
Frontiers in Neuroinformatics 01 frontiersin.org

Systems Neuroscience
Computing in Python (SyNCoPy):
a python package for large-scale
analysis of electrophysiological
data
Gregor Mönke 1*, Tim Schäfer 1, Mohsen Parto-Dezfouli 1,
Diljit Singh Kajal 1, Stefan Fürtinger 1,
Joscha Tapani Schmiedt 2 and Pascal Fries 1,3,4

1 Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt,
Germany, 2 Brain Research Institute, Universität Bremen, Bremen, Germany, 3 Donders Institute for
Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands, 4 Max Planck
Institute for Biological Cybernetics, Tübingen, Germany

We introduce an open-source Python package for the analysis of large-scale
electrophysiological data, named SyNCoPy, which stands for Systems Neuroscience
Computing in Python. The package includes signal processing analyses across time
(e.g., time-lock analysis), frequency (e.g., power spectrum), and connectivity (e.g.,
coherence) domains. It enables user-friendly data analysis on both laptop-based
and high-performance computing systems. SyNCoPy is designed to facilitate
trial-parallel workflows (parallel processing of trials), making it an ideal tool for
large-scale analysis of electrophysiological data. Based on parallel processing
of trials, the software can support very large-scale datasets via innovative out-
of-core computation techniques. It also provides seamless interoperability with
other standard software packages through a range of file format importers and
exporters and open file formats. The naming of the user functions closely follows
the well-established FieldTrip framework, which is an open-source MATLAB toolbox
for advanced analysis of electrophysiological data.

KEYWORDS

spike train, local field potential (LFP), magnetoencephalography (MEG),
electroencephalography (EEG), power spectra, coherence spectra, Granger causality
spectra, big data

Introduction

In neuroscience, methods such as electroencephalography (EEG), magnetoencephalography
(MEG), electrocorticography (ECoG), and microelectrode recordings are used to measure
electromagnetic signals originating from brain activity. The high time resolution of these
techniques enables the analysis of brain activity across a large frequency range, which is essential
for the understanding of the functional interconnection of brain regions in systems
neuroscience. Researchers in this field are typically interested in identifying brain activity
related to certain experimental conditions, e.g., the onset of a stimulus presented to a subject.
Therefore, experimental tasks are repeated many times, and the resulting trials are later averaged
to reduce noise and variance. The trial repetitions combined with modern experimental setups
using an increasing number of recording sites (channels), and high sampling rates can lead to
very large (> 10 GB) datasets. With these datasets, standard algorithms such as all-to-all

OPEN ACCESS

EDITED BY

Andrew P. Davison,
UMR9197 Institut des Neurosciences Paris
Saclay (Neuro-PSI), France

REVIEWED BY

Alberto Antonietti,
Polytechnic University of Milan, Italy
Fernando S. Borges,
Downstate Health Sciences University,
United States

*CORRESPONDENCE

Gregor Mönke
 grgrmoenke@gmail.com

RECEIVED 12 June 2024
ACCEPTED 05 November 2024
PUBLISHED 20 November 2024

CITATION

Mönke G, Schäfer T, Parto-Dezfouli M,
Kajal DS, Fürtinger S, Schmiedt JT and
Fries P (2024) Systems Neuroscience
Computing in Python (SyNCoPy): a python
package for large-scale analysis of
electrophysiological data.
Front. Neuroinform. 18:1448161.
doi: 10.3389/fninf.2024.1448161

COPYRIGHT

© 2024 Mönke, Schäfer, Parto-Dezfouli, Kajal,
Fürtinger, Schmiedt and Fries. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Methods
PUBLISHED 20 November 2024
DOI 10.3389/fninf.2024.1448161

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2024.1448161&domain=pdf&date_stamp=2024-11-20
https://www.frontiersin.org/articles/10.3389/fninf.2024.1448161/full
https://www.frontiersin.org/articles/10.3389/fninf.2024.1448161/full
https://www.frontiersin.org/articles/10.3389/fninf.2024.1448161/full
https://www.frontiersin.org/articles/10.3389/fninf.2024.1448161/full
https://www.frontiersin.org/articles/10.3389/fninf.2024.1448161/full
https://orcid.org/0000-0002-3521-715X
https://orcid.org/0000-0002-3683-8070
https://orcid.org/0000-0002-9064-2212
https://orcid.org/0000-0002-0176-5342
https://orcid.org/0000-0002-8118-036X
https://orcid.org/0000-0001-6233-1866
https://orcid.org/0000-0002-4270-1468
mailto:grgrmoenke@gmail.com
https://doi.org/10.3389/fninf.2024.1448161
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2024.1448161

Mönke et al. 10.3389/fninf.2024.1448161

Frontiers in Neuroinformatics 02 frontiersin.org

connectivity computations between channels can become impossible
to carry out on laptops or desktop computers with limited memory and
require workstations or high-performance computing (HPC) systems
which can be complex to work with. Moreover, recently, there has been
a significant surge of interest in using the scientific Python tech stack
as an open-source environment for data analysis.

