annual basis and there is an organ

donation agreement at the time of death for access to the study.

Donation includes brain, spinal cord, nerve and muscle in the

case of autopsies (Bennett D. A. et al., 2018). The value of this

longitudinal study design is that it allows us to see the progression

and changes over time in the molecular, physiological and clinical

characteristics of patients, opening a panorama that allows the

study of diseases of aging from pathogenesis to death of individuals,

since it is known that diseases of cognitive impairment can present

pathophysiological changes in the brain many years before the

clinical manifestations of the disease (Beason-Held et al., 2013;

Reiman et al., 2004) and appear on a spectrum ranging from

clinically asymptomatic to severely impaired (Tahami Monfared

et al., 2022).

In this regard, cataloging multi-omics data on ROSMAP

subjects, regardless of their health status trajectory, may provide

insights into molecular events that contribute to aging-related

cognitive impairment (Bennett D. A. et al., 2018). The ROSMAP

discovery pipeline takes advantage of the availability of a multilevel

omics dataset generated from postmortem frozen brain tissue from

the dorsolateral prefrontal cortex (DLPFC) of non-Hispanic white

participants. The choice of the DLPFC region as the focus of omics

analysis stems from the overriding consideration of identifying a

region implicated in a multiplicity of pathological processes and

conditions related to mechanisms of cognitive impairment in aging

and cognitive pathologies.

Although the focus of this project is on AD, research and

applications extend far beyond to include cardiovascular disease

(CVD), dementia with Lewy bodies (LBD), Parkinson’s disease

(PD) and normal pressure hydrocephalus (HS), among others

(Bennett et al., 2014).

As of this review’s date, a total of 2,557 individuals from

both cohorts (70.8% women and 29.2% men) have participated

in omics technology trials, of which 10,379 samples have been

analyzed, mainly from the DLPFC (see Table 1; Figure 1). Among

those studied, 97.49% were of Caucasian origin, 1.9% were African

American, 0.11% were Native American and the rest belonged to

other racial groups. Of the people studied using omics technologies,

33.39% received no clinical diagnosis of dementia at the time of

death, in contrast, about 24.79% were diagnosed with Alzheimer’s

dementia, with no other form of cognitive impairment.

ROSMAP has been crucial as a discovery, and as a replication

cohort to establish associations related to dementias, exploring

the relationships between various biological factors and cognitive

decline or AD. These factors encompass genetic variants,

gene expression profiles, proteomic signatures, epigenetic

modifications, and metabolomic profiles (see Figure 2).

Additionally, investigations have delved into regulatory factors,

risk factors for cognitive decline, motor function, molecular

interactions between these elements, and even the potential for

translating such findings into drug development (Bennett D. A.

et al., 2018; Bennett et al., 2014).

In this context, different types of omics information have been

generated and/or analyzed such as DNA methylation (He et al.,

2021; Ng et al., 2017), H3K9ac ChIP-Seq (Klein et al., 2019),

RNA-seq (Li et al., 2023; McCorkindale et al., 2022; Patrick et al.,

2017; Shulman et al., 2023; Tasaki et al., 2022; Patrick et al.,

2017), miRNAs (Jurkiewicz et al., 2020; Lugli et al., 2015; Patrick

et al., 2017), nuclear and mitochondrial whole genome sequencing

(Klein et al., 2021; Vialle et al., 2022), scRNA-seq (Mathys et al.,

2019), single nucleus RNA (snRNA) (Seto et al., 2023), proteomics

(Carlyle et al., 2021; Johnson et al., 2020; Wingo et al., 2020; Yu

et al., 2019), metabolomics (Mufson and Leurgans, 2010; Varma

et al., 2021; Wang et al., 2020), in brain, blood tissue and immune

cells. Mentioned data is available in platforms such as http://www.

radc.rush.edu, http://www.synapse.org, and http://www.niagads.

org, via request.

This review article aims to explore the current and potential

impact of the study of omic data derived from ROSMAP. We will
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TABLE 1 Table summarizing demographic data and the availability of omic assays stratified by CERAD score criteria, a neuropsychological battery which

provides a measurement of AD progression (Rossetti et al., 2010), in ROS and MAP.

Alzheimer’s disease
(26.62%)

Non-Alzheimer’s
disease (73.37%)

Total (n = 2,557 individuals
with omic assays)

Sex 50.36 % males, 49.64 % females 49.86% males, 50.14% females 1,810 females, 747 males

APOE4 status 32.16 % APOE4+ 77.09 % APOE4+ 24.86 % APOE4+

Mean years of education 17.12 for males, 15.78 for females 16.98 for males, 15.77 for females 16.2 years on average

Data was obtained from synapse entry syn2580853 and the AD Knowledge Portal.

FIGURE 1

Methodological convergences in the ROSMAP cohort omic data. (Top) Venn Diagram showcasing the percentage of convergence in omic analysis

made to ROSMAP participants. (Bottom) Upsetplot describing the specific technologies used for the ROSMAP database, the number of samples for

each technology and the convergence and divergence of participants in one or more technologies.
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FIGURE 2

Number of articles published annually from 2007 to 2024, classified

by di�erent omics technologies within a specific cohort. The

categories of omics technologies include genomics,

transcriptomics, epigenetics, proteomics, metabolomics, and

multi-omics. A notable growth in the use of multi-omics approaches

in recent years is highlighted, reflected by an increase in the number

of integrative studies spanning multiple omics disciplines. This

increase suggests a trend toward the adoption of more integrated

and multidimensional analyses in biomedical research.

focus on analyzing the advances achieved in the fields of genomics,

proteomics, transcriptomics, metabolomics and epigenetics of AD

and related diseases derived from the study of several laboratories

around the world that have used the cohort data in order to

understand its influence and impact on the investigation of

phenomena associated with the aging process. A brief meta-

analysis of the topics studied concerning Alzheimer’s disease using

ROSMAP data, as well as outside of the cohort, can be found in the

Supplementary material.

2 Genomics

In diseases of aging, such as Alzheimer’s dementia, genes and

genetic variants play a substantial role in the development and

pathogenesis (Bertram and Tanzi, 2020; Dumitrescu et al., 2020).

The value of genomic analyses lies in the fact that they can

provide a panoramic view of diverse biological processes beyond

regulation. Classically, variants in genes such as APP, PSEN1

and PSEN2 are known to cause autosomal dominant Alzheimer’s

dementia (Dai et al., 2017). Moreover, several genetic variants have

been associated with neuropathological events in late onset AD

(LOAD), like APOE (Rebeck et al., 1993) including variants related

to pathological processing of Tau and Aβ , neuroinflammation,

oxidative stress, and the occurrence of neuronal, synaptic and

mitochondrial dysfunction (Andrade-Guerrero et al., 2023; Nasb

et al., 2024).

The ROSMAP project initially analyzed brain tissues using

genotyping and arrays. More recently, it has incorporated

next generation sequencing (NGS) technologies, including whole

genome sequencing (WGS), to enhance its research capabilities (see

Figure 3).

