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Modeling of whole brain sleep 
electroencephalogram using 
deep oscillatory neural network
Sayan Ghosh 1, Dipayan Biswas 1, N. R. Rohan 1, Sujith Vijayan 2 
and V. Srinivasa Chakravarthy 1*
1 Indian Institute of Technology Madras, Chennai, India, 2 Virginia Tech, Blacksburg, VA, United States

This study presents a general trainable network of Hopf oscillators to model 
high-dimensional electroencephalogram (EEG) signals across different sleep 
stages. The proposed architecture consists of two main components: a layer of 
interconnected oscillators and a complex-valued feed-forward network designed 
with and without a hidden layer. Incorporating a hidden layer in the feed-forward 
network leads to lower reconstruction errors than the simpler version without it. 
Our model reconstructs EEG signals across all five sleep stages and predicts the 
subsequent 5 s of EEG activity. The predicted data closely aligns with the empirical 
EEG regarding mean absolute error, power spectral similarity, and complexity 
measures. We propose three models, each representing a stage of increasing 
complexity from initial training to architectures with and without hidden layers. In 
these models, the oscillators initially lack spatial localization. However, we introduce 
spatial constraints in the final two models by superimposing spherical shells and 
rectangular geometries onto the oscillator network. Overall, the proposed model 
represents a step toward constructing a large-scale, biologically inspired model 
of brain dynamics.
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1 Introduction

Using extracranial electrodes, EEG measures the extracellular ionic current produced by 
a graded postsynaptic potential of vertically oriented pyramidal neurons in the III, V, and VI 
cortical layers (Nunez and Srinivasan, 2006). The electrical dipole field created by the soma 
and apical dendrites of pyramidal neurons is propagated through layers of the cortex, 
cerebrospinal fluid (CSF), skull, and scalp via volume conduction (Schaul, 1998) and 
recordable at the scalp site (Mule et al., 2021). EEG technology has diverse applications, 
including characterizing brain dynamics in the early stages of Parkinson’s disease (PD) (Han 
et al., 2013), epileptic seizure detection (Zhou et al., 2018), motor imagery and movement 
classification in brain-computer interfaces (Thomas et  al., 2009), emotion classification 
(Alhagry et al., 2017) etc.

Oscillations are a key feature of sleep EEG and are crucial in various physiological and 
cognitive processes (Lambert and Peter-Derex, 2023). For example, the presence of theta waves 
and reduction of an alpha wave during stage 1 sleep, Stage 2 sleep is characterized by bursts of 
oscillatory activity and increased cortical synchrony; delta wave is a marker of deep sleep also 
affected by diseases like insomnia (Bakker et al., 2023), theta oscillation in the hippocampus 
during REM stage, etc. EEG-based Coherence (Watanabe et  al., 2023) and phase 
synchronizations (Ojha and Panda, 2024) are the quantitative measures of functional 
connectivity during sleep and temporal coordination of neuronal activity. Achermann and 

OPEN ACCESS

EDITED BY

Viktor Jirsa,  
Aix-Marseille Université, France

REVIEWED BY

Shuangming Yang,  
Tianjin University, China
Hongzhi Kuai,  
Maebashi Institute of Technology, Japan

*CORRESPONDENCE

V. Srinivasa Chakravarthy  
 schakra@ee.iitm.ac.in

RECEIVED 18 October 2024
ACCEPTED 23 April 2025
PUBLISHED 14 May 2025

CITATION

Ghosh S, Biswas D, Rohan NR, Vijayan S and 
Chakravarthy VS (2025) Modeling of whole 
brain sleep electroencephalogram using deep 
oscillatory neural network.
Front. Neuroinform. 19:1513374.
doi: 10.3389/fninf.2025.1513374

COPYRIGHT

© 2025 Ghosh, Biswas, Rohan, Vijayan and 
Chakravarthy. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 14 May 2025
DOI 10.3389/fninf.2025.1513374

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2025.1513374&domain=pdf&date_stamp=2025-05-14
https://www.frontiersin.org/articles/10.3389/fninf.2025.1513374/full
https://www.frontiersin.org/articles/10.3389/fninf.2025.1513374/full
https://www.frontiersin.org/articles/10.3389/fninf.2025.1513374/full
mailto:schakra@ee.iitm.ac.in
https://doi.org/10.3389/fninf.2025.1513374
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2025.1513374


Ghosh et al. 10.3389/fninf.2025.1513374

Frontiers in Neuroinformatics 02 frontiersin.org

Borbély (1997) shows the significance of neuronal synchrony during 
deep sleep and the increase in delta (0.1–4 Hz) and theta (4–7 Hz) 
band power following sleep onset, particularly in the fronto-central 
region. Studies also report the earlier emergence of alpha (8–12 Hz) 
and frontal theta oscillations after sleep deprivation (Gorgoni et al., 
2019), the effect of transcranial oscillatory stimulation on memory 
consolidation during NREM sleep (Marshall et al., 2006), and the role 
of oscillations as biomarkers of sleep homeostasis such as theta activity 
during wakefulness and slow-wave activity (delta) during sleep (Finelli 
et al., 2000). Sleep also plays a major role in synaptic homeostasis and 
memory consolidation, emphasizing the importance of oscillatory 
activity in brain function (Esser et  al., 2007; Pankka et  al., 2024; 
Bahador et al., 2021; Paul, 2020; Sano et al., 2018; Michielli et al., 2019; 
Zhao et al., 2024; Burke and de Paor, 2004; Weigenand et al., 2014; 
Ospeck, 2019; Ghosh et al., 2025; Krishnamurthy et al., 2022; Buzsáki, 
2006; Achermann et al., 1993). The EEG-based sleep transition model 
(Ising model) describes the synchronous dynamics of the neuronal 
population (Acconito et al., 2023). The Kuramoto model describes 
phase synchronization among different brain regions during sleep 
(Ingendoh et al., 2023).

In the past decade, several efforts have been made to model the 
brain as a nonlinear dynamical system and describe brain dynamics 
using complex nonlinear dynamical networks (Başar, 1983). A 
phenomenological model comprising van der Pol–Duffing double 
oscillator networks was used to model EEG signals from healthy 
controls as well as Alzheimer’s disease patients (Ghorbanian et al., 
2015b). The model results compare favorably with experimental 
results in terms of time series, power spectrum, and Shannon entropy 
(Ghorbanian et al., 2015a; Ghorbanian et al., 2015b; Ghorbanian et al., 
2014). Another model used coupled Duffing-van der pol oscillators to 
generate EEG ictal patterns from the temporal lobe (Szuflitowska and 
Orlowski, 2021). By analyzing EEG time series, the presence of low 
dimensional chaos in NREM N1 and REM sleep stages was described 
by Babloyantz et al. (1985). Studies have been made using stochastic 
limit cycle oscillators to model EEG data from healthy subjects 
(Rankine et al., 2006; Burke and de Paor, 2004).

Hopf oscillator networks offer a robust framework for modeling 
complex brain dynamics across different states (Burke and de Paor, 
2004). Neural mass models have been used to explain slow-wave 
activity and K-complexes (Weigenand et al., 2014). Additionally, Hopf 
oscillators provide a powerful approach to modeling the oscillatory 
neural dynamics underlying memory consolidation and sleep spindles 
(Ospeck, 2019). Their properties closely align with observed sleep and 
memory research phenomena, offering insights into how the brain 
processes, stores, and consolidates information through oscillatory 
activity patterns. These models connect the neuronal-level dynamics 
and population-level behavior observed in EEG recordings.