In this study, we present Systems Neuroscience Computing in
Python (SyNCoPy), a Python package for the analysis of large-
scale electrophysiology data that combines an easy-to-use,
FieldTrip-like (Oostenveld et al., 2011) application programming
interface (API) with inbuilt support for distributed workflows on
HPC systems.

Related software packages

Scientific software packages for the analysis of neuro-
electromagnetic data include FieldTrip, EEGLAB (Delorme et al.,
2011; Delorme and Makeig, 2004), NUTMEG (Dalal et al., 2011), and
Brainstorm (Tadel et al., 2011) for MATLAB, and MNE Python
(Gramfort et al., 2013, 2014) and Elephant (Denker et al., 2023) for
Python. SPM software (Litvak et al., 2011) also includes functionality
for MEE/EEG analysis.

FieldTrip is a MATLAB toolbox that was first published in 2011 and
has been actively evolving since then. Its features include preprocessing,
multivariate time series and connectivity analysis, and source
localization. It comes with a data browser, interactive data visualizations,
and extensive documentation. The functional API consists of powerful
main functions (e.g., ft_preprocessing, ft_freqanalysis, and ft_
connectivityanalysis) and a number of smaller auxiliary functions. Most
functions can be called with the input data and a config structure as
input parameters and return an output data structure that includes a
copy of the config, serving as a history of the operations applied to the
data and a way to re-apply the analysis to different input data.

EEGLAB has been developed since at least 2004 and is an
interactive MATLAB toolbox for processing continuous and
event-related EEG, MEG, and other electrophysiological data. It
includes both a graphic user interface (GUI) and an API and has
support for user-contributed code via a plug-in interface. Features
include interactive visualization, artifact removal, independent
component analysis (ICA), time–frequency analysis, and
source modeling.

Brainstorm software package is written in MATLAB and Java but
can be run as a standalone application without the need for a
MATLAB license. It focuses on a sophisticated GUI and provides
some batch-processing functionalities.

Elephant is a Python library for the analysis of electrophysiological
data with a focus on generic analysis functions for spike-train data and
time-series recordings from electrodes.

MNE Python is a Python package that supports data preprocessing,
source localization, statistical analysis, and estimation of functional
connectivity between distributed brain regions. It is built on top of the
scientific Python ecosystem, has many contributors, and is well integrated
with other applications using the Neuromag FIF file format. MNE has
extensive plotting capabilities and documentation, including publicly
available example datasets and tutorials. It supports parallelization on
multiple cores of a single machine via Python’s joblib module but
currently no direct parallelization support for HPC systems. The API is a

combination of fine-grained functions and methods defined directly on
the data objects. MNE is focused on the analysis of EEG and MEG data
and local field potentials (LFPs) and supports artifact removal, time/
frequency analysis, and source modeling.

We developed SyNCoPy to complement some of MNE’s and
Elephant’s features and offer an easy, FieldTrip-like API, support for
time-discrete spike datasets, and built-in parallelization on
HPC systems.

The SyNCoPy architecture

The mentioned software solutions are well-established and share
different features with SyNCoPy. However, none of them is made for
handling very large datasets and for distributed computing on HPC
systems. SyNCoPy supports this use case through an architecture that
supports trial-parallel out-of-core computations. SyNCoPy’s core data
structures consist of metadata and a multi-dimensional data array, but
the data array is not loaded into memory by default. Instead, when a
computation is requested, the data are streamed trialwise from
Hierarchical Data Format 5 (HDF5) containers stored on the hard disk,
and the results are written back to disk in a similar fashion. Metadata
is stored in JavaScript Object Notation (JSON) format. This approach
allows for memory-efficient processing of very large datasets with
many trials, as well as for easy trial-based parallelization. Parallelization
is achieved by employing the well-established Dask (Rocklin, 2015)
library, having each Dask job handle one trial at a time. On a standard
computer, trials can be handled sequentially or in parallel using several
cores, if enough memory is available. On HPC or cloud-based systems,
the Dask scheduler typically distributes the compute jobs over several
nodes to achieve parallelization. This means that large numbers of trials
can be processed in parallel using today’s HPC systems.

SyNCoPy is started on a laptop (left) to process a multi-trial
dataset. When a high-level SyNCoPy API function is executed in a
Jupyter Notebook, SyNCoPy’s algorithms based on NumPy and SciPy
are wrapped in a computational routine that connects to a high-
performance compute cluster (or a local cluster on the laptop) via Dask
and automatically distributes the trial-by-trial computations to the
available resources. The jobs run in parallel (center), with each worker
process handling one job at a time and writing the results for a trial into
the proper slot of a single HDF5 container on disk. When all workers
have finished their assigned jobs, the results on disk are complete and
can be accessed from the SyNCoPy session on the laptop (right). The
results can then be visualized with SyNCoPy’s plotting API based on
matplotlib, exported to Neurodata Without Borders (NWB) format, or
NumPy arrays can be extracted directly for custom post-processing
using the standard scientific Python tech stack.