2.1 GWAS and gene associations

Primarily through genome-wide association analysis (GWAS),

the ROSMAP project has identified genes and genetic variants

associated with an increased risk of Alzheimer’s disease. For

example, rare alleles of the GAB2 gene (Mez et al., 2017;

Reiman et al., 2007) or variants in PSEN1, such as p.E318G,

have been linked to an increased burden of neuritic plaques and

neurofibrillary tangles, as well as decline in episodic memory

function (Benitez et al., 2013). Another gene identified through this

analysis is Doublecortin Domain Containing 2 (DCDC2), which

has been suggested as a novel predictor of memory maintenance

among APOE-ǫ4 noncarriers (Gao W. et al., 2022).

Associations with the progression of cognitive decline have

been explored, pointing to the Dlgap2 gene as a positional

candidate that modifies working memory decline (Ouellette et al.,

2020). In addition, novel genetic loci associated with verbal short-

term memory (VSM), learning (Lahti et al., 2022) and residual

cognition (White et al., 2017) have been described. Findings from

ENC1, UNC5C, and TMEM106B converged to suggest a possible

role in determining cognitive resilience in the aging population

affected by Alzheimer’s disease, stroke and other NDs (White et al.,

2017). Protective factors against late-onset Alzheimer’s disease

(LOAD) (Benitez et al., 2013) and risk factors associated with

susceptibility to age-related cognitive decline in African Americans

have also been identified. Notably, the genetic architecture of

this decline appears largely similar between African American

individuals and those of European ancestry (Raj et al., 2017).

In the field of metabolic impairment, the PPP4R3A gene has

been associated with a lower probability of metabolic decline

(Christopher et al., 2017).

ROSMAP has also been instrumental in exploring associations

with other psychiatric and neurological illnesses, such as depression

(Demirkan et al., 2016), schizophrenia (Dobbyn et al., 2018),

cerebrovascular events, Lewy bodies (LB), and hippocampal

sclerosis (Farfel et al., 2016). Significant associations were

identified between WWOX gene variants and neuropathological

changes characteristic of limbic-predominant age-related TDP-

43 encephalopathy (LATE-NC), hippocampal sclerosis (HS) and

cerebral arteriolosclerosis. In addition, when exploring associations

of the WWOX variant suggestive of HS, a connection was

found between the rs55751884 variant and neuropathological

endophenotypes, as well as with neuritic plaques (Dugan et al.,

2022).

Approximately 30% of older adults are known to have the

neuropathological features of Alzheimer’s disease without signs of

cognitive impairment. A GWAS study using data from the A4

Study, ADNI, ROSMAP, and the Adult Changes in Thought Study

(ACT) performed a genome-wide analysis of AD resistance to

identify biological pathways that may protect the brain from the

downstream consequences of amyloidosis. The results implicate

genetic drivers of bile acid homeostasis, vascular and metabolic

risk factors, and neuropsychiatric conditions in Alzheimer’s disease

resilience (Dumitrescu et al., 2020).

Other associated characteristics have been studied, such as

differences in disease course by sex (Deming et al., 2018; Eissman

et al., 2022), aging and all-cause mortality (Walter et al., 2011),

handgrip and lower body strength (Matteini et al., 2016), sleep
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FIGURE 3

Genomic data metrics in ROSMAP. A subset of the ROSMAP samples (n = 1,200, representing 1,179 unique deceased participants) underwent whole

genome sequencing (WGS). DNA was extracted from brain tissue (n = 806), whole blood (n = 389), or EBV-transformed lymphocytes (n = 5). The

WGS libraries were prepared and sequenced on an Illumina HiSeq X sequencer (v2.5 chemistry) using 2 × 150 bp cycles. Variants were annotated

with population frequencies from established variant databases, including dbSNP, 1,000 Genomes, and the Exome Aggregation Consortium (ExAC)

(De Jager et al., 2018). Only 1,196 bam and bai files are available in https://www.synapse.org/Synapse:syn20068543. Also, the WGS Harmonization

study is available in https://www.synapse.org/Synapse:syn22264775. For genotyping, the majority of samples were genotyped on the A�ymetrix

GeneChip 6.0 platform at the Broad Institute’s Center for Genotyping (n = 1,204) or the Translational Genomics Research Institute (n = 674).

Additionally, 566 participants were genotyped on the Illumina OmniQuad Express platform at Children’s Hospital of Philadelphia (De Jager et al.,

2018). SNP Array data can be accessed via https://doi.org/10.7303/syn3157325.

duration and sleep characteristics (Lim et al., 2012), executive

function and processing speed (Ibrahim-Verbaas et al., 2016),

educational attainment (Okbay et al., 2016), and even associations

with physical height (Yengo et al., 2022). Derived from these

association studies, tools such as genetic risk scores (Chouraki

et al., 2016), and new functional and scalable statistical methods for

genome-wide variant modeling were developed (Chen et al., 2022).

2.2 High hroughput sequencing data
genomics

In ROSMAP, high throughput sequencing data has been

recently incorporated. Initially, sequencing of specific regions of

the genome, including codons 112 and 158 of exon 4 of the APOE

gene was carried out to analyze whether APOE genotype and

pathological changes in the brain that occur before symptoms of

AD dementia manifest could provide information on how genes

contribute to the disease. Results allowed an association between

APOE susceptibility alleles and intermediate neuropathological

genotypes to be established. This finding was integrated in

a complementary manner to other approaches, such as the

consideration of factors like copy number variants (Bennett et al.,

2009). Also, it was investigated how the 5 hmCmarker is distributed

at specific genome sites in brains of individuals with AD dementia

by sequencing at specific loci (Zhao et al., 2017). WGS (whole

genome sequencing) data was later generated from brain tissue (n

= 806), whole blood (n = 389) and EBV-transformed lymphocytes

(n = 5). More than 1,200 unique deceased participants have been

sequenced, allowing the identification of nuclear andmitochondrial

variants that affect aging-related phenotypes (De Jager et al., 2018).

Whole genome sequencing (WGS) data from the Dorsolateral

Prefrontal Cortex (DLPFC), posterior cingulate cortex (PCC),

and cerebellum (CB) of different individuals was used to profile

mitochondrial DNA (mtDNA) copy number levels and mtDNA

heteroplasmy in n = 762 ROSMAP brain samples. This study found

that lower mitochondrial count DNA (mtcnDNA) was associated

with lower cognitive performance and a more pronounced rate of

cognitive decline. These results are consistent with the idea that

high mtcnDNA is a feature of healthy mitochondrial function in

the aging brain, suggesting that mtcnDNA may be a biomarker of

aging. Furthermore, the study found that the decline in mtcnDNA

is driven by certain pathologies rather than by aging per se, and

that this decline is limited to brain regions directly affected by the

respective pathology (Klein et al., 2021). Also, in 2022, WGS data

was used to identify 3,012 copy number variants (CNVs) specific

for AD. These genes were associated with cellular glucuronidation
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processes, neuronal projection, and are potential genetic regulators

of the immune response in AD (Ming et al., 2022).

He et al. (2021) conducted a comprehensive exome analysis

on a large dataset of AD patients. They focused on variants that

influence the age of disease onset. The results of the study showed

that variants in the ERN1 and SPPL2C genes are important in

determining the age of onset of AD.

3 Transcriptomics

Transcription is a highly regulated process that ensures the

adequate gene expression at the appropriate times and context

(Lowe et al., 2017). Technologies such as RNA-seq allow the

quantification of the presence of mRNA in biological samples,

providing a view of the expression levels that characterize particular

phenotypes. Through the exploration of gene expression, it is

possible to study the impact of environmental factors on specific

genes, the involvement of intra- or extracellular stimuli in gene

expression, and the identification of regulatory elements such as

promoters or repressors, among other intriguing questions (Botero

and Arias, 2018).

