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Interpretable machine learning
comprehensive human gait
deterioration analysis

Abdullah S. Alharthi*

Department of Electrical Engineering, College of Engineering King Khalid University, Abha, Saudi Arabia

Introduction: Gait analysis, an expanding research area, employs non-invasive

sensors andmachine learning techniques for a range of applications. In this study,

we investigate the impact of cognitive decline conditions on gait performance,

drawing connections between gait deterioration in Parkinson’s Disease (PD) and

healthy individuals dual tasking.

Methods: We employ Explainable Artificial Intelligence (XAI) specifically Layer-

Wise Relevance Propagation (LRP), in conjunction with Convolutional Neural

Networks (CNN) to interpret the intricate patterns in gait dynamics influenced

by cognitive loads.

Results: We achieved classification accuracies of 98% F1 scores for PD dataset

and 95.5% F1 scores for the combined PD dataset. Furthermore, we explore

the significance of cognitive load in healthy gait analysis, resulting in robust

classification accuracies of 90% ± 10% F1 scores for subject cognitive load

verification. Our findings reveal significant alterations in gait parameters under

cognitive decline conditions, highlighting the distinctive patterns associated

with PD-related gait impairment and those induced by multitasking in healthy

subjects. Through advanced XAI techniques (LRP), we decipher the underlying

features contributing to gait changes, providing insights into specific aspects

a�ected by cognitive decline.

Discussion: Our study establishes a novel perspective on gait analysis,

demonstrating the applicability of XAI in elucidating the shared characteristics

of gait disturbances in PD and dual-task scenarios in healthy individuals. The

interpretability o�ered by XAI enhances our ability to discern subtle variations

in gait patterns, contributing to a more nuanced comprehension of the factors

influencing gait dynamics in PD and dual-task conditions, emphasizing the role

of XAI in unraveling the intricacies of gait control.

KEYWORDS

deep convolutional neural networks (CNN), deep learning, ground reaction forces (GRF),

gait, interpretable neural networks, Parkinson’s disease, perturbation

1 Introduction

Gait refers to the distinctive walking pattern unique to each individual (Saleh

and Hamoud, 2021). It involves a cyclic sequence of movements in both lower limbs

(Jing et al., 2019), providing valuable information about individuals’ physical and

physiological attributes, including weight, gender, health, and age (Wang and Zhang, 2020;

Sadeghzadehyadi et al., 2021).

Gait analysis holds immense importance across various domains, such as healthcare,

sport, biometrics, and human–robot interaction. It serves as a rich source of

information, adding to the understanding and assessment of various conditions, including

neurodegenerative disorders like Parkinson’s disease (PD) (Alotaibi and Mahmood, 2015;

Yuqi et al., 2019; Chaabane et al., 2023).

Previous studies (Castro et al., 2017; Huang et al., 2021; Wang and Yan, 2021; Erdaş

et al., 2022; Vidya and Sasikumar, 2022) have explored gait analysis in the context of PD,
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aiming to diagnose the condition and track disease progression

(Yuan and Zhang, 2018; Zhang S. et al., 2019; Mogan et al.,

2023). However, these analyses often rely on clinical evaluation and

subjective surveys, resulting in semi-subjective assessments (Wu

et al., 2016; Arshad et al., 2021; Khan et al., 2023). Additionally,

gait alterations under cognitive load known as “dual tasks” have

been investigated, revealing variations influenced by factors such

as environmental conditions and emotional states (Delgado-Escaño

et al., 2018; Alharthi et al., 2019; Castro et al., 2020; Slijepcvic et al.,

2021).

The existing gait analysis in literature faces limitations,

particularly in accurately representing the non-linearity and non-

stationary of gait cycle (Whittle, 2023). Traditional methods, such

as visual observation and harmonic analysis, may fall short of

capturing the intricate dynamics of gait (Goodfellow et al., 2016).

To address these limitations, this study incorporates explainable

artificial intelligence (XAI) techniques. XAI, including layerwise

relevance propagation (LRP), enhances the transparency of deep

learning models, adding to the interpretation of predictions. We

selected LRP over other XAI methods, such as SHAP (SHapley

Additive ExPlanations) (Ribeiro et al., 2016), Gradient-weighted

Class Activation Mapping (Grad-CAM) (Selvaraju et al., 2017),

and Local Interpretable Model-agnostic Explanations (LIME)

(Lundberg and Lee, 2017). As noted by Adebayo et al. (2018), not

all proposed XAI methods are robust, and the validity of their

explanations should be critically assessed.

In this paper, we contribute a comprehensive approach to

gait analysis by leveraging sensor fusion, deep convolutional

neural networks (CNN), and XAI techniques, specifically LRP.

The utilization of CNNs facilitates automatic feature extraction

from raw sensor data, while the incorporation of LRP enhances

interpretability. This novel combination adds significant value

to the fields by providing insights that inform not only gait

analysis but also sensor design and data processing for improved

healthcare applications.

2 Background

2.1 Related studies

Gait, the intricate walking pattern unique to each individual,

has captivated humans (Wang and Zhang, 2020). Figuratively,

the gait cycle, as depicted in Figure 1, encapsulates the rhythmic

sequence of movement in the lower limb during walking. Early

civilizations recognized the distinctiveness of gait as a personal

identifier, and over time, methodologies for studying gait have

evolved from rudimentary visual observation to sophisticated

techniques (Yuqi et al., 2019).

In ancient times, the recognition of individuals based on

their gait laid the foundation of contemporary studies (Saleh and

Hamoud, 2021). Recent advancements, such as the integration

of CNN, have enabled person recognition through intricate gait

models (Jing et al., 2019). These efforts underscore the enduring

importance of gait analysis, with applications ranging from

healthcare to biometrics (Alotaibi and Mahmood, 2015).

The landscape of gait analysis has witnessed a notable surge in

recent literature, with cutting-edge technologies at the forefront.

FIGURE 1

Important gait events and intervals in a normal gait cycle. In the

center, the stance phase represents 60% of the gait cycle and the

swing phase represents 40% of the gait cycle.

For instance, a fusion network incorporating long short-term

memory (LSTM) and CNNs demonstrated heightened accuracy in

abnormal gait recognition (Sadeghzadehyadi et al., 2021). Another

study applied a CNN-LSTM network to decipher spatiotemporal

patterns of gait anomalies (Wang and Zhang, 2020), highlighting a

continuous evolution of gait analysis methodologies.

Gait biometrics has emerged as a focal point, with studies

exploring joint CNN-based methods (Chaabane et al., 2023).

Moreover, predicting the severity of neurodegenerative diseases

using CNNs showcased promising outcomes (Yuqi et al., 2019).

Lightweight attention-based CNN models efficiently recognized

gait patterns using wearable sensors, pushing the boundaries

of gait analysis capabilities (Alotaibi and Mahmood, 2015).

These contemporary studies collectively underscore the growing

importance of leveraging advanced technologies for accurate and

nuanced gait analysis.

Recent gait recognition literature has focused on solving view-

and clothing-invariant problems using advanced machine learning

methods like generative adversarial networks (GANs). Zhang P.

et al. (2019) designed a view transformation GAN (VT-GAN)

with a generator, discriminator, and similarity preserver, achieving

competitive results on the CASIA-B dataset. Babaee et al. (2019)

used GANs to reconstruct complete gait energy images (GEIs) from

incomplete ones, showing effectiveness on the OU-ISIR dataset.

Chen et al. (2021) proposed Multi-View Gait GAN (MvGGAN) for

cross-view gait recognition, demonstrating improved performance
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on CASIA-B and OUMVLP datasets. Recent study on wearable

and floor sensors has focused on medical applications, such as

analyzing the impact of muscle fatigue on gait (Balakrishnan et al.,

2020), health monitoring (Muheidat and Tawalbeh, 2020), and age-

related differences (Costilla-Reyes et al., 2021). Turner and Hayes

(2019) proposed using an LSTM network to classify pressure sensor

signals from shoes, aiming to diagnose gait abnormalities. Tran

et al. (2021) developed multi-model LSTM and CNN to classify

IMU spatiotemporal signals, outperforming previous results on

the whuGAIT (Zou et al., 2020) and OU-ISIR (Ngo et al.,

2014) datasets.