Despite these efforts, the link between the mesoscopic EEG 
activity and the dynamics underlying neuronal circuits still needs to 
be fully unraveled. A weighted mean potential of a weakly-coupled, 
local cluster of Hindmarsh-Rose (HR) neurons collectively shows 
near-synchronization behavior and can optimally reconstruct epileptic 
EEG time series (Ren et al., 2017). A similar line of work was also 
proposed by Phuong and colleagues, in which networks of HR 
neurons and Kuramato oscillators were used to reconstruct EEG data 
in healthy and epileptic conditions (Nguyen et  al., 2020). Ibáñez-
Molina and Iglesias-Parro (2016) show a mean field of the Kuramoto 
oscillator to explore the dynamics of electroencephalographic (EEG) 

complexity during mind-wandering episodes. This work contributes 
to understanding how neural mechanisms underpin spontaneous 
thought processes and their representation in EEG signals. In another 
study (Das and Puthankattil, 2022), the authors used a 
phenomenological computational model of the Kuramoto oscillator 
to investigate functional connectivity and EEG complexity in mild 
cognitive impairment (MCI), a precursor to Alzheimer’s disease (AD). 
The study revealed that the brain’s dynamic repertoire results from the 
interplay between network topology and oscillatory dynamics by 
combining empirical structural and functional connectivity data with 
computational models (Kuramoto oscillatory model) of coupled 
oscillators (Cabral et al., 2022). This research highlights the role of 
synchronization mechanisms in shaping large-scale brain dynamics 
and offers a framework for understanding how the connectome 
supports diverse neural functions. Similar approaches have also been 
taken to model Functional magnetic resonance imaging (fMRI) 
(Logothetis et  al., 2001) signals using the non-linear oscillators 
(Kuramoto, Hopf) model (Cabral et al., 2023; Breakspear, 2017; Deco 
et al., 2017). Several Hopf oscillatory models have been developed that 
explain several physiological phenomena such as cognitive behavior, 
sleep–wake cycle, Schizophrenia, and Alzheimer’s disease (Deco et al., 
2015; Deco et al., 2017; Deco et al., 2021; Luppi et al., 2022; López-
González et al., 2021; Deco and Kringelbach, 2014).

There is a growing interest in modeling large-scale brain activity 
using networks of nonlinear oscillators. A notable example of this kind 
is The Virtual Brain (TVB) framework, which uses large oscillatory 
networks to model various manifestations of functional brain 
dynamics like EEG, functional Magnetic Resonance Imaging (fMRI), 
and Magnetoencephalogram (MEG) (Sanz Leon et  al., 2013). 
Al-Hossenat et al. (2019) proposed modeling of slow wave activity 
(delta and theta) of EEG from eight different regions using Jansen and 
Rit’s (JR) neural mass model and anatomical connectivity using the 
TVB framework. In another modeling study, using a similar kind of 
neural mass model, alpha wave activity was reproduced from four 
different brain regions (Al-Hossenat et al., 2017).

Several deep learning models have been proposed for EEG time 
series forecasting, including WaveNet (Pankka et  al., 2024), 
correlation-based approaches (Bahador et al., 2021), and LSTM-based 
networks (Paul, 2020). LSTM-RNN networks have been applied to 
detect sleep stages from EEG signals (Sano et al., 2018; Michielli et al., 
2019) and for sleep EEG reconstruction (Zhao et al., 2024), leveraging 
their ability to capture temporal dependencies in sleep EEG data. 
However, these networks primarily work in time series, not capturing 
the frequency and phase information. These approaches overlook key 
biological oscillatory features such as phase, frequency, and amplitude.

Feedforward spiking neural network models (Singanamalla and 
Lin, 2021; Zenke and Ganguli, 2018) generate synthetic EEG signals 
for Motor imagery and SSVEP EEG data. Yang et  al. (2024) 
introduced a biologically inspired unsupervised learning framework 
for spiking neural networks (SNNs), enhancing neuromorphic 
vision systems with robust, efficient, and energy-adaptive visual 
perception for embodied applications in robotics and AI. The same 
group advanced SNN capabilities with a surrogate gradient learning 
framework (Yang and Chen, 2023a), demonstrating superior 
temporal precision and efficiency for neuromorphic computing and 
AI. Similar authors proposed SNIB (Yang and Chen, 2023b; Yang 
and Chen, 2024), a groundbreaking framework applying the 
nonlinear information bottleneck (NIB) principle to optimize the 
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trade-off between information compression and retention, enabling 
more efficient, robust, and adaptive spike-based learning. There is a 
model of linearly coupled Hopf oscillatory model that can explain 
complex dynamics, and information processing of the human brain 
(Deco et  al., 2017), where model dynamics depend on coupling 
coefficients among oscillators and oscillator amplitude (μ) (Deco 
et  al., 2017). However, these kinds of models cannot accurately 
predict the neuroimaging data like fMRI (Hahn et al., 2021; Iravani 
et al., 2021).

Compared with fMRI, a smaller number of brain modeling 
approaches have been explored with EEG. EEG is less expensive than 
fMRI, more easily available, portable, and has high temporal 
resolution. Therefore, we  can use all the advantages of EEG to 
understand brain dynamics. With this motivation, we  propose a 
network of Hopf oscillators described in the complex domain and 
show how the network can be trained to model high-dimensional 
EEG data in the waking and sleep stages and publicly available BONN 
epilepsy dataset (Andrzejak et al., 2001). Sleep is a complex, naturally 
recurring dynamic process that occurs periodically in most animals 
(Březinová, 1974). Three critical physiological mechanisms or 
rhythms regulate sleep, viz., circadian rhythm, homeostasis, and 
ultradian rhythm (Fisher et al., 2013; Achermann and Borbély, 2003). 
Polysomnogram (Wolpert, 1969), which jointly measures brain 
electrical activity (EEG), muscle activity (Electromyogram—EMG), 
eye movement (Electrooculogram—EOG), and heart rate 
(Electrocardiogram—ECG), is a standard method of recording sleep 
activity. Sleep stages can be  broadly categorized into five stages: 
waking, non-rapid eye movement N1 (NREM N1), non-rapid eye 
movement N2 (NREM N2), non-rapid eye movement N3 (NREM 
N3), and rapid eye movement (REM) sleep (Šušmáková, 2004). Sleep 
facilitates important neural and physiological functions, including 
memory consolidation (Siegel, 2001), and emotion control (Goldstein 
and Walker, 2014).

In earlier work, we  showed how to achieve a stable phase 
relationship between oscillators with arbitrarily different frequencies 
using a special form of coupling known as power coupling (Biswas 
et al., 2021). The difficulties that arise in a pair of coupled oscillators, 
depicted by Arnold tongues, seem to be overcome effectively with 
power coupling. It was shown how networks of such coupled oscillator 
systems can be trained to learn a small number of EEG channels. In 
the present study, we add a hidden layer of sigmoidal neurons and 
geometrically constrain the network to accurately learn high-
dimensional, “whole brain” EEG signals under various sleep  
conditions.

In this work, we  have developed a Deep Oscillatory Neural 
Network (DONN) to reconstruct and predict sleep EEG and epileptic 
EEG time series. This type of model combines oscillatory neurons and 
sigmoid neurons (Ghosh et al., 2025). RNNs (Krishnamurthy et al., 
2022) with gating mechanisms are excellent at sequence processing 
capabilities but fail to show biological plausibility. In contrast, neural 
activity in the brain exhibits complex dynamics characterized by key 
frequency bands such as alpha, beta, gamma, and theta (Buzsáki, 
2006). Our proposed oscillatory network consists of Hopf oscillators, 
where each unit exhibits both amplitude and phase dynamics. The 
oscillators presented in the network effectively carry out a Fourier 
decomposition of the teaching signal (Biswas et al., 2021). Additionally, 
we demonstrate that a single oscillatory neuron is computationally 
more efficient than single LSTM neurons in terms of processing time, 

moreover, the DONN network has significantly fewer trainable 
parameters compared to an LSTM (Ghosh et al., 2025).

Our study shows that the EEG signal can be reconstructed as well 
as predicted optimally compared to the Kuramoto and HR neuron-
based model proposed (Nguyen et  al., 2020). Our model can 
reconstruct and predict the next 5 s of EEG data (2,500 data points) 
from 5 sleep stages. Various signal features like power spectrum 
density, Hurst exponent (Supplementary section 11), and Higuchi 
fractal (Supplementary section 12) dimension show good agreement 
with model-predicted EEG data compared to empirical EEG Data. 
The key contributions of this work are summarized below (1–5):

 1. Modeling of different stages of sleep data. Reconstruction as 
well as prediction of future EEG data.

 2. Statistical tests and error bar comparisons have been conducted 
with the existing literature. That shows significant improvement 
in contrast with the existing literature.

 3. The predicted model signal exhibits significant similarity to 
real-time EEG data across different sleep stages, as evidenced 
by its power spectral density and Hurst component 
characteristics (Figure 1, Table 1; Supplementary sections 11–13).

 4. We have created a spherical shell oscillatory model of the whole 
brain, where oscillators are spatially localized, which is a 
stepping stone toward large-scale brain modeling.

 5. Find out optimal model parameters [Oscillator amplitude (μ), 
Coupling coefficient ( ξw), Beta (β) Additional Hidden Layer] 
(Section 3.4).