The ROSMAP project has facilitated the development of studies

with different approaches, providing information from ∼3,196

RNA-seq assays from the participating individuals (https://www.

synapse.org/#!Synapse:syn338856) (see Figures 4, 5).

One of the broadest approaches that ROSMAP has allowed to

investigate has been the identification of genes related to AD or

cognitive impairment. It has been possible to identify differentially

expressed genes in various cell types (excitatory and inhibitory

neurons, astrocytes, oligodendrocytes, microglia, oligodendrocyte

progenitor cells, endothelial cells and pericytes), which when

examined in more detail have shown greater differences in early

AD, suggesting that during the onset of disease progression,

important transcriptional changes occur affecting all of the above

cell types (Mathys et al., 2019; Barbash et al., 2017).

It has been found an association between overexpression of

PADI2, ZNF385A, PSD2, and A2ML1 genes with faster cognitive

decline compared to brains where they are not overexpressed (Yu

et al., 2017). Also, increased expression of BACE1 in the neurons is

associated with AD. It has thus been argued that BACE1 contributes

to the development of pathology and symptoms associated with the

disease (Li et al., 2019).

Another approach that has yielded notable results is the

integration of transcriptomic data with other types of technology

or comparisons with other human and mouse databases for a more

complete study of the disease. The joint study of methylation and

RNA-seq allowed scientists to identify that methylation of SORL1

and ABCA7 led to a change in their expression, which in turn

was associated with the density of tau neurofibrillary tangles, while

methylation of BIN1 and its expression were associated with Aβ

burden in AD patients (Yu et al., 2015). Using ChIP-seq and RNA-

seq data, H3K27ac protein was found to decrease with age in

the brain (particularly in frontal and temporal regions) and was

associated with increased expression of inflammatory genes such

as: IL-6, TNF-α andIL-1β (Cheng et al., 2018). Furthermore, by

bringing together molecular and neuroimaging data, a relationship

was identified between the expression of hundreds of genes and the

methylation of thousands of loci with the microstructure of specific

regions in the same set of brains, i.e., a co-variation was found

between these two omics and brain structure (Gaiteri et al., 2019).

A study was conducted to illustrate the utility of combining

gene expression data with GWAS to investigate regulatory

mechanisms of genes that may contribute to complex human traits,

such as SV2A, which was found to be associated with neuroticism

or anxiety (Jurkiewicz et al., 2020). It was found that increased

expression in the prefrontal cortex of VEGF, FLT 4, FLT1, and

PGF is associated with worse cognitive trajectories and is positively

regulated in participants with AD (Mahoney et al., 2021).

3.1 miRNA studies

miRNA studies have also allowed the discovery of a

neuroprotective pathway mediated by the coordinated negative

regulation ofmiR-212 andmiR-23a that causes a positive regulation

of the SIRT1 protein which protects neurons from β-amyloid

toxicity (Weinberg et al., 2015). Such studies have also allowed

the comparison of differentially expressed genes found in aged

mouse brains with human data, supporting the upregulation of

seven of Serpine1, Plau, Hmox1, Pgf, Slc16a3, Eif4ebp1, and Lgals3

genes associated with angiogenesis and hypoxia and suggesting that

changes in these genes are linked to abnormal accumulation of tau

protein (Bennett R. E. et al., 2018). Studies have elucidated the role

of miRNA-200 and its target genes in Alzheimer’s disease (Patrick

et al., 2017).

3.2 Transcriptomic networks

Also, based on transcriptomic data, gene co-expression

networks have been constructed for males and females to identify

co-expressed AD-associated gene modules that are shared or sex-

specific. Here, LRP10 was identified as a major driver of sex

differences in AD pathogenesis andmanifestation, and experiments

were performed in mice to demonstrate its role. LRP10 was found

to differentially affect cognitive function and AD pathology as a

function of sex and APOE genotype (Guo et al., 2023).

On the other hand, AD has also been approached from network

science, studying it as the result of the complex interaction of

multiple genes, rather than attributing it to a single (or a few)

genetic abnormalities (Chen et al., 2019). This approach has

allowed scientists to identify changes in the activity of groups of

genes associated with different functions during the disease, such

as synaptic signaling, metabolism, cell cycle, survival and immune

response (Canchi et al., 2019).

Other approaches that have been explored with the use of

transcriptomics are the correlation of some diseases and their

relationship to the development of AD.

For example, the relationship between type 2 diabetes (DT2)

and Alzheimer’s dementia was explored by identifying 13 common

causal genes, 16 common causal pathways, as well as 754 gene

expression nodes and 101 gene methylation nodes associated with

both AD and DT2 in multi-omics causal networks (Hu et al., 2020).

Similarly, the effects of bile salt metabolism and bile production,
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FIGURE 4

Transcriptomic data metrics in ROSMAP. For RNA-seq, sequencing was carried out using the Illumina HiSeq2000 with 101 bp paired end reads for a

targeted coverage of 5 0M paired reads. Fastq files were re-aligned to the GENCODE24 (GRCh38) reference genome using STAR with twopassMode

set as Basic. The RNA samples used to generate the RNAseq data were also submitted to the Broad Institute’s Genomics Platform for processing on

the Nanostring nCounter platform to generate miRNA profiles for 800 miRNAs using the Human V2 miRNA codeset (De Jager et al., 2018). RNA-seq

data can be accessed via https://www.synapse.org/Synapse:syn26720676. For sc-RNA-seq, libraries were prepared using the Chromium Single Cell

3′ Reagent Kits v2 and the generated libraries were sequenced using NextSeq 500/550 High Output v2 kits (150 cycles). Gene counts were obtained

by aligning reads to the hg38 genome (Mathys et al., 2019).

as well as their role in the development of AD have been explored

(Varma et al., 2021).

Neuroticism has also been implicated as a factor that

alters the transcriptome of the DLPFC and contributes to the

development of cognitive impairment and Alzheimer’s dementia

(De Jager et al., 2018). Even in cerebral amyloid angiopathy,

the rs28660566T variant in the UNC5C gene was found to

be associated with a higher pathology score. However, it

was weakly associated with lower UNC5C expression in the

DLPFC, and no association with disease severity was found

(Yang et al., 2017). Concerning Parkinson’s disease, it has been

suggested that age and the H2 variant of the MAPT gene are

associated with an increased risk, as well as lower overall MAPT

expression (Valenca et al., 2016). Although overall inflammatory

disease risk does not appear to have a significant impact on

age-related cognitive decline, genetic variants associated with

diseases such as multiple sclerosis (MS), coronary artery disease

(CAD) and rheumatoid arthritis (RA) that affect peripheral

immune function also alter microglial density and immune gene

expression in the aging brain (Felsky et al., 2018). Also, the

relationship between prolonged periods of sleep deprivation, the

activation of astrocyte activator genes, and how this activation

conditions cognitive impairment and AD have been explored

(Kaneshwaran et al., 2019).