In the field of gait analysis, the integration of explainable

artificial intelligence (XAI) represents a pioneering approach. XAI

techniques, exemplified by methods such as layerwise relevance

propagation (LRP), address the opacity challenge inherent in deep

learning models (Erdaş et al., 2022). LRP has shown success in

image classification (Samek et al., 2017a; Jolly et al., 2018) and gait-

based subject identification (Horst et al., 2019) when combined

with CNNs. Our study stands as a beacon of innovation, presenting

a comprehensive approach that seamlessly integrates sensor fusion,

CNN, and XAI techniques for gait analysis (Khan et al., 2023).

While existing studies have explored gait analysis through

the lens of deep learning models, our distinctive contribution

lies in the transparent interpretation facilitated by XAI. Building

on recent advancements, we propose using LRP to enhance the

interpretability of CNN predictions (Castro et al., 2020). This not

only adds intrinsic value to gait analysis but also provides profound

insights that extend beyond, influencing advancements in sensor

design and data processing for refined healthcare applications

(Alharthi et al., 2019). Our study represents a departure from

conventional convolutional gait analysis approaches, introducing a

paradigm shift in the synergy between gait analysis, deep learning,

and explainability.

2.2 Gait parameters

Gait refers to the coordinated sequence of muscle contractions

that result in walking. The brain generates commands that travel

through the spinal cord to activate the lower neural center, leading

to muscle contractions aided by feedback from joints and muscles.

This allows for coordinated movements of the trunk and lower

limbs, resulting in periodic cycles for each foot. These cycles consist

of two phases: the stance phase (when the foot is in contact with

the ground) and the swing phase (when the foot is not in contact

with the ground). The stance phase is further divided into four

intervals (A, B, C, and D), while the swing phase is divided into

three intervals (E, F, and G) (Whittle, 2023) as shown in Table 1

and Figure 1.

3 Materials and methods

The categorization of gait ground reaction force (GRF)

signals poses a formidable challenge, necessitating the application

of sophisticated machine learning methodologies. Illustrated in

Figure 2, this study delineates the framework for data acquisition

and analysis. Gait data presented in Sections 3.6.1 and 3.6.2 serve

as the training set for a neural network tasked with classifying

these signals, and the resulting output is iteratively refined through

backpropagation to pinpoint the key foot profiles crucial for

classification. Detailed in subsequent sections are the experiments

conducted utilizing various deep convolutional neural network

(CNN) models to process and categorize spatiotemporal 3D

matrices derived from raw sensor signals.

3.1 Convolutional neural networks

CNNs excel in classification tasks by abstracting high-level

features from extensive datasets through convolutional operations.

Mathematical representation in one-dimensional convolution

operations is expressed as C(i), with i denoting the index of an

element in the new feature map (Goodfellow et al., 2016, ch. 9):

C (i) = (ω ◦ x) [i] =
∑

d

x
(
i− d

)
ω(d) (1)

Gait is captured as a two-dimensional signal as spatial and

temporal; therefore, the convolution operation in Equation 1 can be

extended to two dimensions, such that the spatiotemporal input is a

large set of data points, and the kernel is a set of data smaller in size

than the input. Then the convolution operation slides the kernel

over the input computes elementwise multiplication and adds the

values in a smaller future map. With a 2-D input x and a 2-D kernel

ω with (i, j), (d, k) are iterators, the mathematical representation of

convolution in two dimensions can expressed as C(i, j) with (i, j) is

the index of an element in the new feature map (Goodfellow et al.,

2016):

C(i, j) = (ω ◦ x) [i, j] =
∑

d

∑

k

x
(
i− d, j− k

)
ω(d, k) (2)

In this study, we implement three CNN architectures for

analyzing gait deterioration. The first model (Figure 3A) is a

CNN designed for PD severity classification, comprising four

convolutional layers, each followed by average pooling and two

fully connected layers, totaling 10 stacked layers. The second CNN

architecture (Figure 3B), tailored for processing GRF signals, draws

inspiration from inception neural network architectures. It features

two stages with parallel streams fused via concatenation layers,

resulting in 18 stacked layers. The third CNN (Figure 3C) is a

quadruplet network, amalgamating elements from Siamese and

triplet networks. It includes convolutional layers, max-pooling, and

average pooling, with separate activations, weights, and biases for

each stream. This architecture aims to capture spatial and temporal

gait signals simultaneously, enhancing generalization capabilities

on unseen data.

3.2 Backpropagation

It is short for “backward propagation of errors”; it is an

algorithm based on gradient descent. As explained by Andrew

Ng (Ma et al., 2024), the method moves in reverse order from

the output layer to the input layer while calculating the gradient
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TABLE 1 Gait intervals.

Sequence Gait interval Description

A Heel strike Initial contact uses this term to describe the contact of the extended limb’s heel with the walking
surface

B Loading response Foot flat is a single-support interval that follows the initial double-support interval. During this
phase, the body weight is transferred onto the supporting limb. The trunk is at its lowest position, the
knee is flexed, and the ankle undergoes plantar flexion

C Mid-stance Single-support interval that occurs between opposite toe-off and heel-off. It commences from the
elevation of the opposite limb until both ankles align in the coronal plane

D Terminal stance Heel-off begins when the supporting heel rises from the ground in preparation for the opposite
swing. During this phase, the trunk is sinking from its highest point, and the knee has an extant peak
near the time of heel rise, while the ankle undergoes dorsiflexion after heel rise. The swing phase
consists of three intervals: pre-swing, initial swing and mid-swing, and terminal swing

E Pre-swing The second double-limb support interval. During this phase, opposite initial contact occurs, and the
hip begins to flex, the knee flexes, and the ankle undergoes plantar flexion. The toe is in the last
contact before the swing phase, completing the push-off initiated in interval D

F Initial swing Mid-swing interval commences with the toe-off into single-support and starting to swing. The body
weight shifts to the opposite forefoot, and the knee joint undergoes maximum flexion. The hip flexes,
and the limb advances in preparation for a stride

G Terminal swing The last interval of the gait cycle and the end of the swing phase. The interval starts at maximum knee
flexion and ends with maximum extension of the swinging limb forward. The hip continues to flex
while the knee extends with regard to gravity, and the ankle continues dorsiflexion to end neutral,
ready for the next heel strike

FIGURE 2

Overview of data acquisition and analysis of CNN. Gait data as input to CNN for classification; interpreting the CNN model by LRP, a deeper red color

represents a higher contribution to the classification process. Relevance linked to the foot profile in the input single.

of the error function based on the network weights, the aim is

to minimize J (θ ) using an optimal set of parameters in θ . It

is based on performing the partial derivative to minimize the

cost function. The partial derivative is expressed as ∂

∂θ li,j
J (θ).

The output layer calculates the error of the network layers L

with: D
(L)
= α(l) − y, such that the error of node j in layer

l is denoted as D
(l)
j and the activation of node j of layer l is

denoted as α
(l)
j and y is the output of the output layer, then the

backpropagation can be expressed for neural networks as (Ma et al.,

2024):

D
(L)
= ((θ(l))

(T)
D(l+1)) ◦ α(l) ◦ (1− α(l)) (3)
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FIGURE 3

Proposed CNN architectures: (A) single CNN, (B) parallel CNN, (C) quadruplets CNN. The boxes: convolution layers and fully connected layers;

pooling layers; concatenation layers and flattening layers; dropout layers.

Here, the ð* values of the output layer L are calculated

by multiplying the ð* values in the next layer (in the reverse

direction) with the θ matrix of layer l; hence, T denotes matrix.

We then perform elementwise multiply (◦) with the g′, which is

the derivative of the activation function, which is evaluated with

the input values given by z(l), where g
′

(
z(l)

)
= α(l) ◦ (1 −

α(l )).

The partial derivatives needed for backpropagation are

performed by multiplying the activation values and the error values

for each training example t and m is the number of training data as

Ma et al. (2024):

∂

∂θ li,j

J (θ) =
1

m

⌊
m∑

t=1

α
(t)(l)
j D

(t)(l+1)
j

⌋
. (4)

3.3 Evaluation measure

The confusion matrix is a common accuracy measure in gait

analysis (Ruuska et al., 2018). It is a table showing correct and

incorrect predictions for each class, including true positive (TP),

true negative (TN), false positive (FP), and false negative (F).

In this paper, we use the confusion matrix because a number of

TP, TN, FP, and FN samples are values of interest to understand the

confusion in gait classes for further analysis using LRP.

From this confusion matrix table, performance measures are

obtained, such as accuracy, recall, precision, and F1 using the

following equations.