The outline of the paper is as follows. This article begins with an 
account of sleep EEG recording followed by preprocessing 
methodology. The two stages of training of the proposed network are 
described in the ‘1st stage of training’ and ‘2nd stage of training’ 
sections, respectively. The section ‘Insertion of hidden layer’ describes 
the deep oscillator network, which is a combination of an oscillatory 
layer and a feedforward network. The section ‘Prediction of EEG Data’ 
describes the prediction of EEG data using a trained Hopf oscillator 
model. The section ‘spatial distribution of oscillator’ shows how 
oscillators are distributed on a rectangular grid and spherical shell 
geometry. Results from the reconstruction, EEG data prediction, and 
statistical analysis are described in the results section. A discussion of 
the work is presented in the last section.

2 Materials and methods

2.1 EEG recording

The Polysomnogram (PSG) datasets comprising 56 EEG, two 
electro-oculogram (EoG) and four EMG electrodes were recorded 
from two healthy subjects (full night, 8 h) at the School of 
Neuroscience, Virginia Tech, USA. During data collection, all 
necessary instructions, such as those regarding caffeine and alcohol 
use restrictions, were adhered to.

The different stages of sleep are scored according to the 
American Academy of Sleep Medicine (AASM) rules by two sleep 
experts (Singh et al., 2019). A night’s sleep consists of periods of 
rapid eye movement (REM) sleep and periods of non-rapid eye 
movement (NREM) sleep; the latter consists of three stages, NREM 
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N1, NREM N2, and NREM N3, also known as slow-wave sleep. 
NREM N1 is often when a transition occurs between waking and 
sleep; the awake state is characterized by low amplitude and 
relatively high-frequency waves. NREM N1 occurs for 3%–8% of 
total full night sleep duration and is dominated by theta waves 
(4–7 Hz) (Březinová, 1974). NREM N2 is defined by sleep spindles 

(11–16 Hz) and K-complexes. NREM N3 is also called slow-wave 
sleep, as there is a prominent activity of the delta band (0.1 to 4 Hz). 
REM sleep is somewhat similar to the wake stage, which occurs 
more frequently late at night and occupies 20% of total sleep (Fisher 
et al., 2013). REM sleep is marked by muscle atonia and conjugate 
eye movements.

FIGURE 1

Power spectral density curves of experimental signal and model predicted signal for (a) NREM N1 for P4 channel; (b) NREM N3—“T7” channel, the blue 
line shows power spectrum of actual EEG Data (Pd) and orange line (Pp) shows model predicted power spectrum.
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These datasets are in European Data Format (.EDF) format. For 
further analysis, we converted these datasets into .mat format using 
the EEGLAB (Iversen and Makeig, 2019) plugin in Matlab and 
extracted 10 s (training) and subsequent 5-s chunks (testing) from 
each of the 56 channels of EEG data. EEG is inherently a noisy signal 
influenced by non-neural factors [e.g., muscle movement measured 
by Electromyogram (EMG), eye movement measured by 
Electrooculogram (EOG), and Electrocardiogram (ECG)], as well as 
equipment noise (power line interference (50/60 Hz)), impedance 
fluctuation and, cable movements. In addition, EEG data is 
normalized to remove DC noise. The sampling frequency of the 
system is 500 Hz.

2.2 A network of neural oscillators

For our current purpose of modelling multi-dimensional EEG 
signals, we use an enhanced version of a network of neural oscillators 
described in Biswas et al. (2021). The original model of Biswas et al. 
(2021) consists of a layer of Hopf oscillators with lateral coupling 
connections and an output layer that is directly connected by a single 
linear weight stage to the oscillator layer. The dynamics of the Hopf 
oscillators were described in the complex domain, coupled using a 
unique form of coupling known as power coupling. The layer of 
oscillators is connected to the output layer using all-to-all linear 
forward weights. Thus, the given time series is modelled as a linear 
sum of the outputs of the layer of oscillators.

In the present model, a hidden layer of sigmoid neurons is 
inserted between the oscillatory layer and the output, immensely 
reducing the fitting error. The original network of Biswas et  al. 
(2021) has two components: the input oscillatory layer consisting of 
a network of coupled Hopf oscillators and a feedforward linear 
weight stage that maps the oscillator’s outputs onto the network’s 
output node(s). We  use the Hopf oscillator in the supercritical 
regime where the oscillator exhibits a stable limit cycle. In the 
previous study, we introduced ‘power coupling’, which shows how to 
achieve a constant normalized phase difference between a pair of 
coupled Hopf oscillators with arbitrary intrinsic frequencies (Biswas 
et al., 2021). The dynamics of the oscillatory layer are described by 
Equations 1a–1e.

2.3 The network of Hopf oscillators

The complex domain representation of a single Hopf oscillator is 
described as:

 ( )µ ω= + −

2z z i z
 

(1a)

where z is a state variable,

 
θ= = −, 1iz ire  (1b)

The dynamics of N-coupled Hopf oscillators without external 
input can be described as:

 
( )

ω
ω ωµ ω β

∅

= ≠
= + + +∑

2
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ij i

j j
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i i i i ij jj j iZ i Z Z A e Z  
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The polar coordinate representation of Equation 1c is:
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where r  and θ  are the state variables, µ
β

 
  
 

 is the amplitude of 

oscillation, µ  and β are bifurcation parameter. In this brief μ = 1, 
β = −20. ijA , is the magnitude of the complex coupling coefficient, 
( 1ijA  ), ijØ  is the angle of the complex coupling coefficient,θi  and 
ωi  and are the ith oscillator’s phase and intrinsic frequency, respectively.

The network described above is trained in two phases: in stage 1, 
the intrinsic frequencies, ωi , of the oscillators and the coupling weights 
among the oscillators ( ′

ijW ) in the oscillatory layer are trained; in stage 
2, the feedforward linear weights between the oscillatory layer and the 
network output are trained.

2.4 1st stage of training

Since the aim of the 1st stage of training (Figure 2a) is to train the 
intrinsic frequencies, ω j , these frequencies are initialized by sampling 
from a uniform random distribution over the interval [0, 10] Hz. The 
modified network dynamics is described in Equation 2a, where the 
error signal ( )e t  drives each oscillator. The teaching signal used for 
training is denoted by, ( )D t , which is an EEG signal of a finite 
duration. The power coupling weight, ijW , in Equation 2b, is the 
complex lateral connection, ijØ  is the angle of lateral connection and 
ijA  is the magnitude of the lateral connection between the thi  and thj  

oscillators, and ωi , is the intrinsic frequency of the i’th oscillator. The 
oscillator activations are summed using feedforward weights, αi, 
which, in this stage of training, are taken to be small real numbers 0.2 
(i.e., αi=0.2 for all i) and the lateral connection ′

ijW  is initialized with 
complex numbers according to Equation 2b. The training of intrinsic 
frequency, ωi , is described in Equation 2c, where ωη  is the learning 
rate, e(t) is the error signal, and θ j is the oscillator phase. The whole 

TABLE 1 Power spectrum mean error between model predicted and 
empirical EEG.

Sleep stages Mean power spectrum error with std (%)

Wake 2.41 ± 0.48

NREM N1 3.35 ± 1.08

NREM N2 3.13 ± 1.16

NREM N3 3.92 ± 1.14

REM 3.51 ± 1.17

The results were obtained by averaging over 56 channels for each sleep stage.
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network is driven by an error signal, e(t), which is the difference 
between the network’s predicted signal and the desired signal 
Equation 2d. Training of the real feedforward weights is done by 
modified delta rule, Equation 2e, where αη  is the learning rate of feed-
forward weight update. ( )s t  is the network reconstructed signal 
shown in Equation 2f. The network performs a Fourier-like 
decomposition of the target signal, and each oscillator is used to learn 
the frequency component closest to its own intrinsic frequency 
present in the signal. In the 1st stage, the intrinsic frequency, the angle 
of power coupling weight, and the amplitude of the signal (real 
feedforward weight) are trained. Lateral connections are trained by a 
complex-valued Hebbian rule (Equation 2g).

 
( ) ( )

ω
ω ωµ ω β

= ≠
= + + + + ε∑

Ø
2

1,

ij i

j j

iN
l i i i ij jj j iZ i Z Z A e Z e t  

(2a)

The weight of power coupling can be written as Equation 2b:

 
ξ′ = ∗ ∗

Øij

j

i
w

ij w ijW A e
 (2b)

Frequency adaptation is done by the following rule:

 ( )ωω η θ= − sinj je t
 (2c)

 ( ) ( ) ( )( )= −e t D t s t  (2d)

Where ( )D t  is the teaching EEG time series and s(t) is the 
network predicted time series and e(t) is the output error.