The internal architecture of SyNCoPy and the recommended
setup for running parallel computations on large datasets is depicted
in Figure 1. Users connect to a remote JupyterHub instance, for
example, provided by an institutional high-performance computing
(HPC) cluster. After creating a global Dask client, running SyNCoPy
analyses will use the available computing resources. The input data
should reside on fast storage accessible from the cluster, typically a file
server. When the user starts a parallel computation, SyNCoPy
automatically detects and uses the Dask cluster and distributes the
work to the HPC cluster nodes. The nodes write the results to disk,
and the SyNCoPy data structure returned by the SyNCoPy API

https://doi.org/10.3389/fninf.2024.1448161
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Mönke et al. 10.3389/fninf.2024.1448161

Frontiers in Neuroinformatics 03 frontiersin.org

function points to the data on disk. Note that the resulting data are
never transferred directly over the network and are never loaded
completely into memory. For post-processing, the API offers interfaces
to matplotlib (Hunter, 2007) for plotting, and NumPy (Harris et al.,
2020) and pyNWB (Rübel et al., 2022) for data export.

SyNCoPy compute functions (running as a ComputationalRoutine)
can attach to any running Dask client and hence harness the full
flexibility of the Dask ecosystem, e.g., easy deployment to cloud resources.

SyNCoPy provides specialized data structures and a general
method for implementing parallel out-of-core computations on it, the
ComputationalRoutine. The user-exposed functions (high-level
SyNCoPy API, such as syncopy.connectivityanalysis) internally
evaluate user-specified configurations and then use the
ComputationalRoutine mechanism to execute code that typically
works on the data of a single trial. Depending on the global Python
environment, the ComputationalRoutine executes the per-trial code
sequentially or in parallel via Dask (see also esi-acme)1 to interact with
a parallelization backend, e.g., a Slurm job scheduler running on an
HPC cluster. SyNCoPy analysis scripts are agnostic about the
hardware environment, meaning analyses can be developed and run
locally on single machines such as laptops, and the same code can later
be deployed on distributed computing resources.

Feature overview

The current features of SyNCoPy can be divided into the broad
categories of data handling, preprocessing, time-locked analysis,
frequency-domain analysis, and connectivity-based analysis.

Data structures and data handling

The data handling category includes functions for loading and
saving data using SyNCoPy’s internal data formats, as well as some
functions to convert data, i.e., import data and export them into

1 https://github.com/esi-neuroscience/acme

other file formats. SyNCoPy’s core data structures generally contain
a multidimensional data array and metadata. On disk, the data are
represented as an HDF5 file, and when data are loaded into memory,
they become available as NumPy arrays. SyNCoPy does not directly
read files generated by electrophysiology recording systems; it
currently supports importing data from files in NWB, HDF5, or
NumPy formats. The data structures can be divided into data types
for continuous data and discrete data. The AnalogData class is
typically used to store raw electrophysiological data, i.e., multi-
channel, regularly sampled, analog data with one or more trials. If
no trial information is available in the data source, the user typically
creates a trial definition to define the trials. For many analysis types,
latency selections are applied to ensure that the data are time-locked
to a certain event such as stimulus onset, which results in a
TimeLockData instance. Algorithms that output real or complex
spectral data store these results in instances of the SpectralData
class, and those resulting in channel–channel interaction
information (connectivity measures) return instances of the
CrossSpectralData class. The discrete data classes SpikeData and
EventData are used to store spikes and events, respectively. The
SpikeData class can store spikes identified in external spike sorting
software such as SpyKING CIRCUS (Yger et al., 2018), including the
raw waveform around each spike. The EventData class is used to
store event times and is typically used in combination with other
data classes.

All data classes can be initialized from NumPy arrays and data
type-specific metadata, such as the sampling frequency for
AnalogData instances. To facilitate memory-safe data handling also
during initialization, Python generators producing single-trial NumPy
arrays can be fed directly into the respective SyNCoPy data class
constructors. To improve interoperability with other software
packages, functions to convert between the data structures of MNE
Python and SyNCoPy are available. We also provide functions to save
and load data in NWB format.

Preprocessing

SyNCoPy’s preprocessing functions work on AnalogData
instances and support detrending, normalizing, and filtering signals,

FIGURE 1

SyNCoPy architecture and a typical setup for parallel processing.

https://doi.org/10.3389/fninf.2024.1448161
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://github.com/esi-neuroscience/acme

Mönke et al. 10.3389/fninf.2024.1448161

Frontiers in Neuroinformatics 04 frontiersin.org

including low-pass, high-pass, band-pass, and band-stop filters.
Resampling and downsampling of time-series data are also supported.