• Accuracy: an indicator of the ratio between the correctly

predicted data to the total number of samples in the dataset,

defined as follows: TP+TN
TP+TN+FP+ FN .
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• Recall: the proportion of positive classes identified correctly,

defined as follows: TP
TP+ FN .

• Precision: the fraction of positive cases correctly identified

over all the positive cases predicted, defined as TP
TP+ FP .

• F1-Score: the harmonic mean of Precision and Recall, defined

as follows: 2
∗Precision∗Recall
Precision+ Recall

.

3.4 Layerwise relevance propagation

Layerwise relevance propagation (LRP) (Bach et al., 2015;

Montavon et al., 2017, 2018) is a backward propagation method

used to identify the most influential parts of the input vector in

the model prediction of an artificial neural network (ANN). In

this thesis, we measure the contribution of individual components

of the input xi (e.g., sensor signals at specific time frames) to

the prediction fc(x) of a gait class c made by the CNN classifier

f . The prediction is redistributed backward through the network

via backpropagation until reaching the input layer. LRP generates

a “heat map” over the original signal, highlighting sections with

the highest contributions to the model’s prediction, such as areas

with the greatest variability among classes. It is important to note

that a neural network comprises multiple layers of neurons, where

neurons are activated as described in Montavon et al. (2018).

ak=σ (
∑

j

ajωjk + bk) (5)

Here, ak is the neuron activation and aj is the activation of the

neuron in the previous layer in a forward direction;ωjk denotes the

weight received in the forward direction by neuron k from neuron

j in the previous layer, and bk is the bias. The sum is computed

over all the jth neurons that are connected to the kth neuron.

σ is a non-linear monotonically increasing activation function.

These activations, weights, and biases are learned by CNN during

supervisory training. During training, the output fc (x) is evaluated

in a forward pass and the parameters (ωjk + bk) are updated by

back-propagating using model error. For the latter, we base our

computations on categorical cross-entropy (Zhang and Sabuncu,

2018).

The LRP approach decomposes the CNN output for a given

prediction function of gait class c as fc for input xi and generates

a “relevance score” R for the ith neuron received from Rj for the

jth neuron in the previous layer, which is received from Rk, for

the kth neuron in the lower layer, where the relevance conservation

principle is satisfied as:

∑

i

Ri←−j =
∑

j

Rj←−k =
∑

k

Rk = fc (x) (6)

The LRP starts at the CNN output layer after removing the

Softmax layer. In this process, a gait class c is selected as an input

to LRP, and the other classes are eliminated. The backpropagation

for unspooling for the pooling layer is computed by redirecting

the signal to the neuron for which the activation was computed

in the forward pass. As a generalization, consider a single output

neuron i in one of themodel layers, which receives a relevance score

Rj from a lower-layer neuron j, or the output of the model (class

c). The scores are redistributed between the connected neurons

throughout the network layers, based on the contribution of the

input signals xi using the activation function (computed in the

forward pass and updated by back-propagating during training)

of neuron j as shown in Figure 2. The latter will hold a certain

relevance score based on its activation function and pass its value

to consecutive neurons in the reverse direction. Finally, the method

outputs relevance scores for each sensor signal at a specific time

frame. These scores represent a heat map, where the high relevance

scores at specific time frames highlight the areas that contributed

the most to the model classifications.

3.5 Perturbation analysis

Human gait, characterized by its inherent variability among

individuals and even within a single individual, poses a significant

challenge for developing reliable and robust models capable of

accommodating such diversity in input data. Within the realm of

gait analysis, layerwise relevance propagation (LRP) emerges as a

promising methodology for interpreting the significance of input

data points. However, the effectiveness of LRP in the context of

gait analysis hinges on its resilience to noise and fluctuations in the

input data stream.

To address this concern, a systematic exploration of the

impact of random perturbation noise on LRP relevance scores is

undertaken. This analysis serves a dual purpose: first, to inform the

selection of themost appropriate LRPmethod, and second, to guide

the design of a deep convolutional neural network (CNN) model

capable of withstanding the inherent variability of gait patterns. The

intricacies of this perturbation analysis methodology are elucidated

in subsequent sections.

The iterative procedure proposed by Samek et al. (2017b),

commonly referred to as the “greedy” approach, serves as the

cornerstone for selecting the optimal LRP method and evaluating

the relevance scores generated for gait classification. This iterative

process involves progressively removing information from the

spatiotemporal input signal, prioritizing regions with the highest

relevance scores for perturbation using a “most relevant first”

(MoRF) approach (Samek et al., 2017b). At each iteration,

the model’s performance is rigorously assessed by re-predicting

test data with the accumulated perturbations. The selection

of the preferred LRP method is informed by observing the

most significant decline in accuracy during the initial iterations,

indicating the criticality of the perturbed regions for accurate

classification performance. Subsequent iterations demonstrate a

slower decline in accuracy as less crucial regions are perturbed,

thus providing insight into the relative importance of different

input features.

Moreover, the evaluation of the significance of CNN model

architecture entails a comprehensive analysis of the impact

of perturbations on model performance. This process involves

systematically removing the highest relevance scores obtained from

the selected LRP method and evaluating the model’s performance

by re-predicting the test data for each perturbed model. Models

exhibiting substantial performance deterioration after only a few

perturbation steps are deemed most amenable to leveraging LRP.
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This decline in performance signifies the critical role of the

removed regions in facilitating accurate classification, thereby

highlighting meaningful relationships between input patterns and

learned classes. Conversely, regions with minimal impact on

classification performance upon removal suggest lesser relevance

in discerning such relationships, thus informing subsequent model

refinement efforts.

3.6 Gait data

In this paper, we investigate gait deterioration due to

Parkinson’s disease (PD) and under dual-task conditions (walking

while performing cognitive tasks as detailed in Section 3.6.2).

Specifically, we compare the effects of dual-tasking and PD on gait

events. The data for this study are detailed in the following section.

3.6.1 Parkinson’s disease data
In this study, we utilized the open access benchmark available

on PhysioNet.org (Goldberger et al., 2003) to analyze ground

reaction force (GRF) data in Parkinson’s disease (PD) patients.

The dataset included 93 PD patients (mean age: 66.3 years; 63%

men) with varying degrees of PD progression based on Hoehn and

Yahr Scale staging criteria (Frenkel-Toledo et al., 2005; Yogev et al.,

2005; Hausdorff et al., 2007), as outlined in Table 2, and described

in detail in Table 3. Additionally, the dataset also included GRF

measurements from 73 healthy controls (mean age: 66.3 years;

55% men). During the data collection process, participants were

instructed to walk for ∼2min while wearing eight sensors placed

underneath each foot to measure the force [N] as a function of

time. The output of the 16 sensors was recorded at a frequency

of 100 frames per second. Moreover, the sum of the eight sensors

of each foot was added to each subject sample along with the

timestamp, resulting in a total of 19 columns. The dataset was

collected by three research groups, namely the Ga group (Yogev

et al., 2005), the Ju group (Hausdorff et al., 2007), and the Si group

(Frenkel-Toledo et al., 2005). The sub-parts of the dataset were

named after these research groups. The Ju and Si groups recorded

usual healthy walking at a self-selected speed, while the Ga group

included additional samples for each subject, where they performed

a dual task while walking (Yogev et al., 2005). Overall, this dataset

provides valuable insights into the gait patterns of PD patients

and healthy individuals, which could be used to develop effective

interventions for gait-related impairments in PD.

Each sample recorded in the dataset contains 19 columns of

data with varying column lengths, as for some subjects’ gait was

recorded for a longer time (12,119 frames) than for others (<1,000

frames). In order to make the input data length consistent, the

datasets were split into equal-size parts of 500 frames such that

single long recordings are divided into several chunks of 500

frames. The timestamp columns were deleted as it doesn’t report

information about gait. The final sample size is 18 columns and

500 rows or frames as shown in Figure 4A. This choice is justified

as the gait cycle is ∼1 s, and the sample captures heel strike and

toe-off for both feet over five gait cycles. The input dataset is a

tensor with dimensions m × 500 × 18 where m = 2,698 for the

TABLE 2 Number of subjects with the severity rating.