 ( ) ( )( )αα η θ= −

l jD t s t coscos
 (2e)

 ( ) α θ
=

=∑ 1 cosN
i iis t  (2f)

Hebbian learning of complex power coupling is shown in 
Equation 2g

 
( )

ω
ωτ ′ ′ ∗= − +

i

jw ij ij i jW W z z
 

(2g)

where τw  is the time constant.

2.5 2nd stage of training

In the 2nd stage of training (Figure 2b), the oscillatory network 
with learned intrinsic frequencies and lateral connections of the 
oscillatory layer from the previous stage was used as a starting point. 
[Note that the oscillatory layer with trained parameters may 
be compared to a reservoir of reservoir computing (Biswas et al., 2021)].

But the main difference is that, in this stage, the feedforward 
weights are allowed to be complex (they were real in 1st stage training) 
and trained once again by supervised batch mode learning rule. ijK  
and ξij are the magnitude and angle of complex feedforward weights 
updated according to Equations 3c, 3d.

The complex feedforward weights are trained as follows 
(Equations 3a, 3b):

 
ξ′ = iji

ij ijW K e
 (3a)

where ijK  and ξij  are the magnitude and angle of the complex 
feed-forward weight.

 
( ) ( )θ′

=
= ∑ 1

jn i
pi ijjY t real W e

 
(3b)

The update rules for ijK  and ξij are discussed in Equations 3c, 3d.

( ) ( ) ( )( ) ( )( )η η θ ξ∂
∆ = = − − +

∂ ∑1 cos
ijij K k di pi j ijtij

LK Y t Y t t
K

 
(3c)

FIGURE 2

(a) Network architecture: 1st stage of training. (b) Network of 2nd 
stage of training.

https://doi.org/10.3389/fninf.2025.1513374
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Ghosh et al. 10.3389/fninf.2025.1513374

Frontiers in Neuroinformatics 07 frontiersin.org

 

( ) ( ) ( )( )
( )( )( )

ξ η η

θ ξ

∅
∂

∆ = = − −
∂∅

− +

∑Ø1

sin

ijij di pi
ij t
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(3d)

The number of epochs for complex feedforward weight learning 
is 5,000, and learning parameters are η −= × 53 10k , ηØ = −610 .

2.6 Insertion of the hidden layer

As we will see subsequently in the result section, despite the 
theoretical advantages, the model described above needs to yield 

satisfactory approximations of the empirical EEG signals. 
We  insert a hidden layer of sigmoidal neurons between the 
oscillatory layer and the output to improve the approximation 
performance (Figure 3a). In the new version of the model with 
the hidden layer, the intrinsic frequencies of the oscillators and 
their lateral connections are trained using the learning 
mechanisms of the 1st stage of training described above 
(Equations 2a–2f). The mathematical derivation of hidden layers 
has been described in Supplementary section 3. Also, we have 
introduced two geometrical configurations: (a) rectangular and 
(b) spherical in this latest version of the model (Figures 3b,c), 
where a few oscillators are shared among EEG channels 
(Figure 3d).

FIGURE 3

(a) A schematic to illustrate the overall network architecture. (b,c) A schematic illustrating the network geometry (side view). (d) A schematic illustration 
of shared oscillator’s common region between two channels (top view).
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2.7 Generation of EEG

So far, using supervised training, we have only reconstructed the 
data. To validate our model, we have to generate the output of the model 
without the network being driven by the training signal. The network can 
generate next the 5-s (2,500 samples) EEG signal without any external 
input. During generation, phases of oscillators, intrinsic frequency of 
oscillators, all feedforward weights (oscillatory layer to hidden layer 
weights and hidden layer to output layer weights) are adopted from the 
trained network. Here r and ϕ dynamics (Equations 4a, 4b) are derived 
by transform from complex variable representation (Equation 2a) to 
polar coordinates. r and θ dynamics are given below:

 
( )

ω
ω θ θµ β ω

ω ω ωω= ≠

 
= + + − +  

 
∑

2
1

Ø
cos

i

jN j iji
i i i ij ijj j i j i i j
r r r A r

 
(4a)

 

ω
ω

θ θθ ω ω
ω ω ωω= ≠

 
= + − +  

 
∑

1
Ø
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i

j
N j j iji

i i ij ij j i i j i i j

r
A

r
 

(4b)

In Figure 4 we show how we construct the network and duration of 
the training and generating segment, where the first 5,000 points are used 
as training data taken from empirical EEG data, and last 2,500 points, 
which is not used during the training phase, are used for generation. 
Empirical EEG data has been divided for train and next 5 s EEG data is 
used to compare with the network generated output. To validate our 
model, we compare it with the method proposed in Nguyen et al. (2020) 
in which the Kuramoto oscillator and Hindmarsh-Rose (HR) neuron are 
used to produce EEG signal. Note that we extracted the train data in such 
a way that the next 5 s segment also belongs to the same sleep stage as 
that of the training segment (Figure 4).

2.8 Spatial distribution of oscillators

In the models described above, there is no spatial organized 
superimposed on the oscillators. In order to impart a greater realism 
and biological plausibility, we now impose a spatial organization on 

the proposed oscillator network. To this end, we consider two spatial 
distributions of the oscillators within a “cortical layer” which is 
modeled in two ways: (1) a spherical shell, and (2) a spherical shell a 
rectangular grid (Supplementary material). Electrodes are placed on 
the top of the cortical layer, inside another layer named the “electrode 
layer”. Real-world 10–20 electrode geometry is introduced in the 
“spherical shell” case.

Next, we specify which oscillators in the cortical layer contribute 
to which electrodes in the electrode layer. This is done by a simple 
nearest neighbor criterion: only the oscillators that lie within a 
threshold distance (ξ1) from a given electrode contribute to that 
electrode, as defined in Equation 5a.

 ( ) ( ) ( )= − + − + −2 2
1 ch os ch os ch osD x x y y z z  (5a)

where 1D  is the distance from a given electrode in the electrode 
layer to a given oscillator in the cortical layer, and where 1D  is the 
distance from the electrode layer to the cortical layer. And ( ), ,ch ch chx y z  
and ( ), ,os os osx y z  is the Cartesian coordinate representation of 
electrode layer and cortical layer, respectively.

There is also another layer named “hidden layer” in between the 
cortical layer and the electrode layer. No specific spatial location is 
specified for the neurons in the hidden layer. Here basically the model 
architecture followed was similar to that described in Section 2.6, 
Figure 3a but with one important difference: a separate hidden layer of 
neurons is introduced for every electrode. In the schematic shown in 
Figures 3b,c, two different hidden layers are depicted corresponding to 
two distinct electrodes. The corresponding oscillators are also shown. 
Note that though the hidden layers are not shared between two electrodes, 
the corresponding oscillators can be partially shared (Figures 3b,c).

The thresholding process mentioned in above determines the 
connectivity between the electrodes and the oscillators. We  use 
another threshold that determines the lateral connections among the 
oscillators. Here we use the spatial location of the oscillators in the 
cortical layer to specify local connectivity using another distance-
based threshold (ξ2) derived in Equation 5b. Thus long-range 
connections among the oscillators are avoided.

Consider ′
ijD  to be  the distance between the thi  and the thj  

oscillators. A pair of oscillators whose mutual distance exceeds the 
distance threshold limit ξ2( ), are not connected. ′

ijA  represents the 
magnitude of the complex-valued connection, ′

ijW , between thi  and thj  
oscillators; ′

ijA  is set to 0.001. Only those oscillator pairs are connected 
and trained which are within the threshold distance (ξ2) of each other, 
i.e., thi  and thj  oscillator are connected only if ξ′ < 2ijD  where,

 ( ) ( ) ( )′ = − + − + −
2 2 2

, , , , , ,ij os i os j os i os j os i os jD x x y y z z
 

(5b)

if ξ′ < 2ijD

 
′ = ′ = 0.001ij ijA W

else

 
′ = ′ = 0ij ijA W

FIGURE 4

EEG signals are divided into training and testing segments, where an 
initial 10-s interval is used for training and the following 5-s segment 
is used for testing.
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Where ( , , ,, ,os i os i os ix y z ) is the Cartesian coordinate representation 
of thi  oscillator and ( , , ,, ,os j os j os jx y z ) is the Cartesian coordinate 
representation of thj  oscillator.

Note that the angle of the coupling connections, ′ijW , is calculated 
by Hebbian learning as per Equation 2g.