Biological processes such as diet, sleep and even change of

seasons have also been studied and found to be associated with

the development of AD. Li et al. (2019) conducted a study

using RNA sequencing where it was found that healthy diets

can positively regulate the expression of TCIM and MPO genes,

which have been related to educational attainment and cognitive

performance in depression in previous GWAS (Okbay et al., 2022;

Thalamuthu et al., 2022). Moreover, the CC2D2B, PDXDC2P,

and MBIP genes exhibited strong negative associations, which are

also linked to Alzheimer’s disease (AD) (Gouveia et al., 2022),

thus suggesting that healthy diets may help maintain cognition

during aging. Angiogenesis factors such as NRP1, VEGA, VEGFB,

and FLT are predisposing factor for the development of AD.

Transcriptomics has enabled us to observe interactions between

these conditions. For example, angiogenesis regulatory genes such

as NRP1 and VEGA were found to interact with APOE-ǫ4, as

patients carrying APOE-ǫ4 with higher NRP1 expression have

worse outcomes compared to patients not carrying the allele. The

role of angiogenesis-related genes as part of the pathophysiology

of AD was also observed in a study by Seto et al. (2023), who

used transcriptomic technologies to characterize brain changes in

the vascular endothelial growth factor family during aging and

AD, found that VEGFB and FLT1 expression were associated

with worse outcomes, and that microglia, oligodendrocytes and

endothelial may play a central role in these associations. Differential

gene expression analysis between AD patients and controls was

performed in both blood and brain samples using a multivariate

approach, both in the total sample and in the subgroup with APOE

genotypes. The results suggest an influence of APOE genotype on

the configuration of expression network profiles in both blood and

brain. Several genes belonging to these networks were found to be

associated with markers of vascular injury, possibly contributing to
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FIGURE 5

Distribution of individuals with RNA-seq sequencing data by brain

tissue in ROSMAP. The Dorsolateral Prefrontal Cortex (DLPFC) is the

most extensively studied region, with 1,141 specimens, followed by

the Head of the Caudate Nucleus (HCN) (749 samples), the Posterior

Cingulate Cortex (PCC) with 671 samples, the Temporal Cortex (TC)

with 125 samples, and the Frontal Cortex (FC) with 123 samples in

more than 60,607 features.

the effect of the ǫ4 allele on the integrity of the blood-brain barrier

(BBB) (Panitch et al., 2022).

4 Proteomics

Proteomics focuses on the study of protein composition,

structure, function and interactions (Al-Amrani et al., 2021).

Proteins represent an important source of pharmacological

molecular targets, and the information gathered about them

may be essential for the development of new therapies and

drugs (Robins et al., 2021). While proteomics represents a

relatively recent addition to the omics field, it possesses inherent

limitations. Notably, proteomic techniques do not directly measure

protein expression, but rather infer the abundance of known

protein isoforms based on the employed methodology. This

indirect approach arises from the challenge of quantifying protein

expression due to the complex and often inconsistent relationship

between mRNA levels and their corresponding canonical proteins

(Carbonara et al., 2021). Despite this, proteomics has had a rapid

development thanks to its therapeutic applications, such as the

identification and monitoring of pathological biomarkers and the

development of new drugs (He and Chiu, 2003).

ROSMAP has data from protein expression quantifications

of the DLPFC and other brain tissues. These samples have been

processed by liquid chromatography-selected reaction monitoring

(LC-SRM) and tandem mass labeling (TMT) (Johnson et al., 2020)

(Figure 6). This data has allowed the identification of correlations

between the influence of genetic variation with mRNA and protein

abundance on the Alzheimer’s disease phenotype (Roberts et al.,

2021), identification of changes in the expression of specific

proteins in brain regions of cognitive importance, such as the

prefrontal and temporal cortices (Johnson et al., 2022), linking

post-translational modifications that are related to the progression

of AD (Dammer et al., 2022), localizing specific brain regions with

increased vulnerability to the disease (Hsieh et al., 2019), building

protein association studies integrated with QTLs, and identifying

brain proteins that present evidence consistent with being causal

in AD (Wingo et al., 2021). Also, an analysis strategy to map

resilience-associated pathways and extend mechanistic validation

was performed. Proteomic data was generated from Brodmann

areas 6 and 37 of brain tissue and analyzed using consensus-

weighted gene correlation network analysis (WGCNA). Notably,

neuritin (NRN1), a neurotrophic factor previously implicated in

cognitive resilience, emerged as a core protein within a module

linked to synaptic biology. Functional experiments in a cellular

model of AD revealed that NRN1 protected dendritic spines from

amyloid-β (Aβ) toxicity and suppressed Aβ-induced neuronal

hyperexcitability (Hurst et al., 2023).

Intending to identify loci conferring AD risk through their

effects on brain protein abundances, results from AD GWAS

were integrated with human brain proteomes to perform a

whole proteome association study (PWAS) of AD, followed

by Mendelian randomization and colocalization analysis. Eleven

APOE4-independent genes consistent with being causal in AD

were identified, acting through their cis-regulated brain protein

abundances. Nine were replicated in a confirmatory PWAS and

eight represent novel AD risk genes not previously identified by AD

GWAS (Wingo et al., 2021)

Another study, aiming to expand the known causal proteins

for Parkinson’s disease (PD), used PWAS data from human

brain proteomes of DLPFC and applied a systematic pipeline

through multi-omics analysis. It described that GPNMB showed

a genetically causal role for PD, and that DGKQ and CD38 may

have a protective function. Causally related proteins were found in

blood and in the cerebrospinal fluid (CSF). This study suggested

that GPNMB, CD38, and DGKQmay act in the pathogenesis of PD

(Gu et al., 2023).

Pathak et al. (2022) employed mRNA integration, alternative

splicing analysis, and proteomic profiling of the DLPFC to

characterize the biological heterogeneity of post-traumatic

stress disorder (PTSD) symptom clusters. Using a systems-

biology approach, their investigation identified genes associated

with specific PTSD symptoms—reexperiencing, hyperarousal

and avoidance—presentations of the disease. They used three

regulatory models—TWAS, SPWAS, and PWAS—resulting in the

identification of 30 unique gene associations at 19 independent

genomic regions across the three PTSD symptom clusters.

Seven genes (KHK, CGREF1, RBM6, MAPT, CRHR1, RNF123,

ARHGAP27) were common to all the three PTSD symptoms, while

one (RBMX1), seven (EXOC6, CDC14B, CTNND1, SERGEF,

CEP57, WNT2B, B3GALTL), and nine (HARS2, PDLIM2,

TSFM, RAB27B, MAPRE3, NDUFA2, PCDHA7, TPM3, NCK1)

were distinct to Reexperiencing, Hyperarousal and Avoidance,

respectively.

Studies using proteomic technologies have contributed

significantly to our understanding of neurodegenerative diseases

and cognitive aging, providing a clearer picture of the biological
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FIGURE 6

Proteomic data metrics in ROSMAP. LC-SRM and TMT-MS proteomics was performed using frozen tissue from dorsolateral prefrontal cortex (DLPFC).