Severity (0)
healthy

Severity
(2)

Severity
(2.5)

Severity
(3)

Group

18 15 15 6 Ga
(Balakrishnan
et al., 2020)

26 12 12 4 Ju
(Muheidat
and
Tawalbeh,
2020)

29 29 29 0 Si (Costilla-
Reyes et al.,
2021)

TABLE 3 Discerption of datasets subject.

Subjects Number Male Female Group

PD patients 29 20 9 Ga
(Balakrishnan
et al., 2020)

Healthy
subjects

18 10 8 Ga
(Balakrishnan
et al., 2020)

PD patients 29 16 13 Ju
(Muheidat
and
Tawalbeh,
2020)

Healthy
subjects

26 12 14 Ju
(Muheidat
and
Tawalbeh,
2020)

PD patients 35 22 13 Si(Costilla-
Reyes et al.,
2021)

Healthy
subjects

29 18 18 Si(Costilla-
Reyes et al.,
2021)

Ga group (Yogev et al., 2005), 2,198 for the Ju group (Hausdorff

et al., 2007), and 1,509 Si group (Frenkel-Toledo et al., 2005). Data

standardization is performed as a pre-processing step to reduce

the redundancy and dependency among the data, such that the

estimated activations, weights, and biases will update similarly,

rather than at different rates, during the training process. The

standardization involves rescaling the distribution of values with

mean at zero and rescaling the standard deviation to unity.

x̂n,s =
xn,s − µ(xn,s)

ϑ(xn,s)
(7)

Here, x̂n,s is PD data rescaled such that µ is the mean values

and ϑ is the standard deviation. Then, the dataset is randomly split

into training 60%, hold-out validation 20%, and testing 20% with a

random state parameter with a different seed.
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FIGURE 4

Example gait data. (A) PD Gait was recorded at 100 frames per second, with a sample length of 500 timeframes. The signals represent pressure

sensor signals under each foot (di�erent colors for each of the eight sensors). (B) Cognitive Load Gait, recorded at 20 frames per second, with a

sample length of 100 timeframes. The signals represent POF sensors transmitted light intensity is a�ected by surface bending due to pressure under

each foot (di�erent colors for each of the 116 POF sensors).

3.6.2 Cognitive load data
The iMagiMat footstep imaging system is an innovative

floor sensor head that utilizes photonic guided-path tomography

technology (Ozanyan et al., 2005; Cantoral et al., 2011; Cantoral-

Ceballos et al., 2015; Ozanyan, 2015). The system can capture

temporal samples from strategically placed distributed POF sensors

on top of a deformable underlay of a commercial retail floor

carpet in an unobtrusive manner. Each sensor is made up of

low-cost POF (step-index PMMA core with fluorinated polymer

cladding and polyethylene jacket, total diameter 1mm, NA =

0.46) terminated with an LED (Multicomp OVL-3328 625 nm) at

one end and a photodiode (Vishay TEFD4300) at the other. The

sensors are designed to allow collaborative sensor fusion and deliver

spatiotemporal sampling that is adequate for discerning gait events.

The iMagiMat system covers a 1m× 2m area managed by 116

POF sensors arranged in three parallel plies, sandwiched between

the carpet top pile and the carpet underlay. The system includes

a lengthwise ply with 22 POF sensors at 0◦ angle to the walking

direction and two independent plies, each consisting of 47 POF

sensors, arranged diagonally at 60 and −60◦, respectively (see

Cantoral-Ceballos et al., 2015, for the iMAGiMAT system). The

system is managed by electronics contained in a closed hard-shell

periphery at carpet surface level and is organized into eight-channel

modules, including LED Driver boards and input trans-impedance

amplifier boards to receive the data and send it to a CPLD (complex

programmable logic device) to reformat the data for processing by

a Raspberry pi single-board computer for export via Ethernet/Wi-

Fi. The operational principle of the system is based on recording

the deformation caused by the variations of ground reaction force

(GRF). As bending affects the POF sensors, transmitted light

intensity is affected by surface bending. This captures the specifics

of foot contact and generates robust data without constraints of

speed or positioning anywhere on the active surface.

For this experiment, 21 physically active subjects aged 20–40

years, 17 men and four women, without gait pathology or cognitive

impairment, participated. The study was carried out under the

University of Manchester Research Ethics Committee (MUREC)

with ethical approval number 2018-4881-6782. All participants

were informed about the data recording protocol according to the

ethics board’s general guidelines, and written consent was obtained

from each subject prior to the experiments. Each participant was

asked to walk normally or while performing cognitively demanding

tasks along the 2m length direction of the iMagiMat sensor head.

The captured gait data was unaffected by start and stop, as it

was padded on both ends with several unrecorded gait cycles

before the first footfall on the sensor. With a capture rate of 20

timeframes/s (each timeframe comprising the readings of all 116

sensors), experiments yielded 5 s long adjacent time sequences, each

containing 100 frames. The recorded gait spatiotemporal signals

were able to capture∼4–5 uninterrupted footsteps at each pass.

A dual-task gait test detects mild cognitive impairment (Wang

et al., 2023); therefore, five manners of walking were defined as

normal gait plus four different dual tasks, and experiments were

recorded for each subject, with 10 gait trials for each manner of

walking in a single assessment session. Thus, the total number

of samples is 10 × 5 = 50 per-subject. The five manners

of walking are defined in Table 4. A set of measured data as

xn,s = [xn,1& . . .&xn,116] ∈ R
n×116 is harvested from the

iMagiMat system, where n is the number of the data block (100

frames) and s enumerates the POF sensors, as shown in Figure 4B.

A total number of 1, 050 samples are recorded for 21 subjects

and placed in a 3D matrix of dimensions 1, 050 × 100 ×

116. The recorded amplitude of data varies due to the weight

of each subject; therefore, data standardization is implemented

as a pre-processing step, to ensure that the data are internally

consistent, such that the estimated activations, weights, and biases

update similarly, rather than at different rates, during the training

process and testing stage. The standardization involves rescaling

the distribution of values with a zero mean unity standard

deviation, using Equation 7, where x̂n,s is gait data rescaled so

that µ is the mean and ϑ is the standard deviation. Then, the

dataset is randomly split into training 60%, hold-out validation

20%, and testing 20% with a random state parameter with a

different seed.

4 Experiment and results

All algorithms for LRP computation are implemented

in Python 3.7.3 programming language using
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TABLE 4 Cognitive load experiment data.

Manner of walking Description

M1 Normal Gait: walking at a normal
self-selected speed

M2 Gait while listening to a story: audio input
through headphones, followed by answering
questions after gait recording is completed

M3 Gait with serial 7 subtractions: normal
walking speed attempted while
simultaneously performing serial 7
subtractions (counting backward in sevens
from a given random 3-digit number)

M4 Gait while texting: normal walking speed
attempted while simultaneously typing text
on a mobile device keyboard

M5 Gait while talking walking at a normal
self-selected speed while talking or answering
questions

Keras 2.2.4, TensorFlow 1.14.0, and iNNvestigate GitHub repository

(Alber et al., 2018). The codes are executed on a desktop

with Intel Core i7 6700 CPU @3.4 GHz. The deep CNN

model is applied to the datasets to test the validity of the

algorithms for identifying gait signatures. The implementation

and the perturbation analysis are detailed in the following

section. We compare the CNN predictions to manually

labeled ground truth in several experiments, including PD

severity staging, individuals’ identity, and the effects of

cognitive load on normal gait. The models’ classification

performance is evaluated using confusion matrices. The

performance of the LRP methods is examined in detail in the

discussion subsection.

4.1 Classification experiments

We introduce a variety of algorithms and architectures,

including a CNN model, LSTM, Stochastic Gradient Descent

(SGD), K-Nearest Neighbors (KNN), and Gaussian Process

Classifier (GPC). The SGD updates model parameters iteratively

using a single or a few randomly selected data points to compute

the gradient, optimizing the objective function efficiently for large

datasets (Zhang, 2004). The KNN algorithm employs Euclidean

distance techniques to determine the distance between data samples

(Altman, 1992). The GPC leverages Gaussian processes to define a

distribution over functions, making predictions by averaging over

all possible functions, thus providing probabilistic classification

outputs and well-calibrated uncertainties (Xiao et al., 2019).

Through experimentation detailed in the following sections, we

utilize CNN and LSTM methods as automatic feature extractors

and classifiers. The CNN models shown in Figure 3 map the

gait spatiotemporal signal x̂n,s to an output label y by learning

an approximation function y = f
(
x̂n,s

)
. The networks

consist of an input layer, convolution layers (see Equation 2),

pooling layers, fully connected layers, batch normalization layers,

and an output layer with a softmax classifier. The set of

stacked layers in Figure 3 utilizes Conv2D kernels (filter size ×

TABLE 5 PD data models F1-score for each dataset and F1-score with

datasets combined.