2.9 Spatial distribution of the oscillators in 
a spherical shell

In this section, we describe a model in which the cortical layer is 
modeled as a spherical shell. Likewise, in reality, EEG electrodes also 
are not confined to a planar surface. We currently place the electrodes 
on a spherical surface on top of a spherical cortical layer. We extracted 
the precise electrode locations from EEGLab (Iversen and Makeig, 
2019). Based on the position and radius of electrode layer we create a 
spherical shell. A set of 8 electrodes are shown on the cortical layer in 
Figure  3c. Similar to the case of the rectangular grid 
(Supplementary section 10), in this case too, there is a hidden layer 
between the cortical layer, which consists of oscillators, and the 
electrode layer. Network training is performed as per the equations 
described in Section 2.4 (Equations 2a–2g and hidden layer equation 
described in Supplementary section 3).

3 Results

In this section, we  describe the performance of the models 
described in the previous section on modelling high-dimensional, 
whole-brain EEG data (56 electrodes). In order to model a large 
number of electrodes, as well as the essential frequency band (0.1 to 
20 Hz), a large number (N = 200) of oscillators are used. Although the 
model is trained on the original EEG time series. In order to depict 
the signal spectrum, instead of using normal FFT, we use average 
periodogram method known as the “Welch method” (Naderi and 
Mahdavi-Nasab, 2010). We use the Welch method with a Hamming 
window of size 1 s and 50% overlap throughout the paper.

3.1 Reconstruction without hidden layer

3.1.1 1st stage of training
Following the method described in Section 2.4, we show how the 

intrinsic frequency of the oscillators adapts to the nearby frequency 
components present in the desired signal. The intrinsic frequencies of 
the oscillators, ωi , are initialized by drawing from a uniform 
distribution over the interval [0, 10] Hz. The real feedforward weight 
(αi) which connects thi  oscillator to the single output node is uniformly 

initialized with a small real number (=0.2). The complex-valued lateral 
connections, ′

ijW , are initialized according to Equation 2b. Note that 
in this stage, we do not use the hidden layer in the feedforward stage. 
Training is performed for 30 epochs.

EEG chunks of duration 10 s are used for training. Frequency 
learning rate is η = 0.0001w  (Equation 2c), amplitude learning 
rate αη = 0.0001 (Equation 2e), and the learning rate for the coefficient 
of lateral connection weight, which determines the magnitude of 
oscillator-to-oscillator connections (A), (Equation 2b), is ξw = 0.001.

3.1.2 2nd stage of training
Following the method described in Section 2.5, in this stage, 

we use the learned intrinsic frequencies and lateral connections from 
the 1st stage of training, while amplitude and phases of the complex 
feed-forward weight ( ijW ) are trained further. Although the equation 
shows a single electrode signal, by using a matrix of feedforward 
weights we  can reconstruct any number of channels. Note that 
learning rate for weight magnitude (ηk) is 0.00003, and the learning 
rate for angle learning is ηØ  is 0.000001; n is the number of channels 
to be  reconstructed. Therefore, the predicted signals 
(Supplementary Figure 2) from the 2nd stage look better than the 1st 
stage (Supplementary Figure 1). Whereas in the 1st stage we use real 
feedforward weights, in the 2nd stage we use complex feedforward 
weights: this is the only difference between the two stages of training. 
The ‘power coupling’ rule for coupling the oscillators was developed 
to produce a constant normalized phase difference among the 
oscillators (Biswas et al., 2021). We compare the results obtained with 
power coupling, with other forms of coupling in Table 2.

3.2 Reconstruction with hidden layer (an 
alternative approach to 2nd stage training)

In the previous section, we observed that the reconstruction error 
is poor when there is no hidden layer. To improve the model 
performance, following the method described in Section 2.6, 
we  inserted a hidden layer of 100 sigmoidal neurons between the 
oscillatory layer and the output layer in the 2nd stage of training 
(learning rates: ηh =0.001; ηo  =0.001). This modification greatly 
improved performance, with the RMSE values dropping by an order 
of magnitude. Comparisons between the cases of “without hidden 
layer” and “with hidden layer” model prediction for all the five stages 
of sleep are shown in a bar plot (Supplementary Figure  4). How 
reconstruction RMSE changes with the change in hidden layer 
neurons, has been shown in a bar plot (Supplementary Figure 5). Also, 
the generality of the network has been described in terms of functional 
connectivity analysis (Supplementary section 8). Mean absolute error 
(MAE) of the reconstruction of our model has been compared with 

TABLE 2 Comparison table of model performance with different power coupling methods.

Types of coupling Trainable parameters Model performances
MAE error

Training Generation

Linear coupling (all to all) None 0.0474 10.62

Linear coupling (nearest neighbour) None 0.0458 11.17

Complex coupling The natural frequency of the oscillator, lateral connection, feedforward weights 0.0277 7.82

Power coupling (our proposed) Natural frequency, Lateral connections, feedforward weights 0.01–0.02 5.56–6.67
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Ren et al. (2017) and Nguyen et al. (2020) (Figure 5). Our proposed 
model has reconstruction error in the range of (0.007–0.019). In 
comparison with Ren et al. (2017) and Nguyen et al. (2020) time series 
fitting and training error bar plots are shown in 
Figures 5A–E. Figures 5A–C are adapted from Nguyen et al. (2020); 
licensed under CC BY 4.0. From Figures 5C,E we can conclude that 
our proposed method performs better than the other two methods 
(Ren et al., 2017; Nguyen et al., 2020).

3.3 Generation of EEG data using trained 
network

Here we generate EEG data for 5 s (after training with a 10 s-long 
EEG segment) using the trained parameters—intrinsic frequency of 
oscillators, lateral coupling weights among oscillators, and feed-
forward weights [training of intrinsic frequencies and lateral are 
discussed in Section 2.5, feed-forward weight training rules are 
described in Section 2.6 (insertion of hidden layer)]. We have used 
MSE loss function in this model. The model parameters of this 
network has been described in Table 3.

The power spectrum (Figures 1a,b), time series (Figures 6a,b), 
Hurst exponent (HC) (Supplementary section 11), and Higuchi fractal 
dimension (HFD) (Supplementary section 12) of the predicted signal 
are compared with the next 5 s segment of empirical EEG data. The 
time series of the training segment as well as the generated segment 
are plotted (Figures 6a,b) for two sleep stages. (The other three sleep 
stages have been shown in the Supplementary Figures 7a–c).

To evaluate our model performance, we calculated mean absolute 
error (MAE) (Nguyen et al., 2020), which basically determines the 
time average difference between network simulated data (model 
prediction) and empirical EEG Data. MAE can be mathematically 
expressed as Equation 6a:

 ( )
−

=
−∑ 2

1 2 1

p dt
t

Y Y
MAE

t t  
(6a)

where pY  (predicted signal for a time interval ( )−2 1t t ) is predicted 
EEG and dY  is the actual EEG, and their absolute difference is averaged 
over a time window.

The average error score (average over all channels for each sleep 
stage) was calculated using MAE (Equation 6a). The result of MAE 
values along with standard deviation are listed in Table 4.

Power spectrum density is one of the critical methods to quantify 
the EEG data. It resembles the frequency content of a signal. The 
spectral features of the generated EEG segments are compared over 
the test duration [the next 5 s after the training duration 
(Figures 1a,b)]. The empirical power is calculated from the actual EEG 
data and the predicted spectrum from the model predicted signal. The 
average power spectrum error over 56 channels for each sleep stage 
between model predicted and empirical EEG is shown in Table 1. Note 
that compared to Nguyen et al., our model power spectrum prediction 
error is significantly lesser (Figures 7a,b).

The bar plot in Figures 8a–d shows that mean absolute error between 
predicted and empirical EEG Data is less than the method proposed by 
Nguyen et al. To compare the mean error between our proposed network 
and that of Nguyen et al., we conduct Wilcoxon signed rank test. Our 

model produce a better fit [Test statistics (2) is less than critical value (8) 
for alpha value 0.05], indicating a significant difference between our 
proposed model and model proposed by Nagual et al. Also, Univariate 
statistical t-test was done to identify the relative significance of power 
spectral density between the EEG signal predicted by the model and 
empirical EEG Data (Supplementary section 13).