In LC-SRM, the abundance of endogenous peptides was quantified as a ratio to spiked-in synthetic peptides containing stable heavy isotopes. For

TMT, MS2 spectra were searched against the UniProtKB human proteome database containing both Swiss-Prot and TrEMBL human reference protein

sequences (90,411 target sequences), plus 245 contaminant proteins. Both TMT quantitation and LC-SRM data can be accessed via https://www.

synapse.org/Synapse:syn17008935.

processes involved. These findings have important implications

for diagnosis, patient stratification, and the development of

targeted therapies for conditions such as AD and mild cognitive

impairment (Roberts et al., 2021). Collectively, these experiments

highlight the value of integrating human brain proteomic data

with model systems. This integrated approach has the potential to

help elucidate the mechanisms that contribute to brain resilience

in the face of pathology and ultimately guide the prioritization of

therapeutic interventions.

5 Epigenetics

Epigenomics refers to the collection and study of chemical

and protein modifications that act upon DNA to regulate gene

expression without modifying the underlying genetic sequences

(Kato, 2022). Histone modifications, non-coding RNA regulation,

chromatin remodeling, and DNA methylation are the main areas

of current understanding regarding the role of epigenetics in the

mechanism of AD (Liu et al., 2018; Kundaje et al., 2015).

In ROSMAP, epigenetic data is obtained through

ChIP-seq experiments (Klein et al., 2021) and Illumina

HumanMethylation450 BeadChip technology (De Jager et al.,

2014) (Figure 7). This data has enabled epigenetic clock analysis, a

mathematical tool that links DNA methylation patterns with the

chronological age of individuals. This approach makes it possible

to estimate the biological aging of an individual based on epigenetic

patterns, which provides valuable information about his or her

health and aging process (Grodstein et al., 2021; Horvath et al.,

2016).

The study led by Grodstein et al. (2021) provides a view

of the relationship between DNA methylation and brain

aging. It highlights the importance of considering common

neuropathologies when analyzing age-related epigenetic

modifications. Although more than half of the participants

received a diagnosis of AD, no correlation was found between

epigenetic clock age and conditions such as atherosclerosis,

arteriolosclerosis, or cerebral amyloid angiopathy. This finding

emphasizes the relevance of adjusting analyses for the presence of

common neuropathologies when exploring associations between

DNA methylation and age, as evidenced in an earlier study (Yang

et al., 2015). It was also shown that adjustment for common

neuropathologies significantly reduced the number of age-related

CpG sites, and variability in the direction of the associations was

observed, with most of the significant sites being hypomethylated.

On the other hand, the study conducted by Thrush et al. (2022)

used DNAmethylation data from 450 K and EPIC arrays, excluding

CpG on sex chromosomes, to develop a multi-region methylation

clock that estimated brain age in the context of AD. The brain

age predictor demonstrated a strong correlation with chronological

age and provided accurate information in multiple brain regions,

revealing potential as a biomarker of AD. In addition, gene set

enrichment analyses (GSEA) identified CpG and related genes,

providing insights into themolecularmechanisms underlying brain

aging and AD.

Taken together, these findings contribute to the understanding

of epigenetic dynamics in the brain aging process and reinforce the

need to consider the influence of common neuropathologies when

interpreting age-related epigenetic modifications in the human

brain. Furthermore, they highlight the utility of methylation-based

clocks in understanding the relationship between brain aging

and AD.

In an effort to gain insight into the interactions between

methylation and transcriptomic and proteomic networks in AD,

Frontiers inNeuroinformatics 09 frontiersin.org

https://doi.org/10.3389/fninf.2024.1443865
https://www.synapse.org/Synapse:syn17008935
https://www.synapse.org/Synapse:syn17008935
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Pérez-González et al. 10.3389/fninf.2024.1443865

FIGURE 7

Epigenetic data metrics in ROSMAP. For H3K9Ac ChIP-Seq, the Millipore anti-H3K9Ac mAb was used for chromatin immunoprecipitation experiment

can be found in Synapse:syn4896408. H3K9Ac ChIP-Seq Methylation data can be found in Synapse:syn3157275.

270 differentially methylated regions were identified in postmortem

AD-associated brains. The results revealed that methylation

significantly impacts AD-associated gene/protein modules and

their key regulators, such as TNPO1. This suggests that methylation

plays a crucial role in the regulation of primary network drivers and

their downstream genes (Wang et al., 2023).

Other Epigenome-Wide Association Study (EWAS) using

ROSMAP found 130 CpGs (including 57 novel ones) and twelve

genetic regions, such as ANK1 and BIN1, significantly associated

with amyloid burden. DNA methylation in some regions was

linked to gene expression and positive correlations were observed

between neuropathological burden, age, gender and educational

level. DNA methylation in the BIN1, SPG7, RHBDF2, and GMDS

genes was positively associated with their expression, whereas

DNA methylation in the PODXL gene was inversely associated

with their expression (Palma-Gudiel et al., 2023). On the other

hand, a region of hypermethylation in the prefrontal cortex and

superior temporal gyrus associated with AD was identified. This

region, which encompassed the HOXA gene cluster, showed

consistency across different cohorts. Braak’s meta-stage analysis

revealed increased DNA methylation in the prefrontal cortex. In

addition, a significant correlation was found between methylation

in the HOXA gene region and the ANK1 gene, suggesting a key role

of hypermethylation in AD progression (Smith et al., 2018).

In addition, the integration of genetic, epigenetic and

transcriptional data has allowed the identification of components

involved in cognitive resilience, such as UNC5C, ENC1, and

TMEM106B (White et al., 2017). It has also contributed to the

development of a multi-omics atlas of the parahippocampal gyrus

in AD, ranging from whole genome sequencing to cell type-

specific RNA and ATAC-seq data. These data are intended to

drive the development of new therapies and biomarkers for AD

by providing a public resource on the Synapse platform for

the research community. The integration of multi-omics data

reveals detailed signaling maps of regulatory cascades in AD,

highlighting associations between DNA methylation, chromatin

accessibility, transcription and translation. Furthermore, AD-

associated methylomic changes, differentially methylated regions

(DMRs) correlated with gene and protein expression levels were

identified, and a global methylation score was developed to quantify

their impact on individual genes and proteins. Causal inference

evidence suggests that DMRs influence gene/protein expression

through ATAC peak domains in AD (Coleman et al., 2023).

In summary, studies conducted within the framework of

ROSMAP and other EWAS have provided valuable contributions

to understanding the complex relationship between DNA

methylation, brain aging and AD. Taken together, these

findings contribute to the formation of a more comprehensive

understanding of epigenetic dynamics in brain aging and

neuropathological processes, underscoring the importance

of interdisciplinary approaches to address the challenges of

neuro-epigenetic research.

6 Metabolomics

Metabolomic profiling offers significant potential for

uncovering dysregulations in biochemical pathways linked to

dementias. Increasing evidence indicates that these dementias may

result from underlying metabolic abnormalities (Horgusluoglu

et al., 2022; Varma et al., 2021).

To understand the metabolic changes that occur during

diseases of aging, the ROSMAP project has generated data

from DLPFC tissue and serum samples (Figure 8). These
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FIGURE 8

Metabolomics data metrics for ROSMAP. The Biocrates AbsoluteIDQ p180 platform (Biocrates AG, Innsbruck, Austria) was used for this Biocrates

p180 assay. It is a multiplexed targeted metabolomic assay covering 188 metabolites, including hexoses, amino acids, biogenic amines,

acylcarnitines, glycerophospholipids and sphinoglipids. An ultra-performance liquid chromatography couple to tandem mass spectrometry

(UPLC-MS/MS) system (ACQUITY UPLC-Xevo TQ-S, Waters Corp., Milford, MA) was used to quantitate bile acids. Metabolon assay methods utilized a

Waters ACQUITY ultra-performance liquid chromatography (UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer

interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass resolution. Metabolomics data

can be accessed via https://www.synapse.org/Synapse:syn10235592.

include Biocrates p180 assays, which analyze metabolites

from various classes such as hexoses, amino acids, biogenic

amines, acylcarnitines, glycerophospholipids, and sphingolipids.

