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A Commentary on

Accelerating spiking neural network simulations with PymoNNto and

PymoNNtorch

by Vieth, M., Rahimi, A., Gorgan Mohammadi, A., Triesch, J., and Ganjtabesh, M. (2024). Front.
Neuroinform. 18:1331220. doi: 10.3389/fninf.2024.1331220

1 Introduction

In a recent paper introducing the PymoNNto and PymoNNtorch simulators, Vieth

et al. (2024) compare their own simulators to several publicly available simulation

codes using two different neuronal network models. They report that “the native NEST

implementation consistently generates slightly fewer spikes in comparison with the other

simulators” for their LIF neuron network model (see their Supplementary Figure S2) but

do not investigate this issue beyond confirming that the discrepancy is not caused by the

use of double-precision numerics in NEST.

This commentary shows that the observed difference in firing rate is due to an

unsuitable numerical integration scheme used in the other simulators while NEST creates

the correct model dynamics.

2 Results

Vieth et al. (2024) study a weakly coupled all-to-all network of K excitatory neurons

driven by individual random input. The plasticitymechanism in the network is not relevant

to the numerical issues investigated here and thus left out. Generalizing the equations of

the original paper slightly, the membrane potential of an individual neuron k is given by

v̇(k)(t) = −
v(k)(t)

τ
+

I
(k)
ext(t)+ I

(k)
syn(t)

C
(1)
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with membrane time constant τ and capacitance C. The membrane

potential is reset to v(k) = 0 when v(k) = θ and there is no refractory

time. The external input current is defined by

İ
(k)
ext(t) =

(

U[Imin, Imax)− I
)

δ(t − jh) (2)

is a piecewise constant current with a new amplitude chosen from

a uniform distribution at fixed time intervals h. The recurrent

synaptic input is

I(k)syn(t) =
∑

l,i

wklδ(t − t(l,i) − d) (3)

with uniformly distributed synaptic weights wkl ∼ U[0, 1/K)mV,

the synaptic delay d, and t(l,i) representing the time of the ith spike

fired by neuron l.

For the parameters used by Vieth et al. (2024),1 the mean input

current is µ = 1
2 pA with variance σ 2 = 1

12 pA
2, and the average

synaptic weight w = 1
2K mV = 5 · 10−5 mV. In this regime, spiking

activity is mainly driven by external input with an average firing

rate between 100ms and 295ms of 11.6 sp/s for the full model and

9.9 sp/s without any connections.

We consider first an individual neuron driven by external

noise only. Dropping unnecessary subscripts and discretizing the

dynamics on the fixed time grid tj = jh at which the input current

takes on new random values Ij, Equation 1 becomes

vj+1 = βvj + αIj . (4)

The coefficients α and β depend on the numerical integration

method chosen.

Equation 4 will provide the exact solution of Equations 1 and 2

if we use the exact integrationmethod (Rotter andDiesmann, 1999)

for which

α =
τ

C

(

1− e−h/τ
)

≈ 0.952 (5)

β = e−h/τ ≈ 0.905 . (6)

In the specific case of piecewise constant input over the

integration step as in the given model, this method is equivalent to

the exponential integration by MacGregor (1987, Ch. 14.C.5). We

will use this solution as reference.

The coefficients for the forward Euler method are

α =
h

C
= 1.0 (7)

β = 1−
h

τ
= 0.9 . (8)

For first-passage time problems for the process defined by

Equation 4 in combination with a spiking threshold, closed-form

solutions exist for noise symmetric to the origin (Larralde, 2004),

while only bounds are known for more general cases as studied here

(Novikov and Kordzakhia, 2008).

1 K = 104, τ = 10ms, C = 1pF, h = d = 1ms, Imin = 0pA, Imax = 1pA,

θ = 6mV.

We thus consider the free membrane potential in the absence

of a threshold. Assuming v0 = 0, we obtain by repeated application

of the update equation

vj+1 = α

j
∑

k=0

βkIk , (9)

where we have renumbered the random currents Ik, exploiting

their independence. Averaging over currents and taking the limit

j → ∞, we obtain the mean membrane potential and its standard

deviation

〈v〉 =
α

1− β
µ =

τ

C
µ = 5mV (10)

√

〈1v2〉 =
α

√

1− β2
σ 2

=







τσ
C

√

1−e−h/τ

1+e−h/τ ≈ 0.645mV (exact integration)

τσ
C

√

h
2τ−h

≈ 0.662mV (forward Euler) .
(11)

The broader distribution of the free membrane potential in

the case of forward Euler integration (8.1% more probability mass

above threshold θ) suggests that neurons will fire more frequently.

This is supported by simulations below.

We confirm this observation quantitatively through numerical

Markov analysis. This analysis is in principle continuous in time,

but as the noise in the network model switches in intervals h, we

consider only time points at which the noise changes. Given vk,

the smallest possible vk+1 is obtained for I = Imin during the time

step and the largest for I = Imax. In between the maximum and

minimum possible values, any value of vk+1 is attained with equal

probability. We can thus write the free transition probability for the

membrane potential as

p̂(v′|v) =















0 if v′ < αImin + βv ⇔ v > (v′ − αImin)/β
1

τ (Imax−Imin)
else

0 if v′ > αImax + βv ⇔ v < (v′ − αImax)/β

(12)

=
1

τ (Imax − Imin)

[

2

(

v−
v′ − αImin

β

)

−2

(

v−
v′ − αImax

β

)]

(13)

where 2(x) is the Heaviside step function. To include the effect of

the spiking threshold θ , we define

p(v′|v) =















p̂(0|v)+
∫ ∞
θ

p̂(v′|v)dv′ v′ = 0

0 v′ > θ

p̂(v′|v) else.