In this study, we also utilize an additional benchmark dataset from 
Nguyen et al. (2020) to evaluate the performance of our Hopf network. 
By comparing the MAE, power spectrum error, and Hurst component 
error metrics proposed in Nguyen et al. (2020), we demonstrate that 
our model achieves more promising results, outperforming the 
reference model. To compare this we have taken the BONN dataset 
(Andrzejak et al., 2001) and the details description of the BONN 
dataset has been explained into the Supplementary section 15. To 
maintain the consistency with the previous literature (Nguyen et al., 
2020), here also we train with 1st 2,000 time points EEG and next 
1,000 time points we used for testing (see Table 5).

3.4 Sensitivity analysis

In our Model, there are several parameters that can be varied and 
the effect on the network performance can be  assessed. For this 
purpose, we consider four parameters:

Oscillator amplitude (μ).
Coupling coefficient ( ξw), in Equation 1f.
Beta (β) parameter in the Hopf oscillator.
Additional Hidden Layer.

The oscillator amplitude parameter (μ) is varied over the range of 
(0.5 to 2), and the corresponding mean absolute error is shown below 
(Figure 9a). We observe that with an increase of mu(μ) over the given 
range no such significant change is visible in the output error (see 
Figure 9b). This probably because any change in μ is offset by an 
compensating change in the weights from the oscillators to the hidden 
layer, so as to produce the same output error.

Also, we  next vary the coupling coefficient magnitude ( )ξw , 
which scales the coupling among the oscillators., We have seen with 
the increase of coupling coefficient MAE error also increased 
(Figure  9a). This probably because any change in the coupling 
coefficient is offset by an compensating change in the coupling weights 
among the oscillators, so as to produce the same output error.

We change the (β) parameter over the range of (0.1 to 60), and the 
corresponding mean absolute error is shown below (Figure  9c). 
We observe that the model gives optimal error in the neighborhood 
of beta = 20. Also, at the end we have optimized the model parameters.

Also, we have done a comparison analysis with the addition of 
another more hidden layer (Table 6), and we observed that there is no 
significant change in model training and testing performances.

3.5 Spherical shell model

In this study we create a spherical (radius 85 mm obtained from 
EEGLab) on which the electrodes are placed. Underneath this 
spherical shell, we place two more spherical surfaces forming a hollow 
spherical shell, of inner radius (r_1 = 70 mm) and outer radius 
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FIGURE 5

(A–C) Adopted from Nguyen et al. (2020). (C) Comparison between Ren et al. (2017) and Nguyen et al. (2020). (D) Reconstruction (during training) 
mean absolute Error distribution during training between EEG signals (our proposed method). (E) Blue line shows actual EEG and orange line show 
model reconstruction during training (Our proposed method).
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FIGURE 6

(a,b) Empirical EEG Data and training and generated (model reconstructed and model generated) of five sleep stages [(a) NREM N1-F8 channel; (b) 
NREM N3: Fp2 channel]. The blue line shows actual EEG Data (Yd(t)) and orange line (Yp(t)) shows model reconstructed (initial 10 s) and then generated 
output (next 5 s). Where initial 10 s data are reconstructed and 5 s data are generated from model.

TABLE 3 Model parameter of the “Insertion of hidden layer” model described in Figure 3a.

Network parameter Size of the parameter

EEG electrodes 56

Number of Hopf Oscillators 250

Number of neurons in 1st hidden layer 100

Oscillator to 1st hidden layer weight 100*250

Type of neuron in 1st hidden layer Tanh

Number of neuron in Output layer 56

1st hidden layer to output layer weight 56*100

Type of neuron in output layer Tanh

Loss function MSE

Epoch 2000
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(r_2 = 75 mm), within which the oscillators are distributed. Within 
this spherical shell we  distribute 1,000 Hopf oscillators. Sample 
locations for a few channels in spherical (Table 7) are shown. (Also, 
sample locations of electrodes in Cartesian coordinate has been shown 
in Supplementary Table S4).

Using a similar distance threshold (ξ =1 32) defined in Equation 6a, 
we allocate oscillators to various electrodes (Supplementary Table S5). 
The number of shared oscillators between pairwise electrodes are 
given in Figure 10. Connectivity among oscillators is determined by 
the threshold value ( )ξ =2 10 .

We can see the oscillator distribution is unequal for the 
rectangular grid and the spherical shell. That is because of their 
geometrical shape. In the case of the rectangular grid, a total of 972 
oscillators are distributed over three layers; each unit of the rectangular 
grid consists of one oscillator, whereas in the spherical shell, 1,000 
oscillators are randomly distributed over a spherical surface (see 
Figure 11).

In the case of the rectangular grid, no proper electrode geometry 
was followed, all 8 electrodes are in same plane, and oscillators 

distributed over channels are not far from each other (see 
Supplementary section 10). But in the case of the spherical shell, the 
electrode layer also has a spherical geometry with the same curvature 
as that of the oscillator layer, and oscillators distribution within the 
layer is random. For example, channel Cz is estimated by 219 number 
of oscillators and its nearest channel C2 is estimated by 149 oscillators. 
One reason might be the same fixed threshold is used to calculate the 
number of oscillators belonging to each channel. Also, in comparison 
with a rectangular grid, a larger number of oscillators are assigned here.

We have evaluated the reconstruction errors bar plot across eight 
channels using two model architectures: (a) Rectangular and (b) 
Spherical (Figure 12). The results indicate that the Spherical model 
provides a better overall fit. However, for the F1 channel, the 
rectangular model achieves higher reconstruction accuracy.

4 Discussion

In the present study, we model a 56-channel EEG signal with a 
network of oscillatory neurons. The proposed network is able to 
model (both reconstruction and prediction) whole-brain EEG data. 
The network is able to successfully predict test signals over a 
significant duration beyond the training duration (5 s), and is able 
to retain properties (Hurst component and Higuchi fractal 
dimension) of the actual EEG signals over the frequency band 
of interest.

In the present study, insertion of a hidden layer between the 
oscillator layer and the output layer is proven to improve 
reconstruction quality (Supplementary section 7) significantly. This is 
because when there was no hidden layer, the output signal was 
essentially approximated by a finite set of sinusoidal signals 
represented by the oscillators of the input layer. But once we applied 

FIGURE 7

(a,b) EEG mean power spectrum during prediction proposed by Nguyen et al. (left bar in each figure), and our proposed coupled Hopf network-with 
hidden layer model (Figure 3A, Section 2.6) (right bar plot in each figure). The bar plot is calculated using power spectrum prediction error for all 5 set 
of EEGs [(i)-Set A, (ii)-Set B, (iii)-Set C, (iv)-Set D, (v)-Set E] for 4 different networks proposed by Nguyen et al. Similarly, power spectrum prediction 
calculated from our proposed model for all 5 sleep stages [(i)-Wake, (ii)-NREM N1, (iii)-NREM N2, (iv)-NREM N3, (v)-REM]. [(a) Comparison between 
Random HR and proposed; (b) comparison between small world HR and proposed].

TABLE 4 MAE prediction error (%) between model predicted and 
empirical EEG.

Sleep stages Mean absolute error with 
std (%)

Wake 6.37 ± 0.8223

NREM N1 6.2505 ± 1.0399

NREM N2 5.3034 ± 0.6341

NREM N3 6.0781 ± 0.7996

REM 5.6575 ± 0.9300

The results were obtained by averaging over 56 channels for each sleep stage.
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FIGURE 8

(a–d) EEG Mean absolute error (MAE) distribution for prediction proposed by Nguyen et al. (2020) (left bar in each figure for five set of EEG data), and 
our proposed with hidden layer model (Figure 3a, Section 2.6) (right bar plot in each figure). Bar plot is calculated using MAE of prediction for all 5 set 
of EEG [(i)-Set A, (ii)-Set B, (iii)-Set C, (iv)-Set D, (v)-Set E provided in the testing result section (Nguyen et al., 2020)] for 4 different network proposed by 
Nguyen et al. Similarly, MAE prediction calculated from our proposed model for all 5 sleep stages [(i)-Wake, (ii)-NREM N1, (iii)-NREM N2, (iv)-NREM N3, 
(v)-REM]. [(a) Comparison between Random HR and proposed; (b) comparison between small world HR and proposed; (c) comparison between 
Random Kuramoto and proposed; (d) comparison between small world Kuramoto model and the proposed model].

the hidden layer in our 2nd network, those sinusoids pass through the 
nonlinear sigmoid functions of the hidden layer. Even when a single 
sinusoid passes through a nonlinear sigmoid, we can get all the infinite 
harmonics. Furthermore, when a mixture of sinusoids is passed 
through a sigmoid function, we get the harmonics not only of the 
original frequencies but the harmonics of all the mixtures (e.g., 

ω ω ω± ± ±i i j j k kn n n ). Hence, the hidden layer is expanding the 

spectrum that is available at the output layer. Thus, the finite number 
of frequencies available when we did not apply a hidden layer suddenly 
explode to an infinite set of frequencies available when we apply a 
hidden layer.