CNN
model

Ga Ju Si GaUJuUSi

Single 98% 98% 98% 96%

Parallel 96% 97% 96% 96%

Quadruplet 97% 97% 98% 95%

LSTM 91% 93% 80% 94%

SGD 88% 84% 80% 83%

KNN 81% 90% 78% 79%

GPC 82% 85% 89% 81%

The best performance is in bold.

number of feature maps × number of filters), MaxPooling and

AveragePooling layers.

To improve the model performance, a regularization method

is utilized as follows: (1) Batch normalization [to normalize the

activations of the previous layer at each batch, by maintaining the

mean activation close to 0 and the activation standard deviation

close to 1 (Ioffe and Szegedy, 2015)]. (2) The Batch normalization

followed by dropout (Srivastava et al., 2014), after the last pooling

layers were flattened, by transforming a matrix to one single-

column vector. An Adam (adaptive moment estimation) (Kingma

and Ba, 2015) is utilized to train the model. The used optimizer

parameters are α = 0.002, β1 = 0.9, β 2 = 0.999, ε =

1e − 08. Here, α is the learning rate or the fraction of weights

updated where larger values (e.g., 0.3) result in faster initial

learning before the rate is updated. Smaller values (e.g., 1.0E-

5) slow learning right down during training; β 1 and β 2 are

the exponential decay rates for the first- and second-moment

estimates, respectively; ε is a small number to avoid division by

zero. The loss is computed using categorical cross-entropy in every

iteration to minimize the network error (Zhang and Sabuncu,

2018). The convolutional layers weight parameters are initiated

with a Glorot uniform (Glorot and Bengio, 2010) with zero bias.

The model is trained and validated (for several experiments)

using a batch size of 100 samples for each iteration; 200 epochs

are found optimal to train the model based on backpropagation

Equations 3 and 4. The training and validation sizes are set to be

70 and 10%, respectively, where 20% is reserved for testing the

model accuracy.

4.1.1 Experiment (1) on PD severity staging
In this experiment, CNNS, LSTM, SGD, KNN, and GPC

models are trained and tested on the PD dataset to classify

the severity of PD into five stages: normal (CO), mild (2),

moderate (2.5), and severe (3). Table 5 presents the models’

F1-score for each dataset and the F1-score with datasets

combined. Figure 5 presents the confusion matrix for the CNNs

and LSTM with datasets combined. The best performance is

achieved by the CNN single and parallel with F1-score 96%

for the data set combined and for each data, where the

LSTM performance was 79% for PD stage 3. In the statistical
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FIGURE 5

The predictions of models on the 1,281 sample shown as confusion matrices: single CNN, parallel CNN, quadruplet CNN, and LSTM.

analysis, the performance of SGD, KNN, and GPC models was

below 90%.

4.1.2 Experiment (2) on cognitive load impact on
gait

The aim of this experiment is to show that in healthy subjects

the influence of cognitive load on gait varies from subject to subject

and the normal gait can be predicted with higher true positive rates

than predictions under cognitive load. Five types of gait signatures,

normal and four cognitively demanding task patterns, are learned

for 21 subjects. The performance observed for the five classes is

shown in Figure 6, as the median confusionmatrix based on several

runs with the CNNs in Figure 3 resulted in a F1-score of 50%, mean

performance, and standard error of 48.25 ± 1.03%. The results

show that normal gait is predicted by a true positive incidence of

92% ± 1.7%, while there is notable confusion between the dual

tasks performed by the 21 subjects. The different random state

parameters return the same result, where the normal gait true

positive prediction is higher than 90% and substantial confusion

between the dual-task cases.

4.1.3 Experiment (3) cognitive load impact on gait
for each subject

In this experiment, gait patterns are investigated within each

subject, to show that each subject gait under cognitive load

can be learned and predicted. This is achieved by training,

validating, and testing the CNNs in Figure 3 to classify each

subject gait pattern using the normal gait and cognitive load.

Each subject data are split using a random state to cover all

five classes for testing with m = 50 samples. The model

evaluation using the F1-score is detailed for each subject in

Table 6. Gait data are predicted with more than 85% F1-score

for 16 subjects, and for six subjects, F1-scores are between 65

and 77%.

4.1.4 Experiment (4) cognitive load impact on gait
for each subject

To study patterns for each of the four dual tasks (M2 − M5)

representing variants of cognitive load, we organize the data into

four groups so that binary classification performance to distinguish

between gait under normal (class 0) and cognitive load (one of
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the classes 1, 2, 3, or 4, depending on the particular data

group) conditions can be studied separately for each dual task. The

CNNs in Figure 3 are trained 16 times, implementing four runs

with each of the four data groups. The F1-scores for each run

are shown in Table 7. The first run in each data group is based

on training and validating the CNNs on 20 subjects and testing

the model on 1 subject, to see whether we can predict the gait

of one person from 20 people. In the second run, the numbers

are 19 and 2, respectively; in the third—17 and 4, respectively.

The last run is based on splitting the data into 70% for training,

10% for validation, and 20% for testing, using m = 420 samples

with a random state of 200 seed parameters (as the accuracy does

not change with the random state seed). As shown in Table 7,

the highest classification performance is achieved in the first runs

(except for the group containing class 3). This is used essentially

in the implementation of LRP to analyze the gait classes for that

subject in the first run as reported in further comparison with

statistical classifiers.

FIGURE 6

Confusion matrix for classification under cognitive load: 21 subjects,

five classes. Experiment (4) Cognitive Load Impact on Gait Variations

(Binary Classification).

4.2 LRP analysis and interpretation for
explainability

In the following sections, we present the LRP analysis (see

Equations 5 and 6) and interpretation for the best-performing

model using perturbation presented in Section 3.5. Then, we

present the explainability results of the investigated classification

models for PD and cognitive load.

4.2.1 Model selection and XAI selection
4.2.1.1 Model selection

In this study, we conducted an in-depth analysis of the

performance of various CNN models for the task of gait

classification. We employed explainable AI (XAI) techniques to

select the most suitable CNNmodel for this application. To identify

the CNN model that best captures the relevant gait features, we

utilized a perturbation-based approach presented in Section 3.5.

Specifically, we systematically perturbed each of the three candidate

CNN models by gradually replacing 7× 7 regions within the input

gait sequence with Gaussian noise and observed the impact on

the classification accuracy over 100 steps. Rather than comparing

the models to a baseline, we focused on the rate of decline in

accuracy (with the means removed to isolate the rate of change) as a

metric to identify the model with the steepest drop in performance.

This approach is based on the premise that models that rely on

more compact regions within the gait cycle sequence will exhibit

a faster decline in accuracy when those regions are perturbed.

The results, as depicted in Figure 7, show that the parallel CNN

model (see Figure 7) experiences the most pronounced decrease

in accuracy with perturbation, indicating that it captures the gait

events that are most vulnerable to deterioration in individuals

with PD. As depicted in Figure 7, after step 13, the quadruplet

CNN begins capturing less relevant features, similar to the decline

observed in the parallel CNN. This finding suggests that the

parallel CNN model is the preferred candidate for accurate feature

identification of the gait cycle events most sensitive to the effects

of either PD or cognitive load. Figure 8 shows the assessment of the

validity of the LRP heatmaps for subjects’ identification of cognitive

load.

Here, we apply the removal of the region based on both

LRP sequential preset a flat (LRP-SPF) MoRF and random region

removal and re-predicting gait class. As shown in Figure 8A,

the model prediction strongly decays using the LRP for the

TABLE 6 Models classification accuracy for cognitive load impact on gait for each subject.

Subject number F1-score Subject number F1-score Subject number F1-score

0 95% 7 87% 14 100%

1 65% 8 90% 15 75%

2 93% 9 90% 16 80%

3 90% 10 77% 17 100%

4 87% 11 91% 18 100%

5 91% 12 90% 19 80%

6 73% 13 100% 20 69%
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TABLE 7 F1-score predictions for binary classification, normal vs. cognitive load.