Additionally, Metabolon HD4 assays, UHawaii Bile Acids assays,

mass spectrometry (Morgenstern et al., 2022), ultra-performance

liquid chromatography triple quadrupole mass spectrometry

(UPLC-TQMS), and gas chromatography time-of-flight mass

spectrometry (GC-TOFMS) have been conducted on both living

and non-living individuals (Wang et al., 2020).

In a diagnostic evaluation of F2-isoprostane as a potential

biomarker for dementia in vivo, isoprostane levels were quantified

in plasma and urine samples obtained from 222 participants

encompassing a spectrum of cognitive health, including healthy

controls and individuals with established dementia diagnoses.

Gas chromatography-mass spectrometry (GC-MS) served as the

analytical method to assess these levels. Notably, the findings

did not reveal a significant discriminatory power of plasma or

urinary isoprostane levels in differentiating between individuals

with and without cognitive impairment (Mufson and Leurgans,

2010). Furthermore, to characterize the metabolic landscape

and its association with neuropathology and cognitive function,

metabolic profiling was employed in both brain andmatched serum

samples. The abundances of six metabolites, glycolithocholate

(GLCA), petroselinic acid, linoleic acid, myristic acid, palmitic

acid, palmitoleic acid and the deoxycholate/cholate (DCA/CA)

ratio, along with the dysregulation scores of three metabolic

pathways, primary bile acid biosynthesis, fatty acid biosynthesis,

and biosynthesis of unsaturated fatty acids showed significant

differences across both brain and serum diagnostic groups.

Moreover, the identified metabolite abundances and personalized

metabolic pathway scores were leveraged to construct machine

learning models capable of differentiating individuals with and

without cognitive impairment. This approach underscores the

potential of metabolomics as a diagnostic tool for cognitive decline

(Wang et al., 2020).

The progression of AD is associated with low levels of short-

chain acylcarnitines, as well as several amines and amino acids,

whereas there is a strong correlation between high levels of

medium-chain acylcarnitines and the composite memory score on

the Mini-Mental State Exam. In a study that used ROSMAP as

replication cohort, researcher showed acylcarnitines and amines are

highly correlated with AD clinical outcomes and further reveal key

biological drivers and pathways that are involved in metabolomic

changes in mild cognitive impairment and AD (Horgusluoglu et al.,

2022).

7 Multiomics

The independent analysis of different types of omic data

is often restrictive for the detection of consistent variations

in different levels of information with explanatory potential

between them. Multiomics studies explore the multidimensional

interactions between various levels of information from omics

technologies, offering a holistic perspective of biological processes

Figure 9. These studies enable the elucidation of complex system

descriptions and facilitate the advancement of medical and

biological knowledge (Song et al., 2020).
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FIGURE 9

Each of the omics layers provides a distinctive set of data that, when integrated and analyzed together, allows a deep understanding of biological

processes. This integrated approach facilitates the identification of new interactions between di�erent omics levels, the discovery of

endophenotypes at multiple levels, the elucidation of complex traits, and the study of interactomics. Thus, multi-omics analyses provide a holistic

and comprehensive view of brain biology, opening new avenues for biomedical research.

The interplay between various layers of molecular regulation,

encompassing genetics, epigenetics, mRNA expression (Tasaki

et al., 2022), proteomics (Xie et al., 2020), and metabolomics

(Iturria-Medina et al., 2022) collectively contributes to the

pathogenesis of age-related neurological disorders (Figure 8).

Multiomics data has the potential to more accurately represent

the traits of AD patients from a variety of uncorrelated angles

when compared to single data (Gao Y. et al., 2022). A key

strength of ROSMAP omics data lies in its versatility for

integration across different levels and modalities. This potential

has been demonstrated in numerous studies that leverage

data from multiple omics technologies. For instance, research

aimed at identifying novel therapeutic targets and compounds

for AD treatment and prevention has employed integrative

strategies. These strategies combine disciplines such as systems

biology, proteomics, and functional validation alongside molecular

screening techniques, all while utilizing diverse omics data types

(Bennett et al., 2014).

Also, through a multistep analysis of clinico-cognitive,

neuropathological, genomic, epigenomic and transcriptomic data,

genes related to the dissociation of cognition and neuropathology

have been identified. For example ENC1, UNC5C, and TMEM106B

have been suggested as determinants of cognitive resilience in

the aging population affected by Alzheimer’s disease, stroke and

other neuropathologies (White et al., 2017). To better understand

the specific effects of the APOE gene in the pathogenesis

of AD, Madrid et al. (2021) analyzed and integrated publicly

available data from multiple omics technologies from both plasma

and brain stratified by APOE haplotype (APOE2, APOE3, and

APOE4). Combining genome-wide association studies (GWAS)

with differential analyses of protein and mRNA expression and

single core transcriptomics from multiple cohorts that included

ROSMAP, genes and pathways that contribute to AD in both an

APOE-dependent and APOE-independent manner were found.

A study using DNA methylation and RNA-seq suggested that

epigenetically regulated expression of the MGMT (Methylated-

DNA-protein-cysteine methyltransferase) gene, involved in DNA

damage repair function, is significantly associated with the

development of the hallmark AD proteins amyloid-β and tau,

especially in women (Chung et al., 2023).

The functional relevance of results from a genome-wide

association study (GWAS) of verbal declarative memory (VDM)

has also been analyzed by integrating multi-omics data from

twenty-seven cohorts comprising individuals of Caucasian descent.

The results add to the growing evidence implicating the regulation

of expression, immunity, and insulin deficiency in memory

impairment (Mei et al., 2024).

Mei et al. (2024) conducted a comprehensive analysis of how

genetic variations identified by genome-wide association studies

(GWAS) affect verbal memory. Delayed verbal declarative memory
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(VDM) performance is a key predictor of Alzheimer’s disease

(AD). The study aimed to discover new strategies for treating or

preventing memory loss in older adults with dementia. To achieve

this, the researchers analyzed and integrated multi-omics data from

twenty-seven cohorts of individuals of Caucasian descent. Nineteen

of these cohorts included individuals without dementia or stroke,

while the remaining eight included participants without stroke, but

their dementia status was not available.

The study found that genetic associations with VDM influence

the regulation of gene expression through expression quantitative

trait loci (eQTL) and methylation quantitative trait loci (meQTL).

These genetic variations may affect gene expression in the brain,

impacting memory performance and the risk of developing

Alzheimer’s disease, particularly through immune mechanisms.