In comparison with Nguyen et al. (2020), where 3,000 neurons 
used to simulate EEG data whereas in our model the network with 
only 250 Hopf oscillators was able to predict more 
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TABLE 5 Comparison with Nguyen et al. (2020) and our proposed model on BONN dataset.

Data Random HR Small world HR Random Kuramoto Small world Kuramoto Generative oscillatory neural 
network(proposed)

(a) MAE error

Set A 11.28 ± 40.79 13.43 ± 58.88 12.35 ± 47.34 10.97 ± 40.05 7.34 ± 1.28

Set B 7.82 ± 15.90 11.58 ± 50.44 9.35 ± 20.26 7.95 ± 15.98 6.85 ± 0.74

Set C 7.95 ± 6.69 8.27 ± 9.11 9.09 ± 98.54 7.39 ± 10.49 5.71 ± 1.92

Set D 9.40 ± 10.50 8.17 ± 7.48 9.91 ± 9.32 9.41 ± 12.31 7.27 ± 1.54

Set E 45.84 ± 352.61 73.73 ± 649.34 11.21 ± 23.89 34.56 ± 268.48 7.76 ± 1.37

(b) Power spectrum error

Set A 2.53 ± 1.60 2.64 ± 1.76 2.20 ± 1.37 2.13 ± 1.65 0.44 ± 0.28

Set B 3.88 ± 4.57 4.30 ± 6.19 3.38 ± 4.89 3.34 ± 4.87 0.74 ± 0.92

Set C 4.68 ± 3.91 4.83 ± 4.19 4.30 ± 3.42 3.30 ± 2.44 0.66 ± 1.02

Set D 6.03 ± 12.84 6.14 ± 12.56 5.86 ± 11.01 5.09 ± 15.31 0.59 ± 0.54

Set E 4.64 ± 5.48 5.76 ± 13.29 5.02 ± 17.35 4.58 ± 9.67 0.87 ± 0.37

(c) Hurst component error

Set A 0.09 ± 0.06 0.19 ± 0.11 0.08 ± 0.05 0.17 ± 0.11 0.003 ± 0.02

Set B 0.08 ± 0.07 0.07 ± 0.06 0.08 ± 0.05 0.20 ± 0.13 0.004 ± 0.0012

Set C 0.11 ± 0.07 0.13 ± 0.07 0.08 ± 0.05 0.16 ± 0.09 0.028 ± 0.019

Set D 0.06 ± 0.06 0.09 ± 0.07 0.07 ± 0.06 0.14 ± 0.10 0.009 ± 0.0027

Set E 0.18 ± 0.10 0.15 ± 0.11 0.10 ± 0.07 0.17 ± 0.11 0.023 ± 0.011

(a) Of MAE error (where the result of Random HR, Small world HR, Random Kuramoto, Small world Kuramoto are taken from Nguyen et al. (2020). And Hopf-hidden network is our proposed model (rightmost in the table)). (b) Of Power spectrum error MAE error 
[where the result of Random HR, Small world HR, Random Kuramoto, Small world Kuramoto are taken from Nguyen et al. (2020). And Hopf-hidden network is our proposed model (rightmost in the table)]. (c): Hurst component error MAE error [where the result of 
Random HR, Small world HR, Random Kuramoto, Small world Kuramoto are taken from Nguyen et al. (2020). And Hopf-hidden network is our proposed model (rightmost in the table)].
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accurately even without using any data reduction techniques like 
the PCA.

Our proposed method can predict EEG Data in the order of 5 s 
(2,500 Data points). The predicted signal has good agreement with 
actual EEG with respect to power spectrum, Hurst exponent 
(Supplementary material) and complexity measure (Higuchi fractal 

dimension) (Supplementary material) which are the key results of our 
study. A potential application of our network can be synthetic EEG 
generation for research and education.

Also, we  have successfully demonstrated spatial localization 
architecture for oscillator reservoirs. The performance of spatially 
arranged oscillators with a hidden layer is good, as demonstrated by 

FIGURE 9

(a-c) Sensitivity analysis on tunable model parameters [(a) Oscillator amplitude (μ); (b) Coupling coefficient ξw( );  (c) Beta (𝜷)].

TABLE 6 Network performances after adding an additional hidden layer.

Network parameters Training MAE Testing MAE

Two Hidden Layer: Number of oscillators: 250,

Learning rate: 0.001

1st Hidden layer: 50-tanh activation function

2nd hidden layer: 20-tanh activation function

Epochs: 10000

0.03 6.93–8.26

Single Hidden layer: by network architecture mentioned in Table 3 0.01–0.02 5.56–6.67
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RMSE values. However, in our spatial geometry of oscillators, we only 
considered locally connected regions. Also, real structural data can 
be implemented on this proposed model to realize a large-scale TVB 
type of model (Sanz Leon et al., 2013; Al-Hossenat et al., 2019). In the 
future, we can easily expand our model to a real MRI-based surface 
where oscillators are placed according to structural-functional 
connectivity nodes. Thus, the problem regarding the unequal 

distribution of oscillators in the case of “spherical shell” geometry can 
be eliminated.

Each EEG channel was modeled by a single Hindmarsh Rose 
neuron in an ADHD study (Ansarinasab et  al., 2023); since EEG 
represents the collective activity populations of neurons, in the present 
model, each EEG channel is modeled by a network of oscillators. Also, 
a graph-based brain topology was used in the same study (Ansarinasab 

TABLE 7 Sample location in spherical coordinate system from EEGLAB.

Channel name Spherical Th (θ) Spherical Phi(Ф) Radius(r) (mm)

F1 0 44.392 85

Fz 23.493 39.775 85

F2 −23.493 39.819 85

FIGURE 10

Pair of electrodes and their shared oscillators.

FIGURE 11

(a–c) Time series of reconstructed signal and the desired signal for FC2 channel among 8 channels in a spherical shell, during training stage; (b) RMSE 
error w.r.t. training epochs; (c) power spectrum of desired and reconstructed signal, ( ) =Y td desired EEG, ( ) =Y tp predicted EEG, =Pd desired EEG 
power, =Pr desired EEG power.
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FIGURE 12

Comparison of reconstruction error in between “Spherical shell” and “rectangular grid” model.

et  al., 2023), whereas in the proposed model, we  distribute the 
oscillators spatially as per two different geometries: rectangular and 
spherical. It is very difficult to predict non-stationary signal like EEG 
beyond the training duration, however, deep learning generative 
model [GAN type model (Panwar et al., 2020; Aznan et al., 2019a)] 
requires a huge training sample, that problem also can be solved by 
our proposed oscillatory generative model.

While both works utilize, like a good number of existing models 
of brain dynamics (Ghorbanian et al., 2014; Ghorbanian et al., 2015a; 
Ghorbanian et al., 2015b; Szuflitowska and Orlowski, 2021; Babloyantz 
et al., 1985; Rankine et al., 2006; Burke and de Paor, 2004; Ren et al., 
2017; Nguyen et al., 2020; Logothetis et al., 2001; Cabral et al., 2023; 
Breakspear, 2017; Deco et al., 2015; Deco et al., 2017; Deco et al., 2021; 
Luppi et al., 2022; López-González et al., 2021; Deco and Kringelbach, 

TABLE 8 Comparison with Bandyopadhyay et al. (2023).

Bandyopadhyay et al. (2023) Proposed work

Type of model Hopf oscillator with hidden layer and two-stage 

training

Hopf oscillator with hidden layer and two-stage training

Signal used in the model BOLD-fMRI with 160 ROI, each ROI has been 

represented by one oscillator

Sleep EEG of different sleep stages-62 channels, Each EEG electrode has been 

assigned oscillators based on the threshold.

Lateral connection/Method Structural connectivity was used. No such structural connectivity was used.

Spatial arrangement of 

oscillator

Oscillators are placed based on structural 

connectivity. However, the connection strength 

among the oscillators was taken from real brain 

structural connectivity.

Spatial arrangements of oscillators were provided based on real brain head surface 

(10–20 EEG electrode placement rule).

Individual electrodes have a bunch of oscillators, and nearby two electrodes have a 

few common oscillators. Their learned frequency and phase have also been used.