Time–frequency analysis

SyNCoPy provides functions for frequency analysis and time–
frequency analysis on input of type AnalogData. The (multi-)tapered
Fourier transform (MTMFFT) algorithms perform spectral analysis
on time-series data using either a single taper window or many tapers
based on the discrete prolate spheroidal sequence (DPSS). The
effective frequency smoothing width can be directly controlled in
Hertz with the tapsmofrq parameter as in FieldTrip. The single tapers
available in SyNCoPy are imported from SciPy’s signal module
(Virtanen et al., 2020). The resulting spectra can be post-processed
using the FOOOF method (Fitting Oscillations and One-over-f)
(Donoghue et al., 2020). A sliding window short-time Fourier
transform is also available as well as Welch’s method for the estimation
of power spectra based on time-averaging over short, modified
periodograms (Welch, 1967). Both the non-orthogonal continuous
wavelet transform (Torrence and Compo, 1998) and superlets, which
can reveal fast transient oscillations with high resolution in both time
and frequency (Moca et al., 2021), are available in SyNCoPy for time–
frequency analysis.

Connectivity analysis

The connectivity analysis module reveals functional connectivity
between channels. It provides algorithms for cross-spectral density
estimation (CSD), coherence, pairwise phase consistency (PPC),
(Vinck et al., 2010), non-parametric Granger causality (Dhamala et al.,
2008), and cross-correlation. Running connectivity analysis requires
SpectralData input. If an AnalogData instance is passed, an implicit
MTFFT analysis is run with default parameters to obtain a
SpectralData instance.

Statistics

SyNCoPy provides functions to compute the mean, median,
standard deviation, and variance along arbitrary axes of its data
classes. The inter-trial coherence can be computed for input of type
SpectralData. Jackknifing (Richter et al., 2015) is also implemented
and can be used to compute confidence intervals for coherence or
Granger causality results. The peristimulus time histogram (PSTH)
can be computed for SpikeData instances (Palm et al., 1988).

Plotting and utility functions

We provide plotting functions for various SyNCoPy data types,
including AnalogData, SpectralData, and SpikeData. The SyNCoPy
plotting functions are intended to give scientists a quick and easy
overview of their data during the development of the data analysis
pipeline and for project presentations but not to provide publication-
ready figures. The functions internally use matplotlib, and the resulting
figures can be post-processed by users if needed.

The synthdata module in SyNCoPy contains utility functions to
create synthetic datasets, which is useful for training purposes, and to
test custom algorithms and assess their performance. Apart from
standard processes such as white noise or Poisson shot noise to
simulate spike data, we also offer red noise (AR(1) process) and a
phase-diffusion algorithm (Schulze, 2005) to mimic experimental
LFP signals.

Basic algebraic operations such as addition and multiplication are
supported (and parallelized) for all SyNCoPy data classes and NumPy
arrays, allowing for flexible synthetic data construction and standard
operations such as baseline corrections.

Example of a step-by-step analysis
pipeline for a real electrophysiological
dataset

In the following, we present an example of a step-by-step analysis
pipeline to demonstrate how to use SyNCoPy for analyzing
extracellular electrophysiology data. For comparison, the same
analysis was carried out in MATLAB with FieldTrip. The source code
for the SyNCoPy version and the FieldTrip version is available online
at https://github.com/frieslab/syncopy_paper.

Figure 2 depicts the analysis pipeline and SyNCoPy functions
used to process a sample brain signal. The dataset used in the analyses
is publicly available and comes from the Allen Institute Visual
Coding—Neuropixels project2 and has been described previously
(Siegle et al., 2021). In summary, LFP and spiking activity were
simultaneously recorded through high-density Neuropixel
extracellular electrophysiology probes. These recordings encompass
various regions of the mouse brain during the processing of visual
stimuli. The LFP data were recorded using Open Ephys (Siegle et al.,
2017), and spike data were extracted with Kilosort (Pachitariu et al.,
2024). During the experiment, mice were presented with different
visual stimuli. In this study, the full-field flash stimulus with a
duration of 250 ms was considered as the stimulus epoch, while the
250-ms period before stimulus onset was used as the baseline
(Figure 2B). To evaluate connectivity analyses, two visual areas from
one sample session were selected (Area A, in the Allen dataset,
referred to as Area VISl, corresponding to the primary visual area,
lateral part; Area B, in the Allen dataset, referred to as Area VISrl,
corresponding to the primary visual area, rostral part). After
preprocessing data for aligning the data to stimulus onset, the
aforementioned time-domain and frequency-domain analyses were
tested on the data. Figure 2C shows the LFP response averaged across
different trials and channels of Area A. It indicates an evoked
response with a short latency after visual stimulus presentation.
Time-locked raster plots and the peristimulus time histogram
(PSTH) of the spike trains are shown for 150 trials of a sample
neuron (Figures 2D,E, respectively). Subsequently, we calculated the
power spectrum of the LFP from Area A, the coherence spectrum
between the LFPs of Area A and Area B, the pairwise phase
consistency (PPC) spectrum between the LFPs of Area A and Area
B, and the non-parametric Granger causality (GC) spectrum between

2 https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html

https://doi.org/10.3389/fninf.2024.1448161
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://github.com/frieslab/syncopy_paper
https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html

Mönke et al. 10.3389/fninf.2024.1448161

Frontiers in Neuroinformatics 05 frontiersin.org

the LFPs of Area A and Area B, as four common frequency-
domain analyses.