7.1 Multiomics network analysis in systems
biology

In recent years, the use of systems biology with multiomics

approaches has been implemented to address diseases of aging,

for example, by inferring interactions between regulatory elements

capturing genetic and epigenetic influences on expression in

older adults. One of the most widely used approaches has

been biological networks. In this context, predictions using local

regulatory networks (LRNs) have identified a specific set of

largely neuronal genes, such as STAU1 and SEMA3F, that are

predicted to control cognitive decline in older adults (Tasaki et al.,

2018). In another work, a constrained modularity model was

proposed to jointly analyze genotype, gene expression and protein

expression data, which was tested on ROSMAP multiomics data,

identifying a functionally connected subnetwork including 276

multiomics biomarkers, including SNPs, genes and proteins. The

results suggest that impaired cognitive performance in AD patients

may potentially be the result of genetic variations due to their

cascading effect on the transcriptome and proteome (Xie et al.,

2020). Another work with a network approach in which ROSMAP

was used as a replication cohort. Probabilistic causal models have

been also constructed that allowed the detection, prioritization

and replication of high-confidence master regulators of AD-

associated networks, including the predicted master regulator, the

neuropeptide VGF (VGF nerve growth factor inducible), which was

also validated in murine models. These findings support a causal

role of VGF in protection against AD pathogenesis and progression

(Beckmann et al., 2020).

By employing a coexpression network approach in four cortical

areas and subsequently integrating with animal models, researchers

have identified critical gene subnetworks associated with late-onset

Alzheimer’s disease (LOAD). ATP6V1A has been proposed as a

key regulator within a specific neuronal subnetwork particularly

affected by this disorder (Wang et al., 2021). Another investigation

employing rigorous multi-step validation has yielded consistent

findings. This work demonstrates global deregulation of the

sphingomyelin pathway at the gene expression level across all brain

regions examined in AD patient samples. Notably, the expression

of 20 out of 35 genes encoding key enzymes within this pathway

was found to be significantly dysregulated in the AD population

(Baloni et al., 2022). Other works have also explored regulation

and co-expression networks to evaluate cerebrovascular effects

of APOE genotypes (Panitch et al., 2022), and identification of

master transcription factors in AD, where possible key factors in

Alzheimer’s disease have been discovered, such as the JMJD6 gene,

which was also validated in an animal model (Merchant et al.,

2023).

In microglia, marker genes such as CEBPB, STAT3, and SPI1

have been identified, which could act as mediators in the alterations

in gene regulation associated with AD, exerting a significant

impact on its pathogenesis. This work was conducted by analyzing

single-nucleus RNA sequencing (snRNA-seq) and bulk brain

RNA sequencing (RNA-seq). Using this approach, immunotherapy

targeting drug-core transcription factors (TFs) was found to be

significantly different among AD patients (Gao W. et al., 2022).

Molecular subtyping of brain tissue enables a better

understanding of the heterogeneity in neurodegenerative diseases.

To perform molecular brain tissue ad subtyping by multiple

analyses, DLPFC samples were analyzed at five levels, including

RNA-seq, DNA methylation, histone acetylation, proteomics

and metabolomics to which a fusion of unsupervised similarity

networks was applied. This is a method capable of simultaneously

integrating multiple modalities of high-dimensional multiomics

data. This study supports that expression (RNAseq) and epigenetic

(H3K9ac) patterns demonstrate variability patterns more aligned

with cognitive decline (Yang et al., 2023). Another recent study

identified genetic modules in networks (including 263 genes) that

were related to the integrated aging measurement of six molecular

clocks, as well as three neurological traits of AD (i.e., β-amyloid,

Tau tangles and tangle density) and age. Among the 20 key genes

with superior intramodular connectivity of the module, PBXIP1

was the only one that was significantly associated with the three

neuropathological traits of AD at the protein level (Zhang et al.,

2024).

Integration of Multiomics Data from ROSMAP with

Automated Learning Models Advances in machine learning

models are transforming disease classification through the analysis

of molecular data, which is especially relevant in the context

of complex diseases characterized by a dispersed molecular

background. Effective training of these tools demands the

availability of extensive and meticulously described databases.

In this context, ROSMAP has been frequently used, obtaining

encouraging results in the multiomics classification of both

healthy and disease-affected individuals. Several approaches

that use data from DNA methylation, RNA-seq, microarrays

and/or miRNAs have been proposed, such as the integrative

copula discrimination analysis (ICDA) which can make diagnostic

predictions (He et al., 2020), or the generalizable model called

Multi-Omics Graph cOnvolutional NETworks (MOGONET)

that uses graph convolutional networks (GCN), which achieved

the identification of mRNA, DNA methylation and miRNA

expression biomarkers (Wang et al., 2021). Other tools that

have used multiomics data from the cohort for classification is

the Multi-task Attention Learning Algorithm for Multi-omics

Data (MOMA), which vectorizes features and modules using

a geometric approach and focuses on important modules in

the data through an attention mechanism (Moon and Lee,

2022); DeepOmicsAE, an optimized workflow for proteomics,

Frontiers inNeuroinformatics 13 frontiersin.org

https://doi.org/10.3389/fninf.2024.1443865
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Pérez-González et al. 10.3389/fninf.2024.1443865

metabolomics and clinical data set analysis (Panizza, 2023);

iNTEgrate, which integrates transcriptome and DNA methylation

data into a single gene network (Sajedi et al., 2023); GREMI, which

uses mRNA, methylation and miRNAs (Liang et al., 2023); an

Explainable variational autoencoder (E-VAE) classifier model,

which uses genome-wide SNPs and RNAseq data (Vivek, 2023);

MOSEGCN, a deep learning multi-omics integration model for

the classification of complex diseases (Wang et al., 2024); and

TEMINET, that uses intra-omic features to build disease-specific

care networks (Luo et al., 2024).

Advanced machine learning analysis models of multiomics

molecular data from postmortem brain and blood in vivo have

already been used to obtain personalized multilevel molecular

indices of AD dementia progression to predict the severity of

neuropathologies. For example, one study identified three robust

molecular-based subtypes that explain much of the pathological

and clinical heterogeneity of AD. These subtypes exhibited different

profiles of alterations in the methylation of DNA, RNA, proteins

and metabolites, which are detectable in both brain tissue and

blood samples (Iturria-Medina et al., 2022). Another example

is the work of Khullar and Wang (2023), who performed an

integrative multiomics analysis to predict gene regulatory networks

for three main brain regions: Hippocampus, Lateral Temporal

Lobe (LTL), and DLPFC. A list of six AD-COVID relationship

candidate genes was identified to predict the severity of COVID.

Their ability to predict AD was evaluated, and it was demonstrated

that they are also predictors of AD severity, as they outperformed

their respective benchmark models and showed promising clinical

potential for predicting immune dysfunction, inflammation, AD,

and severe/neurological COVID.

7.2 Harmonization of data between
multiomics cohorts of aging and
neurodegenerative diseases study

Harmonization has been carried out not only between

omics data, but also between cohorts with related omics

information. Such is the case of The Whole Genome Sequence

Harmonization Study (WGS_Harmonization) (https://adknow

ledgeportal.synapse.org/Explore/Studies/DetailsPage/StudyDetails?

Study=syn22264775), and The RNAseq Harmonization Study

(rnaSeqReprocessing) (https://adknowledgeportal.synapse.org/Ex

plore/Studies/DetailsPage/StudyDetails?Study=syn9702085) which

harmonize WGS and RNA-seq data from three longitudinal

cohorts ROSMAP, MSBB and MayoClinic with aging, dementia

and AD foci, giving a total of 1,796 individuals with RNA-seq data

from tissues such as cerebellum, temporal cortex-frontal pole,

inferior frontal gyrus, parahippocampal gyrus, prefrontal cortex,

superior temporal gyrus, DLPFC, frontal cortex, head of caudate

nucleus and posterior cingulate cortex, 1,872 individuals with

WGS data, and 1,501 subjects with both RNA-seq and WGS data.