Analysis matrix The correlation coefficient between empirical and 

simulated signals has been calculated

 1. MAE error

 2. Power spectrum error

 3. Hurst component error between empirical and simulated signal has been 

calculated

Key findings The impact of structural information loss on 

functional information due to disease conditions 

was evaluated using the correlation coefficient on 

simulated and empirical functional connectivities 

(FCs).

This approach can be helpful for synthetic EEG generation. Future predictions of 

the EEG signal have been discussed beyond training. The predicted signal strongly 

agrees with the actual EEG regarding power spectrum, Hurst exponent, and 

sensitivity analysis. Statistical tests reveal that the predicted signal closely matches 

the actual EEG signal. Additionally, we have demonstrated the specific tuning 

parameter values that influence these results (μ, ζ w, 𝜷).

Model validation Paris dataset Our proposed model was compared with the publicly available BONN Dataset.
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2014; Ponce-Alvarez and Deco, 2024), our case, network of Hopf 
oscillators as the basic source of oscillations, the specific methods and 
the outcomes of the two studies are significantly different.

Our group recently developed a similar network using fMRI 
signals. In that work, Bandyopadhyay et al. (2023) demonstrated a 
strong alignment between predicted and empirical functional 
connectivity (FC), as validated through graph-theoretical analysis. 
Authors have shown that structural damage resulted in cascading 
disruptions in static and dynamic FC patterns. Computational 
interventions revealed that optimizing the coupling coefficient (μ) 
could restore functional integrity. This in silico perturbation study 

further highlighted how targeted parameter adjustments could 
compensate for structural degradation, providing insights into 
potential therapeutic applications. These findings underscore the 
model’s potential in understanding and addressing disruptions in 
brain network dynamics.

However, a key distinction between our proposed study and 
that of Bandyopadhyay et  al. (2023) lies in the testing regime. 
While their work primarily focused on training, signal 
reconstruction, and the connection between structural and 
functional connectivity, they did not discuss the network’s 
behavior beyond training. In contrast, our proposed network can 

TABLE 9 Summary report between different models with the current model.

Works Model used Trainable parameters Output Remarks

23 HR neuron, small scale 

network

Trainable parameters: Coefficient of 

oscillator’s activation; Using least 

square fitting rule, linear and 

nonlinear coupling, coupling 

coefficients are not trained

Training error:(0.04–06)

Testing: No, (4 EEG channel)

Time series fitting is not good. 

The power spectrum does not 

match. There is no training for 

coupling coefficients.

24 HR and Kuramoto neuron, 

random and small world 

network

Trainable parameters: Coefficient of 

oscillator’s activation; Using least 

square fitting rule, linear and 

nonlinear coupling, coupling 

coefficients are not trained

Training error:(0.02–05)

Testing: Yes (7.95 ± 6.69-MAE 

error), 4 EEG channel

Hurst component: In a few 

cases, it matches well

Power spectrum: In a few cases, 

it matches well

With more computational 

complexity (A high number of 

neurons (400)and PCA being 

applied over there), testing 

performances are unsatisfactory.

16 Duffing van dar poll 

oscillator

Global optimization search method 

(μ,Ki  are trained)

power spectrum and Shannon 

entropy used for cost function

Time series prediction: not 

mentioned

Power spectrum: 0.502 ± 0.091 

(model); 0.490 ± 0.100 (Empirical):

EC Alpha band

Delta, beta, and gamma band 

power is not matching(EC)

Alpha, beta, and gamma power 

do not match (EO), and Shanon 

entropy does not match (EO).

18 10 coupled Harmonic 

oscillator model and 2 

coupled

Duffing oscillator model

Global optimization search method 

(μ,Ki  are trained), power spectrum 

used for cost function, linear 

coupling

Shannon entropy

1.80 ± 0.08(EC EEG) and 

1.92 ± 0.08(model output),

1.71 ± 0.11(EO EEG) and 

1.57 ± 0.15 (model output)

EC-theta, alpha

EO-alpha, beta band power 

matches well

Noise driven model may cause 

the less predictable property

68 Hopf oscillatory Network Autoregressive method, Omega 

values are not trained, 4 Hopf 

oscillators are fixed normalized 

frequencies (1,3.194,5.833, 

12.22),simulations are done on R-K 

methods

Modeling of single channel EEG 

data (Oz)

amplitude statistics appear to 

be in good agreement with the 

actual EEG

The 2D phase plots of the model 

and actual EEG are also quite 

similar

Our proposed work Hopf oscillatory model Nobel power coupling is 

introduced, Hebb’s rule trains the 

angle of power coupling, feed word 

weights are also trainable, and 

natural frequencies are trainable.

Whole brain 56 EEG electrodes are 

model for all sleep stages

Evaluation method:

MAE error

Power spectrum error

Hurst component error

Between empirical and simulated 

signals has been calculated

The best error we achieved 

during testing which surplus 

previously reported literature 

(Nguyen et al., 2020):

MAE: 5.71 ± 1.92

Power spectrum error: 

0.44 ± 0.28

Spatial localization of 

oscillators.

Combinations of oscillatory and 

sigmoid neurons are explored.
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retain learned patterns beyond the training signal. Additionally, 
we  show that the network-generated signals preserve key 
properties in both the time and frequency domains. Furthermore, 
we introduced a spherical shell model based on the 10–20 EEG 
electrode system, enabling EEG signal reconstruction while 
utilizing shared oscillators’ natural frequencies and phases. 
We also explored optimal network parameters to achieve the best 
fit, enhancing the model’s reliability and performance. Data 
augmentation for EEG has gained significant research attention in 
recent years (Torma and Szegletes, 2025; Aznan et  al., 2019b; 
Kalaganis et al., 2020; Hartmann et al., 2018). Collecting EEG data 
has several challenges, primarily due to the strict requirements of 
the environment and the variability in subjects’ psychological and 
physiological conditions. Due to the limited accessibility of the 
highly dense EEG data, applying several deep learning models is 
challenging. To address this issue, data augmentation techniques 
have emerged as a viable solution. This deep oscillatory neural 
generative model offers strong potential for synthesizing realistic 
EEG data. Additionally, we  have included a comparison table 
(Table  8) comparing our method with that of Bandyopadhyay 
et al. (2023).

Baseline models Ren et al. (2017), Ghorbanian et al. (2015a), and 
Ghorbanian et al. (2015b) utilized the same modeling and training 
methodologies. Our assessment of existing EEG modelling approaches 
highlights significant differences and enhancements in our proposed 
framework (Table 9). This structured comparison emphasizes our 
framework’s advancements in achieving a more biologically plausible 
network with improved computational traceability.

Additionally, we introduced a spherical shell model based on 
the 10–20 electrode geometry, enabling the reconstruction of EEG 
signals. In this model, the natural frequencies and phases of the 
shared oscillators were utilized effectively. Furthermore, 
we explored and identified optimal network parameters to achieve 
the best fit, ensuring superior signal reconstruction and 
validation performance.

Future efforts will be directed to developing the current model 
into a more realistic model of sleep dynamics. In the current 
modelling approach, separate networks are trained to produce 
EEG signals of various sleep stages and the waking stage. However, 
in a more authentic model of sleep, it is desirable to generate the 
various stages in a single model and explicitly demonstrate the 
transitions from one stage to the next. Ideally, such a model will 
show the sleep–wake cycle at a longer or diurnal time scale, and 
also the entire architecture of sleep substages within the 8-h long 
sleep stage. The model also will permit a minimal representation 
of the main neural substrates of sleep regulation such as the 
Suprachiasmatic Nucleus (SCN), hypothalamic and thalamic 
nuclei and the neuromodulatory systems involved in sleep 
regulation, and the Reticular Activating System (RAS). Our 
approach combines empirical EEG data with a mathematical 
model to create virtual representations of the brain’s oscillatory 
dynamics. It can help to explore the impact of neuronal 
excitability, synaptic plasticity, and network connectivity on sleep 
stage transitions (Tatti and Cacciola, 2023).

In the future sleep model that we envisage, the interactions among 
the various subcortical circuits and neural systems produce the 
subrhythms of sleep, which, acting on the cortex, generate the EEG 

activity patterns characteristic of the relevant sleep stage. In this paper, 
we primarily focus on sleep EEG. However, our model is a general-
purpose, universal framework that can be applied to any EEG dataset. 
To validate its universality, we tested the model on the publicly available 
BONN dataset, demonstrating improved performance compared to the 
previously reported study (Nguyen et al., 2020).
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