These analyses were calculated in both SyNCoPy and FieldTrip for
demonstration purposes and to illustrate the comparability of the
outputs. To this end, the data were first zero-padded. Then, based on
the MTMFFT method and using the Hann window, the power
spectrum was calculated during the stimulus period and the baseline
period for each trial and recording channel. MTMFFT conducts
frequency analysis on time-series trial data either by employing a
single taper (such as Hann) or by utilizing multiple tapers derived
from discrete prolate spheroidal sequences (DPSS). For each recording
channel separately, the power spectra of the stimulus period and the
baseline period were separately averaged, and the ratio of stimulus
over baseline power was calculated. Subsequently, the power ratio
spectra were averaged over channels (Figure 2F).

Similarly, the coherence (Figure 2G), PPC (Figure 2H), and
Granger causality (Figure 2I) between the selected area pairs were
measured after zero padding the signals. The results are essentially

identical between SyNCoPy and FieldTrip for power, coherence, and
PPC, and they are very similar for GC (Figures 2F–I).

Memory benchmarks

Peak memory consumption—methods

We investigated the peak memory consumption (PMC) of
SyNCoPy for several algorithms in a typical usage scenario, i.e., during
parallel processing on an HPC cluster. Specifically, the “small” queue
of the Raven cluster at the Max Planck Computing and Data Facility
(MPCDF) of the Max Planck Society was used. To assess the memory
consumption as a function of the dataset size, we created synthetic
datasets of increasing size with SyNCoPy’s synthdata module and
processed them with SyNCoPy. We evaluated (1) preprocessing with
a Butterworth + Hilbert filter, (2) the MTMFFT, (3) the MTMFFT f.t.
algorithm (here, f.t. specifies that a fixed number of tapers was used

FIGURE 2

SyNCoPy analysis for an example of electrophysiological dataset. (A) Example analysis pipelines using SyNCoPy functions to process
electrophysiological data. The different pipelines result in the plots shown in panels (D-I), as indicated above the arrows feeding into the final plotting
routine. (B) During the presentation of the full-field flash stimulus lasting for 250  ms, LFP and spiking activity were recorded from different brain areas
of awake mice. (C) The averaged LFP response over trials and channels of Area A, time-locked to stimulus onset. (D,E) Time-lock raster plot (D) and
peristimulus time histogram (E) of spiking activity of 150 trials in a sample neuron. (F) Spectra of LFP power ratio between stimulus and baseline period
in the frequency range of 1–95  Hz averaged over trials and channels of Area A. The black line reflects the FieldTrip result, and the red-shaded line
corresponds to the SyNCoPy result. (G-I) Same as F but for coherence between LFPs of Area A and Area B (G), pairwise phase consistency between
LFPs of Area A and Area B (H), Granger causality between the LFPs of Area A and Area B (I). Black lines are FieldTrip results, and red-shaded lines are
SyNCoPy results. The solid line is feedforward, and the dashed line is feedback direction (I).

https://doi.org/10.3389/fninf.2024.1448161
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Mönke et al. 10.3389/fninf.2024.1448161

Frontiers in Neuroinformatics 06 frontiersin.org

for better comparison, as explained in more detail below), (4) wavelets,
and (5) coherence. The starting dataset size was 10 trials, 5,000 samples
per trial, and 50 channels, which requires approximately 10 MB of
space. We created scripts to run each algorithm with different dataset
sizes. After each call to a SyNCoPy API function, the Python garbage
collector was called to ensure meaningful measurements. During each
run, the PMC was monitored with the memory_profiler package3 for
Python. The PMC is the highest amount of memory consumption of
the submitting process and one worker that was measured during a
run. We repeated the process 20 times for each unique combination of
dataset size and algorithm to obtain robust results. We report the
mean and the standard deviation over the 20 runs in Figure 3.

Peak memory consumption—results

The results of the peak memory consumption (PMC) measurements
are illustrated in Figure 3. First, we investigated the effect of the trial
count on PMC (Figure 3A). We incrementally increased the number of
trials from 10 up to 40,000 while keeping the samples per trial and the
number of channels constant. At each data point, we performed 20
independent runs with the respective algorithm. The PMC stayed
largely constant, irrespective of the trial count, for all algorithms. The
PMC was lowest for the Butterworth filter, followed by the MTMFFT,
Coherence, and Wavelets. Second, we demonstrate the effect of
increasing the number of samples per trial on memory consumption
(Figure 3B). We gradually increased the number of samples per trial
from 10 to 40,000 while keeping the trial count and channel count
constant. For the wavelets, the multi-taper analysis with a fixed number
of tapers (MTMFFT f.t.), and coherence computation, a linear effect on
the PMC is visible. For the Butterworth filter, memory consumption is
essentially constant, as for this method we employ SciPy’s signal.
sosfiltfilt implementation, which works on finite sections of the input
data. For the full multi-taper analysis (MTMFFT), the PCM increases
quadratically with the sample count: The FFT itself has a PMC that is a
linear function of the number of samples, and the number of tapers
needed to achieve a consistent frequency smoothing (tapsmofrq

3 https://github.com/pythonprofilers/memory_profiler

parameter) also scales with the number of samples. Finally, we observe
the effect of increasing the number of channels on the PMC of the
algorithms (Figure 3C). For the wavelets and the MTMFFT, a linear
effect on the PMC is shown. For the Butterworth filter, the PMC again
is almost constant. Coherence shows quadratic scaling of PMC with the
number of channels, which directly follows from combinatorics.