Data group for
classification

1 testing subject 2 testing subjects 4 testing subjects Test with all subjects

Class 0 vs. class 1 100% 85% 81% 79%

Class 0 vs. class 2 95% 87% 58% 69%

Class 0 vs. class 3 60% 68% 63% 79%

Class 0 vs. class 4 100% 85% 74% 81%

FIGURE 7

Perturbation e�ect on the proposed CNNs architectures. The decline in accuracy results from progressively removing information from the input

data based on LRP-SPF and re-predicting, at each step, 30 steps total.

removal of information compared to the removal of random

information. Figure 8B shows the model performance over 300

steps. The model reaches the lowest performance accuracy

where the gait classes have to take a random prediction.

Furthermore, it can be inferred from Figure 8 that the model

is effective in finding the most relevant region to identify

cognitive load of subjects and the LRP is consistent over the

test samples.

4.2.1.2 XAI selection

To identify the most suitable backpropagation method for the

three CNN models, we conducted a comprehensive evaluation of

various LRP (layerwise relevance propagation) techniques. These

included deep Taylor (Montavon et al., 2017), deep Taylor bounded

(Kohlbrenner et al., 2019), deconvnet (deconvolution) (Zeiler

and Fergus, 2014), guided backprop (guided backpropagation)

(Springenberg et al., 2015), and LRP sequential preset a flat (LRP-

SPF) (Kohlbrenner et al., 2019), all of which were implemented

using the iNNvestigate GitHub repository. For each of the

LRP methods, we assessed the CNN classification accuracy by

performing a sequence of perturbation steps as described in Section

3.5 as described in Model Selection. To establish a baseline for

comparison, we replaced regions of the input data with random

Gaussian noise with one level at 0.1%, rather than using the

LRP-based methods. We then subtracted the accuracy of LRP

maps from the accuracy of randomly replaced regions to isolate

the impact of the LRP techniques. As shown in Figure 9, the

LRP curves recovered after around the 15th perturbation step

as the remaining spatiotemporal regions became less relevant

for the classification task. The baseline accuracy was reached

around the 30th perturbation step, indicating that the remaining

regions were unimportant for the classification. Importantly, the

observed rate of change in accuracy was proportional to the

importance of the information perturbed at each step as expected.

This analysis allowed us to understand the relative significance of

different regions within the input gait sequence for the classification

performance of CNN models.

4.2.2 PD gait event assignment using LRP
Gait GRF data take the form of periodic sequences, which

are characterized as repetitive cycles for each foot. We note

that the normal gait cycle is initiated by the heel strike of one

foot, followed by other gait events described in Figure 1 and

Table 1, in strict order. Therefore, the LRP-generated heat map

of the temporal variations in the GRF signal can reveal which

events in the gait cycle are most relevant for the classifications.

Consequently, gait event assignment is best performed on the data

sequences in Figure 10 after spatial averaging and standardization.

A representative spatially averaged sensor signal sequence is shown

in Figure 10A for a healthy subject. The highlighted gray area

corresponds to one gait cycle, while the plotted signal is given by
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FIGURE 8

Validation of LRP heatmaps by perturbation technique for experiment 3 subject 13. Information with the highest relevance scores is progressively

removed, and the test samples are re-predicted. A steeper initial decrease indicates better identification of gait events with the most weight in the

classifications. (A) Shows the model predictions in 30 steps based on removing relevance scores using LRP sequential preset a flat (LRP-SPF) and

random removal of information. (B) Shows the model performance after 300 steps of information removal.

FIGURE 9

LRP method selection by perturbation steps progressively removes information with the highest relevance scores. A steeper initial decrease indicates

better identification of gait events with the most weight in the classifications.

the spatial average (SA) metric, computed as follows:

SA[n] =
1

18

18∑

i=1

(xi[n]) (8)

Here, xi are the readings from individual sensors, and n

enumerates the frames in each sample. Recall that each foot has

eight sensors attached (16 total) and the two sums one for each

eight sensors for each foot are available giving 18 signals in total.
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FIGURE 10

Gait events processed SA (see Equation 7) signal top. The highlighted gray area in (A) is explained in (B) based on gait events for one foot from

Figure 4 as: A—heel strike, B—loading response or flat foot, C—mid-stance or single support, D—terminal stance or heel rising, E—pre-swing or

double-limb support, F—initial swing and mid-swing or toe-o�, G—terminal swing.

Figure 10B shows the expanded gait cycle from Figure 10A with the

gait events color-coded and labeled as per Figure 1 and Table 1.

4.2.2.1 Interpretation

The LRP scores highlight the regions of the input data that

contribute significantly to the model’s classification of PD severity

stages. The plot of LRP scores in Figure 11 displays calculated

SA (top panels) aligned against the relevant “LRP scores” SA,

which consists of sharp peaks, well defined in the temporal

domain, thus attributable to time-stamped gait events. Figure 11

displays the spatially averaged data signals for the four classes

with their respective LRP score maps. The most prominent peaks

are attributed to observable gait events, labeled in consistency

with the gait cycle in Figure 1 and Table 1. It is observed that the

model focuses on specific gait features related to severity, such

as changes in stride length, gait speed, and variability, to make

accurate predictions. These are further discussed in Section 5.

4.2.3 Cognitive load impact on gait event
assignment using LRP

The focus of this section is to identify the features picked

up by the model to classify gait under cognitive load. To obtain

accurate LRP relevance scores Ri, the true positive prediction of

the model should be high. Therefore, the gait class with a high

positive rate is considered for LPR analysis. The learned CNN

model parameters in experiments 2 and 4 were frozen for LRP

analysis. Experiment 3 is to check whether there is a variation

in gait within a subject; therefore, it is not considered for LRP

analysis. LRP sequential preset a flat (LRP-SPF) based on the XAI

Selection criteria was utilized for this part as it has shown sensitivity

to gait inconsistency. The iMagiMat system captures a sequence

of periodic events as distinct, but similar cycles for each foot.

This spatiotemporal sequence is generated by the change of light

transmission intensity in the POF sensors: xi = [x1& . . .&x116] ∈

R
n×116. However, a typical interpretation of the gait cycle, based on

visual observation, is derivedmuch less from the spatial component

than the temporal one. Thus, to progress toward interpreting the

CNN classifications in terms of observable gait events, we average

over the spatial domain using Equation 8.

Figure 12 displays randomly selected samples of normal gait

classified with 100% true positives in experiment 2; Figure 13

shows predicted gait samples in experiment 3 for a single.

Figure 14 displays randomly selected subjects for comparison of

dual tasking with a normal gait. The top panels in Figures 12–

14 display calculated SA aligned against the relevant “LRP scores”

SA, generated from the calculated LRP scores and displayed in

the bottom panels (to be discussed further in Section 5). The
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FIGURE 11

LRP method applied on randomly selected samples for healthy gait and three PD severity ratings. SA of gait spatiotemporal signals: black; SA for LRP

relevance scores (RS) over the same temporal period: blue. Vertical red bars with number labels display consistency with gait events listed below with

capital letters as per Figure 1 (Table 1) and Figure 10: 1—heal strike and foot flattening (A); 2—mid-stance and single support (C); 3—loading response

after the double support interval (B), 4—terminal swing and ready for the heel strike (G).

SA temporal sequences have different values on the y-axis due to

the nature of the captured gait signal, which is influenced by the

individual anthropometry of subjects.

4.2.3.1 Interpretation of results

The LRP heatmaps demonstrate the regions in the input data

that contribute significantly to the model’s decision regarding

cognitive load impact on gait. The model appears to focus on

variations in gait features influenced by cognitive load, providing

insights into the relationship between cognitive demand and

gait characteristics.

The presented experiments demonstrate the effectiveness of

the CNN model in various gait-related tasks, including PD
identification, severity staging, subject identification, and assessing

cognitive load impact on gait. The high F1-scores obtained
in each experiment indicate the capability of model to make

accurate predictions. The LRP analysis provides interpretability
by highlighting important regions in the input data for decision-

making. In the PD gait identification experiment, the model
seems to focus on specific patterns in ground reaction forces

related to PD-associated abnormalities. In PD severity staging, the
model relies on gait features indicative of severity, such as stride

length and variability. For subject cognitive load identification, the

model captures unique gait patterns for each individual, and in

assessing cognitive load impact, it considers variations influenced

by cognitive demand. The ensemble approach consistently shows

comparable or improved performance over the single model,

indicating its effectiveness in enhancing predictive accuracy. The

mean F1-scores across experiments suggest the model’s robustness

in handling diverse gait-related tasks. Overall, the presented

CNN model, accompanied by LRP analysis, provides a powerful

tool for gait analysis in the context of Parkinson’s disease and

related tasks. Further research and validation on larger datasets

and diverse populations would contribute to the generalizability

and applicability of the proposed model. Additionally, real-world

deployment considerations, such as model interpretability in

clinical settings, should be explored for practical implementation.