This synergistic approach empowers researchers to achieve

more accurate, reliable, and generalizable results. It is primarily

facilitated by two key aspects: a substantial increase in the

number of samples accessible for investigation, and the enrichment

of analyses through the inclusion of diverse tissue types. The

harmonization of these data is expected to improve the confidence

of the findings validity, by improving the interpretation related to

missing information.

8 Concluding remarks

The ROSMAP initiative has significantly contributed to the

understanding of Alzheimer’s disease through its comprehensive

integration of various omic datasets. By leveraging genomics,

transcriptomics, proteomics, metabolomics, epigenomics, and

multiomics, ROSMAP has given great tool to elucidate the intricate

molecular interactions that occur in the context of ND and

aging. Omics research, combined with clinical variables and tools

such as imaging, has significantly advanced our understanding

of the pathophysiological mechanisms underlying Alzheimer’s

disease. This integration has provided new insights into potential

diagnostic markers and therapeutic targets. The extensive and

longitudinal nature of the ROSMAP data highlights the importance

of multi-dimensional approaches in unraveling the complexities

of neurodegenerative diseases. This comprehensive strategy paves

the way for more effective interventions and improved clinical

outcomes for individuals affected by neurodegenerative diseases

such as Alzheimer’s disease, Parkinson’s disease, and psychiatric

conditions like PTSD, depression, anxiety, among others affecting

the aged brain.

There are still various aspects that can be explored using

the ROSMAP database. For example, metabolomics, a highly

complex discipline, has been relatively underexplored in ROSMAP

studies. This may be due to the significant technical and

analytical challenges associated with studying a broad spectrum

of metabolites with diverse chemical properties. Additionally,

external factors like diet and lifestyle can affect metabolite

concentrations, complicating result interpretation. It would be

interesting to explore metabolomic data further and obtain

information from other areas of the brain and different body

parts in both living and deceased individuals to complement the

landscape of metabolites involved in neurodegenerative diseases.

Although epigenetic studies have been conducted, the interaction

between epigenetics and other omics data remains underexplored.

Utilizing integrative approaches to combine epigenetic data with

transcriptomic and proteomic data can help identify how epigenetic

modifications influence gene expression and protein production in

the context of neurodegenerative diseases. The implementation of

machine learning algorithms and big data techniques can facilitate

this integration and help uncover new biological connections.

Studies such as De Jager et al. (2014) have begun to explore these

interactions, but more in-depth research is needed.

Current studies predominantly focus on genetic and biological

factors, underestimating the importance of environmental and

lifestyle factors. Collecting data on environmental and lifestyle

factors can be laborious and costly. Moreover, these factors often

require long-term longitudinal studies to be adequately assessed.

The lack of resources and the necessary infrastructure to carry out

these studies can be a significant limitation. Collect detailed data

on participants lifestyle, diet, physical activity, and environmental

exposure, and analyze the interaction between these factors and

omics data. This could include the use of detailed questionnaires
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and wearable devices to monitor physical activity and other

health parameters. Including these variables could provide a more

comprehensive understanding of the multifactorial etiology of

Alzheimer’s disease. Studies such as Livingston et al. (2017) suggest

that lifestyle and environmental factors play a crucial role in

the development of Alzheimer’s, indicating the need for further

research in this area.

Single-cell RNA sequencing (scRNA-seq) is another approach

that has recently emerged as a powerful tool for investigating

cellular biology at an unprecedented resolution and is expected

to have a significant impact on understanding molecular

pathophenotypes. As in other cases, scRNA-seq studies have been

limited to the dorsolateral prefrontal cortex (DLPFC). Limitations

in accessing other brain regions and the viability of post-mortem

cells may restrict studies to the DLPFC. There might also be a bias

toward this region due to the availability of standardized protocols

and methods for DLPFC analysis.

Expanding the use of scRNA-seq to other brain regions such as

the hippocampus, amygdala, and entorhinal cortex, which are also

implicated in Alzheimer’s disease, is crucial. Additionally, using

scRNA-seq to study cellular heterogeneity and changes in gene

expression in different cell types, such as neurons, astrocytes, and

microglia, across multiple brain regions could provide a more

comprehensive view of neurodegenerative pathologies. Recent

studies, such as those by Mathys et al. (2019) and Grubman

et al. (2019) have demonstrated that scRNA-seq can reveal specific

cellular subpopulations and their roles in neurodegenerative

diseases, suggesting the need for further exploration in other brain

regions. Further advances on single cell technologies have indeed

allowed for comprehensive and highly detailed characterization

of the AD molecular phenotype in more specific brain regions

(Mathys et al., 2024).

However, since the majority of publicly available omics data

has focused predominantly on non-Hispanic white subjects, it is

crucial to address the existing disparity in research representation.

Initiatives such as the Research in African American Alzheimer’s

Disease Initiative (REAAADI) (Akgun et al., 2022) and the

Asian Cohort for Alzheimer’s Disease (ACAD) (Ho et al.,

2024) are emerging to conducting research within non-Hispanic

white communities, focusing initially on the genetic level. Other

initiatives are conducting multi-omics studies in Native American

populations (Reddy et al., 2024). By expanding research to include

a broader spectrum of ethnic and racial groups, we can improve

the generalizability of findings and enhance the development of

targeted therapeutic interventions for all populations.

The utilization of omics technologies has proven critical in

the study of Alzheimer’s disease and mild cognitive impairment.

However, to comprehensively understand the underlying biological

processes and disease mechanisms, it is imperative to integrate

multi-omics data with additional datasets. This includes clinical

assessments, imaging studies, cognitive performance metrics, and

data from other parts of the body besides the brain, such as

blood-based biomarkers, which are particularly important for

developing ante mortem diagnostic methods. There are initiatives

like CLARiTI that aim to enhance the ability to study the

neurobiology of AD and other dementia using advanced imaging

techniques such as MRI and PET, creating a standardized protocol

for the analysis of imaging and blood biomarkers, facilitating data

sharing among researchers and improving medical practice (For

Clarity in ADRD Research Through Imaging, 2023). Research on

blood biomarkers has also been limited compared to tissue-based

studies. Blood biomarkers might be less specific and sensitive

than those derived from brain tissues, with systemic factors

influencing their levels and complicating interpretation. Increasing

research on blood biomarkers through advanced proteomics and

metabolomics techniques, and longitudinal studies correlating

these biomarkers with Alzheimer’s clinical progression, could

validate their diagnostic utility. Combining blood biomarker

data with clinical and omic data could improve diagnostic

accuracy and disease monitoring. Integrating multi-omics results

with various available databases within the same system will

enable the identification of variables that may influence specific

Alzheimer’s phenotypes. This comprehensive strategy not only

advances our understanding of the disease but also aids in

the development of more targeted and effective diagnostic and

therapeutic interventions.

As omics technologies continue to evolve, their integration with

clinical research will be paramount in driving forward the field of

neurodegenerative disease research and ultimately improving the

lives of those afflicted by these debilitating conditions.
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