Discussion

SyNCoPy is a Python package for the analysis of
electrophysiological data, with a focus on extracellular
electrophysiology. It stands out from similar software packages by its
ability to scale easily from laptops to HPC systems and thus support
very large datasets, and an API similar to FieldTrip. SyNCoPy’s
support for big data is based on its architecture, which (1) allows for
easy usage of typical HPC systems available at many scientific
institutions, (2) streams data from disk to memory only when needed,
and (3) isolates computations on the minimal amount of data required
for independent computations. We demonstrated SyNCoPy’s memory
efficiency by benchmarking peak memory consumption (PMC) for a
number of algorithms. The results demonstrate that SyNCoPy’s
architecture is indeed able to provide largely constant PMC,
independent of the number of trials. Moreover, the PMC scales as
expected for the respective algorithms with increases in single-
trial size.

From a feature perspective, SyNCoPy currently focuses on the
preprocessing of raw data, time–frequency analysis, and connectivity
measures. We expect that neuroscience users may want to employ
SyNCoPy in combination with other well-established software
packages such as MNE Python, Elephant, and others that contain
complementary functionality. To facilitate this, we provide support for
converting MNE Python data structures and importing and exporting
standard file formats such as NWB. In addition, the SyNCoPy file
format is based on the open standards HDF5 and JSON and can thus
be read by standard libraries available for a variety of languages.

SyNCoPy does not have a graphical user interface and relies on
scripting. While this may require a certain initial time investment for
users completely new to programming, we believe that the
standardization and increased reproducibility offered by this approach
pay off quickly. FieldTrip is largely based on the same approach and

FIGURE 3

SyNCoPy memory efficiency. Peak memory consumption (PMC) as a function of input size for selected algorithms. The PMC measurements are based
on synthetic data. The starting dataset size is 10 trials, 5,000 samples, and 50 channels. Each data point shows the PMC mean and standard deviation
of 20 independent runs. (A) PMC is largely independent of the number of trials. The total size of the test dataset varied over almost three orders of
magnitude (10 trials to 7,000 trials, ~10  MB to 7GB), while the size of a single trial was kept constant at 1  MB. (B) PMC depends on the number of
samples per trial and the algorithm. The number of samples (length of the signals) varied from 10 to 40,000. (C) PMC depends on the number of
channels and the algorithm. Channel numbers varied from 2 to 250.

https://doi.org/10.3389/fninf.2024.1448161
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://github.com/pythonprofilers/memory_profiler

Mönke et al. 10.3389/fninf.2024.1448161

Frontiers in Neuroinformatics 07 frontiersin.org

has reached a large user community. To help new users, SyNCoPy
comes with full API documentation and includes a set of articles that
demonstrate typical analysis workflows. Questions and issues can
be reported and discussed on the SyNCoPy GitHub repository.4

Limitations

First, it is important to acknowledge that memory efficiency is a
software requirement that, in some situations, conflicts with
performance in the sense of processing speed: For a small dataset, it is
faster to load everything into memory at once than to stream chunks
of the data on demand. However, for large datasets, this computing
strategy prevents the processing of datasets larger than (a certain
fraction of) the machine’s RAM and thus is not feasible.

Second, SyNCoPy is focused on trial-parallel processing, which is
from our perspective a very common scenario in Neuroscience.
However, in some situations or for certain algorithms, it may
be beneficial to support parallelization along different axes. While
SyNCoPy does have built-in support for parallelization over channels
for some algorithms, it does not in general support parallelization
along an arbitrary axis of the dataset.

Third, the extension of SyNCoPy with new algorithms is possible
by creating a custom computational routine, but this process currently
requires a good understanding of both parallel computing and some
SyNCoPy internals and is thus intended for more advanced users.

Fourth, the target audience of SyNCoPy consists of neuroscientists
who need to process larger datasets. The exact limitation for the size
of the dataset depends on the specific algorithms and the settings
used, of course, but what always holds is that a single trial must easily
fit into the RAM of the machine, i.e., typically the HPC cluster node
that runs the computations. It is important to understand that certain
operations used while loading and saving data, or in the algorithms
themselves, will need to create one, or in some cases even more, copies
of the trial data in memory. Therefore, working with a dataset that has
almost the size of the RAM is not feasible in reality. This is not a
limitation of SyNCoPy but applies to all operations on computers,
including the standard NumPy and SciPy libraries used internally by
SyNCoPy to implement or run the algorithms on the data of a single
trial. The required memory typically is a small multiple of the single-
trial size.