(14)

Here, the integral in the first clause describes neurons re-

inserted at the reset potential after spiking, and the corresponding

probability is removed for superthreshold v′ by the second clause.

If qk(v) is the membrane potential distribution at time step k,

then the distribution at step k+ 1 is given by

qk+1(v
′) =

∫ ∞

−∞

p(v′|v)qk(v)dv . (15)
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FIGURE 1

(A) Stationary membrane potential distributions q(∞)(v) for exact integration (simulation: orange, Markov analysis: red) and forward Euler (simulation:
light blue, Markov analysis: dark blue). Simulation data are for a single simulation of 1, 000 s duration; bin width 0.01mV. The dotted lines in the
bottom-left inset mark α = 0.952 for exact integration and α = 1.0 for forward Euler, respectively, indicating the di�erence in the first update step
after reset to v = 0mV. (B) Relative di�erence in membrane potential distributions between exact integration and forward Euler. The peak near 1mV
is due to the di�erence in the first step after reset. (C) Population activity (1ms bins) for simulations with NEST (orange) and Brian2 using delta
synapses (blue: forward Euler, purple: exponential Euler); data from a single simulation with 10,000 neurons.
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It will converge to the stationary membrane potential

distribution q(∞)(v) under reasonable assumptions about p(v′|v)

(Lasota and Mackey, 1994). The firing probability for an interval

h is given by the integral term in Equation 14, yielding the steady-

state firing rate

r(∞) = h

∫ θ

−∞

[

p(0|v)− p̂(0|v)
]

q(∞)(v)dv . (16)

As no closed-form solution is available for these equations,

we discretize the transition probability as a Markov matrix M.

This matrix has a single eigenvector with eigenvalue 1 which

corresponds to q(∞)(v) up to normalization (Feller, 1970; von

Mises, 1964).

In the absence of recurrent connections, Figure 1A shows

excellent agreement between simulations and Markov analysis

(top) for exact integration and forward Euler, respectively, whereas

Figure 1B displays clear differences in the membrane potential

distributions between the two models. We obtain from the Markov

analysis for exact integration r(∞) = 9.93 sp/s vs. 9.96 ± 0.04 sp/s

from simulations and for forward Euler r(∞) = 10.92 sp/s vs.

10.93 ± 0.04 sp/s. This difference of approximately 1 sp/s between

exact integration and forward Euler agrees closely with the disparity

reported by Vieth et al. (2024, Supplementary Figure S2).

When recurrent connections are included and simulations

performed using the original authors’ code (PesarAmmehZA and

Vieth, 2024, git hash c9c59f0), simulation results differ from

results obtained with NEST even if using the exponential Euler

method in Brian2. Analysis of their code (Brian_LIF.py)

revealed that this neuron model used exponential post-synaptic

currents instead of delta pulses. Once this was corrected, results

obtained with Brian2 with exponential integration were consistent

with NEST results as shown in Figure 1C.

Careful analysis of STDP in a network of 1,000 neurons

revealed errors in both NEST and Brian2. NEST missed

approximately 10% of weight increases, which could be traced to

an error in NESTML code generation which has been fixed.2 For

Brian2, a small number of synapses experienced up to seven STDP

events, while at most three are expected. Details are given in the

Supplementary material.

3 Conclusion

Based on the exact solution (Rotter and Diesmann, 1999) to the

model defined by Equations 1 and 2, the analysis above confirms

that the discrepancy in firing rates between NEST and the other

simulation codes observed by Vieth et al. (2024) is due to the use

of the unsuitable forward Euler method in the latter codes: using

this method to integrate the membrane potential evolution actually

changes the model under study. Indeed, inserting α and β for exact

integration into Equations 7 and 8 and solving for τ and C shows

that the forward Euler method solved the model for τ ≈ 10.5 ms

and C ≈ 1.05 pF. Only NEST, the “odd one out,” actually simulated

the model as defined mathematically.

Interestingly, the investigation of the discrepancy observed

by Vieth et al. (2024) helped us to uncover a subtle bug in

2 https://github.com/nest/nestml/issues/1057

NESTML. This shows that careful comparison of results by different

simulators provides mutual benefits.

The observed difference in firing rates of approximately

10% most likely will not have more than a 10% effect on

the simulation runtimes measured by Vieth et al. (2024) and

thus will not affect their overall conclusions. Nonetheless, I find

it important to point out that benchmarks are meaningless,

unless one defines a desired level of precision (Morrison et al.,

2007) and confirms that the simulation codes compared produce

statistically equivalent results (see, e.g., Van Albada et al.,

2018).

Finally, I would like to question the choice of benchmark

model as such. The LIF neuron network model defined by Vieth

et al. (2024) is peculiar in that it is a purely excitatory all-to-

all network with a plasticity rule that only allows synapses to

become stronger. The model can therefore only be benchmarked

over a limited simulation time before run-away excitation leads

to excessive spike rates. Balanced networks such as the two-

population model by Brunel (2000) can, in contrast, be simulated

for arbitrary periods of time and usually in different dynamic

regimes. Furthermore, comparability with other studies might

benefit from using the cortical microcircuit model by Potjans and

Diesmann (2014) as a benchmark case, as this model has become

widely used as a reference model in recent years (Knight and

Nowotny, 2018; Van Albada et al., 2018; Golosio et al., 2021; Kauth

et al., 2023).
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