5 Discussion

The study presented delves into the promising realm of

explainable artificial intelligence (AI) and deep learning methods

for predicting gait deterioration. The focus is on identifying the

impact of cognitive load and Parkinson’s disease (PD) on gait

patterns, and this is achieved by analyzing spatiotemporal data

obtained from sensors placed under the feet. To carry out this

investigation, convolutional neural networks (CNNs) were utilized.

These powerful neural networks can effectively learn from complex

spatiotemporal data and produce highly accurate predictions. In

addition, the CNNs were perturbed to provide insights into the

features within the spatiotemporal gait ground reaction force
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FIGURE 12

LRP methods applied on normal gait samples (from di�erent subjects) from experiment 2 testing data, to identify gait events relevant to the CNN

prediction to classify the cognitive load impact on gait. Gait events are 1,2,3—loading response or foot flat and double support.

(GRF) signals that are most relevant to the predictions of the

models. The results of this study are presented in detail in the

following sections, with each data classification and perturbation

analyzed and discussed in depth.

5.1 PD data

The spatiotemporal signal in Figures 4A, 10 implies that gait

has normal events. Abnormal gait, otherwise difficult to detect

visually, can be detected bymachine learning, in alignment with the

knowledge of the ground truth labels. However, the magnitude of

GRF in Newton shows a decrease attributable to the severity of PD.

The main objective of this study was to find the best deep learning

model for PD severity rating and relate the model predictions to the

gait cycle events shown in Figure 3.

Research towardmachine learning classifications from PD data,

specifically PhysioNet data, is based on the use of manual feature

extraction methods with classical machine learning methods as

shown in Table 8. The best classification results from manual
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FIGURE 13

LRP methods applied on a single subject from experiment 3 testing data (each column is one pair), to identify gait events relevant for the CNN

prediction to classify the cognitive load impact on gait. SA of gait spatiotemporal signals: black; SA for LRP relevance signals over gait temporal

period: blue; POF LI (plastic optical fiber light intensity). Vertical red bars with numbers display correspondence to gait events as per Figure 15: 1,

5—loading response or foot flat and double support, 2, 3, 4—loading response or foot flat and single support.

extraction are reported in Abdulhay et al. (2018) using SVM

classifier (92.7%). Our study on PD severity classification reported

in Table 5 displays that the CNN outperformed the SGD, KNN,

GPC algorithms, and LSTM. In this study, we explore three

CNN architectures for automatic extraction and LRP analysis.

The proposed CNNs identified PD, as well as rated the severity

of the deviation from healthy gait, achieving better classification

performance with an F1-score of 98% for each dataset and for

the datasets combined with different random states (see Table 5).

The best classification accuracy is achieved with the parallel CNN,

with mean performance and standard errors of 95.5 and 0.28%,

respectively. Additionally, the parallel CNN exhibit robustness

at perturbation with Gaussian noise as shown in Figure 7. This

suggests that the model is adequate for detecting gait deterioration

from the spatiotemporal GRF signal. As an additional substantial

enhancement, our LRP approach allows classification results to

be related to visual observations similar to those established in

medical practice to diagnose PD. In this section, we present key

findings from our analysis, supported by visual representations.

Figure 10 illustrates the spatiotemporal signal extracted from PD

data, providing insights into the gait patterns of individuals with

Parkinson’s disease.

Moving on to Figure 10B, we delve into the gait cycle

events identified in PD data. These events play a crucial role in

understanding the dynamics of gait abnormalities associated with

Parkinson’s disease.

To further refine our analysis, Figure 11 presents gait cycle

events specifically categorized for PD severity staging. This

categorization allows for a nuanced exploration of how gait

characteristics vary across different stages of Parkinson’s disease.

These figures serve as visual aids to enhance the comprehension

of our findings and contribute to the broader understanding of gait

abnormalities in the context of Parkinson’s disease.

(1) PD Severity Level 0 (Healthy Gait): The CNN classifies

the raw spatiotemporal signals as healthy or within three severity

ratings as shown in the confusion matrix (Figure 5). The best LRP
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FIGURE 14

LRP methods applied on a single subject from experiment 4 testing data (each column is one pair), to identify gait events relevant for the CNN

prediction to classify the cognitive load impact on gait. Gait events are as follows: 1—heel strike, 2—toe-o�, 3—between foot swing and opposite

heel strike, 4—between double support and toe-o�.

method is selected by applying a perturbation technique, which

detects the highest sensitivity to removal of information from the

input data sequence (Figure 9). The selected LRP-SPF was found

to be superior to well-known methods such as deconvolution and

guided backpropagation.

Among the CNN architectures (Figure 3), the parallel CNN

model shows the steepest decrease in the perturbation procedure.

Therefore, that model is learned and used to generate the heatmap

or relevance for randomly selected samples (Figure 11). The gait

cycle events identified as key at each level of PD severity are

listed below:

PD Severity Level 0 (Healthy Gait): (1) Heel strike and foot

flattening (A).

This indicates that the healthy person’s ability to maintain

balance is stronger than the PD patients’, with strong

balance suggesting that the forces are applied rhythmically

to achieve the lower limbs’ synchronized movement with

stable posture.

PD Severity Level 2: (1) Mid-stance and single support (C).

The heatmap shows that the subjects affected with PD level

2 have a weaker balance in single support, where this feature is

marked by the model by 96% F1-score.

PD Severity Level 2.5: Loading response after the double-

support interval (B).

This shows that the subject has weaker foot landing or flat foot

landing after the balance is compromised by the single support.

PD Severity Level 3: (4) Terminal swing and ready for the heel

strike (G).

Here the balance is compromised by weak GRF resulting from

unstable body posture and implies a high risk of falling. This
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FIGURE 15

Representative gait cycle spatial average of spatiotemporal signals

(see Equation 8). Gait events recorded by iMAGiMAT sensors in a

typical full gait cycle of two steps (Figure 4: A, B, C, D, E, F, G):

1—heel strike, 2—foot-flattening, 3—single support, 4—opposite

heel strike, 5—opposite foot-flattening, 6—double support,

7—toe-o�, 8—foot swing, 9—heel strike, 10—double support,

11—toe-o�, 12—foot swing, 13—opposite heel strike, 14—single

support, 15—toe-o�.

conclusion is based on linking the stages of PD inWang et al. (2023)

(description of how the stage of PD affects the body posture during

gait using visual observation) to the events that are highlighted by

the model for a certain PD severity.

(2) Interpretation of Classifications: The above markers for

classification align with the observations in the literature that PD-

induced gait GRF deterioration affects body balance and posture.

The latter is with the closest relevance to gait events identified

by the heat maps in Figure 11 as the highest LRP scores, while

the other gait events are less significant to the classifications. It

is worth mentioning that these markers are identical by 95.5% in

1,281 samples, such that the removal of these regions in the 95.5%

of samples resulted in a strong decay in the model prediction.

The interpretation given above is in very good agreement with

the description of the Hoehn and Yahr Scale staging criteria as

follows: ”Stage 0—No signs of disease, Stage 2—Symptoms on both

sides but no impairment of balance, Stage 2.5—Mild symptoms on

both sides, with recovery when the ‘pull’ test is given (the doctor

stands behind the person and asks them to maintain their balance

when physically pulled backward), Stage 3—Balance impairment,

mild-to-moderate disease, physically independent” (International

Parkinson and movement disorder society, 2004). However, the

staging criteria do not refer to the gait events adversely influencing

the body’s postural balance, due to the advancement of the disease.

5.2 iMagiMat data

5.2.1 Classification of gait signatures under
cognitive load

The present study investigates the importance of cognitive

load influence on gait inconsistency. We present a comparison

of classification performance between five types of gait: normal

and under cognitive load in four different tasks. CNNs not only

TABLE 8 PD classification results on PhysioNet three datasets.