Conclusion

SyNCoPy provides seamless scaling of trial-based workflows for
the analysis of large electrophysiology datasets in Python. In this
study, we demonstrated its ability to scale to very large datasets by
measuring the peak memory consumption over a range of algorithms
for datasets with varying numbers of trials, samples per trial, and
channels. Furthermore, we illustrated how to use SyNCoPy on a real-
world dataset, along with a direct comparison of the same analyses
carried out with the well-established FieldTrip toolbox.

4 https://github.com/esi-neuroscience/syncopy/issues

SyNCoPy was built to integrate into the current ecosystem of
neuroscience tools. We hope that it will help researchers work with
large datasets in a reproducible way and reduce the barriers to fully
utilizing existing HPC resources in neuroscience.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found at: https://allensdk.readthedocs.io/en/latest/visual_
coding_neuropixels.html.

Author contributions

GM: Conceptualization, Project administration, Software,
Supervision, Validation, Visualization, Writing – original draft, Writing
– review & editing, Formal analysis. TS: Data curation, Methodology,
Software, Writing – original draft, Writing – review & editing,
Conceptualization. MP-D: Data curation, Investigation, Validation,
Visualization, Writing – review & editing, Formal analysis. DK: Data
curation, Validation, Writing – review & editing. SF: Conceptualization,
Methodology, Project administration, Resources, Software, Writing –
review & editing. JS: Conceptualization, Methodology, Software,
Writing – review & editing. PF: Conceptualization, Funding
acquisition, Methodology, Project administration, Resources,
Validation, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work was
supported by DFG (FR2557/7-1-DualStreams) and by the Ernst
Strüngmann Institute.

Acknowledgments

The authors would like to thank Robert Oostenveld and
Jan-Mathijs Schoffelen for their invaluable input and insightful
feedback throughout the development of SyNCoPy, Mukesh
Dhamala for providing help with the Python implementation of the
Granger causality algorithm, and Katharine Shapcott and Muad
Abd El Hay for early testing of software, suggestions, and
discussions. In addition, the authors acknowledge the Max Planck
Computing and Data Facility (MPCDF) and the IT team at ESI for
providing generous access to high-performance computing
resources.

Conflict of interest

PF has a patent on thin-film electrodes and is a member of the
Advisory Board of CorTec GmbH (Freiburg, Germany).

The remaining authors declare that the research was conducted in
the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

https://doi.org/10.3389/fninf.2024.1448161
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://github.com/esi-neuroscience/syncopy/issues
https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html
https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html

Mönke et al. 10.3389/fninf.2024.1448161

Frontiers in Neuroinformatics 08 frontiersin.org

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

References
Dalal, S. S., Zumer, J. M., Guggisberg, A. G., Trumpis, M., Wong, D. D. E.,

Sekihara, K., et al. (2011). MEG/EEG source reconstruction, statistical evaluation, and
visualization with NUTMEG. Comput. Intell. Neurosci. 2011:758973. doi:
10.1155/2011/758973

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of
single-trial EEG dynamics including independent component analysis. J. Neurosci.
Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Delorme, A., Mullen, T., Kothe, C., Akalin Acar, Z., Bigdely-Shamlo, N., Vankov, A.,
et al. (2011). EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG
processing. Comput. Intell. Neurosci. 2011:e130714. doi: 10.1155/2011/130714

Denker, M., Köhler, C., Jurkus, R., Kern, M., Kurth, A. C., Kleinjohann, A., et al.
(2023). Elephant 0.13.0. Zenodo. doi: 10.5281/zenodo.8144467

Dhamala, M., Rangarajan, G., and Ding, M. (2008). Analyzing information flow in
brain networks with nonparametric granger causality. NeuroImage 41, 354–362. doi:
10.1016/j.neuroimage.2008.02.020

Donoghue, T., Haller, M., Peterson, E. J., Varma, P., Sebastian, P., Gao, R., et al. (2020).
Parameterizing neural power spectra into periodic and aperiodic components. Nat.
Neurosci. 23:12. doi: 10.1038/s41593-020-00744-x

Gramfort, A., Luessi, M., Larson, E., Engemann, D., Strohmeier, D., Brodbeck, C., et al.
(2013). MEG and EEG data analysis with MNE-python. Front. Neurosci. 7:267. doi:
10.3389/fnins.2013.00267

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C.,
et al. (2014). MNE software for processing MEG and EEG data. NeuroImage 86, 446–460.
doi: 10.1016/j.neuroimage.2013.10.027

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., et al. (2020). Array programming with NumPy. Nature 585:7825. doi:
10.1038/s41586-020-2649-2

Hunter, J. D. (2007). Matplotlib: a 2D graphics environment. Comp. Sci. Eng. 9, 90–95.
doi: 10.1109/MCSE.2007.55

Litvak, V., Mattout, J., Kiebel, S., Phillips, C., Henson, R., Kilner, J., et al. (2011). EEG
and MEG data analysis in SPM8. Comput Intell Neurosci. 2011:852961. doi:
10.1155/2011/852961

Moca, V. V., Bârzan, H., Nagy-Dăbâcan, A., and Mureșan, R. C. (2021). Time-
frequency super-resolution with superlets. Nat. Commun. 12:1. doi: 10.1038/
s41467-020-20539-9

Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.-M. (2011). FieldTrip: open source
software for advanced analysis of MEG, EEG, and invasive electrophysiological data.
Comput. Intell. Neurosci. 1:1. doi: 10.1155/2011/156869

Pachitariu, M., Sridhar, S., and Pennington, J. (2024). Spike sorting with Kilosort4.
Nat Methods. 21, 914–921. doi: 10.1038/s41592-024-02232-7

Palm, G., Aertsen, A. M. H. J., and Gerstein, G. L. (1988). On the significance of
correlations among neuronal spike trains. Biol. Cybern. 59, 1–11. doi: 10.1007/
BF00336885

Richter, C. G., Thompson, W. H., Bosman, C. A., and Fries, P. (2015). A jackknife approach
to quantifying single-trial correlation between covariance-based metrics undefined on a
single-trial basis. NeuroImage 114, 57–70. doi: 10.1016/j.neuroimage.2015.04.040

Rocklin, M. (2015). Dask: Parallel computation with blocked algorithms and task
scheduling, 126–132.

Rübel, O., Tritt, A., Ly, R., Dichter, B. K., Ghosh, S., Niu, L., et al. (2022). The
Neurodata without Borders ecosystem for neurophysiological data science. eLife
11:e78362. doi: 10.7554/eLife.78362

Schulze, H. (2005). “Stochastic models for phase noise” in International OFDM-
workshop.

Siegle, J. H., Jia, X., Durand, S., Gale, S., Bennett, C., Graddis, N., et al. (2021). Survey
of spiking in the mouse visual system reveals functional hierarchy. Nature 592:7852. doi:
10.1038/s41586-020-03171-x

Siegle, J. H., López, A. C., Patel, Y. A., Abramov, K., Ohayon, S., and Voigts, J. (2017).
Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology.
J. Neural Eng. 14:045003. doi: 10.1088/1741-2552/aa5eea

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., and Leahy, R. M. (2011). Brainstorm:
a user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci.
2011:e879716. doi: 10.1155/2011/879716

Torrence, C., and Compo, G. P. (1998). A practical guide to wavelet analysis. Bull. Am.
Meteorol. Soc. 79, 61–78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

Vinck, M., van Wingerden, M., Womelsdorf, T., Fries, P., and Pennartz, C. M. A.
(2010). The pairwise phase consistency: a bias-free measure of rhythmic neuronal
synchronization. NeuroImage 51, 112–122. doi: 10.1016/j.neuroimage.2010.01.073

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in python. Nat.
Methods 17:3. doi: 10.1038/s41592-019-0686-2

Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra:
a method based on time averaging over short, modified periodograms. IEEE transactions
on audio and electroacoustics

Yger, P., Spampinato, G. L., Esposito, E., Lefebvre, B., Deny, S., Gardella, C., et al.
(2018). A spike sorting toolbox for up to thousands of electrodes validated with ground
truth recordings in vitro and in vivo. eLife 7:e34518. doi: 10.7554/eLife.34518

https://doi.org/10.3389/fninf.2024.1448161
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://doi.org/10.1155/2011/758973
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1155/2011/130714
https://doi.org/10.5281/zenodo.8144467
https://doi.org/10.1016/j.neuroimage.2008.02.020
https://doi.org/10.1038/s41593-020-00744-x
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.1016/j.neuroimage.2013.10.027
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1155/2011/852961
https://doi.org/10.1038/s41467-020-20539-9
https://doi.org/10.1038/s41467-020-20539-9
https://doi.org/10.1155/2011/156869
https://doi.org/10.1038/s41592-024-02232-7
https://doi.org/10.1007/BF00336885
https://doi.org/10.1007/BF00336885
https://doi.org/10.1016/j.neuroimage.2015.04.040
https://doi.org/10.7554/eLife.78362
https://doi.org/10.1038/s41586-020-03171-x
https://doi.org/10.1088/1741-2552/aa5eea
https://doi.org/10.1155/2011/879716
https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
https://doi.org/10.1016/j.neuroimage.2010.01.073
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.7554/eLife.34518

	Systems Neuroscience Computing in Python (SyNCoPy): a python package for large-scale analysis of electrophysiological data
	Introduction
	Related software packages
	The SyNCoPy architecture
	Feature overview
	Data structures and data handling
	Preprocessing
	Time–frequency analysis
	Connectivity analysis
	Statistics
	Plotting and utility functions

	Example of a step-by-step analysis pipeline for a real electrophysiological dataset
	Memory benchmarks
	Peak memory consumption—methods
	Peak memory consumption—results

	Discussion
	Limitations
	Conclusion

	References