References Methods Accuracy (%)

Abdulhay et al. (2018) SVM 92.7

Jane et al. (2016) Q-BTDNN 91.5

Ertugrul et al. (2016) 1D-LBP+MLP 88.89

Medeiros et al. (2016) PCA 81.00

Wu et al. (2017) SVM 84.48

This study Parallel CNN 95.5± 0.28

SVM, support vector machine; 1D-LBP+MLP, shifted 1D-local binary patterns + multi-

layer perceptron; PCA, principal component analysis; Q-BTDNN, Q-back-propagated time

delay ANN.

TABLE 9 F1-score predictions for comparison of CNN with classical

classifiers.

Classifier Experiment 3 Experiment 2

SGD 77% 42%, N = 47%

KNN 87% 51%, N = 81%

GPC 5% 22%, N = 0%

CNN 100% 50%, N = 92%

N, True positive prediction of normal gait.

outperform, unsurprisingly, the classical classifier methods but also

achieve an F1-score of 92% for normal gait (Figure 6 and Table 9)

for cognitive load impact on gait in experiment 2 with 21 healthy

adult data. Understandably the variation in the other cognitive

demanding tasks gait is varying among subjects as each subject has

a different way of dual taking.

Experiment 3 is, in essence, an extra validation of the adequacy

of the spatiotemporal sampling of GRF by the 116 sensors and

their fusion as well as the classification performance of the trained

models. An F1-score of 100% is achieved for most of the test data.

Although Experiment 3 has the character of a sanity check, the

results support the value of floor sensor gait data as a biometric.

Experiment 2 is conducted to study the possibility of classifying

cognitive load on healthy subjects. It has shown that normal gait

is classified with a higher true positive rate compared to any of the

classes of gait under cognitive load. This experiment also indicates

that the achieved true positive rates in predicting normal gait are

higher for the CNN model compared to the classical classifiers (see

Figure 6 and Table 9). Samples obtained under cognitive load are

hard to fit due to the inconsistency of gait pattern changes among

the subjects.

The results from the first two experiments suggest that while

the dual-task data obviously contributes to the high F1-scores

in experiments 2 and 3, it results in substantially degraded true

positive rates in experiment 2. However, experiment 3 shows that

when classifications are within a single subject the performance is

notably better: for 16 subjects (out of 21) the gait under cognitive

load the F1-score ranges between 80 and 100%, with the remaining

five subjects the range being between 69 and 77%.

These observations can be discussed in the light of humans

having a natural gait pattern evolved over millions of years;

however, changes in gait when experiencing cognitive load at
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any particular instance are specific to the individual, expressing

their response to the impaired ability to process cognitive

information (Chopra et al., 2018). In experiment 4, we use binary

classifications (see Table 6) to distinguish normal gait from gait

under the 4 variants of cognitive load. The best classification results

are obtained when the model learns normal or dual-task gait

features for a single subject. This implies that although learned

gait features under cognitive load may not be readily portable

across subjects, they are consistent for each individual and can

contribute substantially for correct subject classifications; however,

the accuracy drops if more subjects are involved.

Figures 12–14 provide the link between the LRP relevance

scores (“heat map”) and the time sequence of the calculated SA

signal in a single gait cycle window. The LRP score maxima are

suitable pointers to the parts of the gait cycle which are most

relevant for the classifications. For accurate heat maps of a specific

gait class the model’s true positive prediction in the confusion

matrix must be close to 100% for most of the testing samples,

which points to the results from experiment 2 (Figure 12), for

normal gait heat maps—in Figure 13 and experiment 3 for a

single subject predicted gait under the 4 variants of cognitive

load. Focusing just on one complete gait period (two steps) is

justified by the fact that on multiple repetitive occasions each

subject will initiate a gait cycle (see full description of the gait

cycle Figure 1 and Table 1) by performing a heel strike, strictly

followed by other gait events described in Figure 15 and ending in

a toe off.

The indication of events numbered 1, 2, 3 on Figure 12 implies

that normal gait identified by loading response or Foot flat and

double support for 21 subjects. This gait event is marked by the

model by 92% true positive (see Figure 12) to distinguish normal

gait from 4 cognitive load classes. Figure 13 indicates that loading

response has high relevance for assigning a gait signature to one out

of the 21 subjects gait samples, notably even under cognitive load, as

indicated by with gait events numbered from 1 to 5. The indicated

gait events are 1,5—loading response or foot flat and double

support, 2,3,4—loading response or foot flat and single support.

Figure 12 displays the binary classification of randomly selected

subject gait events as: 1—heel strike, 2—toe-off, 3—between foot

swing and opposite Heel strike, 4—between double support and

toe-off. Figure 12 shows cognitive load gait samples for one subject

as per experiment 4 summarized as follows:

1. Gait while listening to story: Heel strike is significant for

distinguishing listing to story from normal walking.

2. Gait while performing serial 7 subtraction: Toe-off is significant

for distinguishing 7 subtraction from normal walking.

3. Gait while texting in smart phone: the transition from foot swing

to opposite Heel strike is significant for distinguishing texting

from normal walking.

4. Gait while talking: the transition from double support to Toe-off

is important to distinguishing talking from normal walking.

Figure 13 indicates that loading response has high relevance

for assigning a gait signature to one out of the 21 subjects gait

samples, notably even under cognitive load, as indicated by with

gait events numbered from 1 to 5. The indicated gait events are

1,5—loading response or foot flat and double support, 2,3,4—

Loading response or foot flat and single support. Figure 12 displays

the binary classification of randomly selected subject gait events as:

1—heel strike, 2—toe-off, 3—between foot swing and opposite heel

strike, 4—between double support and toe-off.

Overall, the LRP analysis indicates that subjects’ normal gait is

characterized by loading response, while the other cognitive load

gait classes are classified by landing or lifting the feet on/from the

surface of the iMagiMat system. For subject dual tasking, there are

many second relevant scores used to predict the cognitive load of

the subject based on gait signature.

6 Conclusion

In conclusion, this study demonstrates the potential of

explainable artificial intelligence (XAI) and deep learning methods

in predicting gait deterioration. The use of convolutional neural

networks (CNNs) on spatiotemporal data obtained from sensors

under the feet proves to be effective in identifying the impact

of cognitive load and Parkinson’s disease (PD) on gait patterns.

The proposed CNN architectures show robustness and achieve

high classification accuracy for PD severity and cognitive load

classification. The local relevance propagation (LRP) analysis

provides valuable insights into the features of the spatiotemporal

gait ground reaction force (GRF) signals that are most relevant

to the model’s predictions. The identified gait events and their

relevance scores align with existing literature on PD-induced

gait deterioration and cognitive load effects on gait. Additionally,

the perturbation analysis validates the robustness of the model

predictions, and the comparison of LRP methods highlights

the effectiveness of the selected LRP-SPF method. The study

contributes to the understanding of the relationship between gait

events, PD severity, and cognitive load providing a foundation for

further research in the field of gait analysis and neurodegenerative

diseases. The findings suggest that the proposed model can not

only classify gait patterns accurately but also reveal the specific

features contributing to these classifications. The experiments

conducted in this study shed light on the challenges associated

with gait classification under cognitive load. Overfitting observed

in the learning curve underscores the importance of addressing

the variability in gait patterns induced by cognitive tasks across

different subjects. Despite the challenges, the model exhibits

promising performance, particularly in distinguishing normal gait

from cognitive-loaded gait patterns. The binary classifications

in Experiment 5 further emphasize the potential of the model

for subject-specific gait analysis. The consistency of learned gait

features within individuals suggests the applicability of the model

for personalized gait assessments, although caution is warranted

when generalizing across a larger population. The interpretation

of classifications through LRP heatmaps reveals the relevance of

specific gait events in distinguishing between normal and cognitive-

loaded gaits. Loading response emerges as a critical gait event

for identifying normal gait, while other events such as heel strike

and toe-off play distinct roles in classifying cognitive-loaded gaits.

The perturbation analysis validates the robustness of the model

against the removal of relevant information. The ability of the

model to maintain high performance in the presence of random

perturbations suggests that it focuses on genuine gait features

rather than noise. In conclusion, this comprehensive study not
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only demonstrates the effectiveness of deep learning models in gait

analysis by achieving 98% classification results but also provides

interpretability through LRP analysis using perturbation analysis to

result in a robust model. The combination of accurate classification,

subject-specific insights, and robustness to perturbations positions

the proposed model as a valuable tool in clinical settings for

assessing gait abnormalities associated with cognitive load and

neurodegenerative diseases.
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