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The classification of absence 
seizures using power-to-power 
cross-frequency coupling analysis 
with a deep learning network
A.V. Medvedev * and B. Lehmann 
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University Medical Center, Washington, DC, United States

High frequency oscillations are important novel biomarkers of epileptic tissue. 
The interaction of oscillations across different time scales is revealed as cross-
frequency coupling (CFC) representing a high-order structure in the functional 
organization of brain rhythms. Power-to-power coupling (PPC) is one form of 
coupling with significant research attesting to its neurobiological significance 
as well as its computational efficiency, yet has been hitherto unexplored within 
seizure classification literature. New artificial intelligence methods such as deep 
learning neural networks can provide powerful tools for automated analysis of EEG. 
Here we present a Stacked Sparse Autoencoder (SSAE) trained to classify absence 
seizure activity based on this important form of cross-frequency patterns within 
scalp EEG. The analysis is done on the EEG records from the Temple University 
Hospital database. Absence seizures (n = 94) from 12 patients were taken into 
analysis along with segments of background activity. Power-to-power coupling 
was calculated between all frequencies 2–120 Hz pairwise using the EEGLAB 
toolbox. The resulting CFC matrices were used as training or testing inputs to 
the autoencoder. The trained network was able to recognize background and 
seizure segments (not used in training) with a sensitivity of 93.1%, specificity of 
99.5% and overall accuracy of 96.8%. The results provide evidence both for (1) 
the relevance of PPC for seizure classification, as well as (2) the efficacy of an 
approach combining PPC with SSAE neural networks for automated classification 
of absence seizures within scalp EEG.
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1 Introduction

Brain oscillations span frequencies across a range of several orders of magnitude from the 
Berger bands below 30 Hz (delta, theta, alpha, beta) up to the high frequency bands of gamma, 
ripple, and fast ripple (30–600 Hz). This study was inspired by emerging evidence that brain 
oscillations do not work independently from each other but interact in a very complex and 
well-coordinated way known as cross-frequency coupling (CFC) (Buzsaki and Draguhn, 2004; 
Klimesch, 2013). Cross-frequency coupling plays an important role in the functional 
organization of neural networks at different spatial and temporal scales. This coupling 
represents a high-order structure in the functional organization of brain rhythms and is likely 
to reflect different functional states of the brain (Buzsaki and Draguhn, 2004). It is reasonable 
to suppose that optimal biomarkers of complex neurological processes would have sensitivity 
to this structure, going beyond isolated features (e.g., frequency or spectral characteristics).
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In recent years, there has been a burgeoning interest in high-
frequency oscillations (HFOs) driven by emerging evidence suggesting 
their involvement in cognitive functions (Gross and Gotman, 1999; 
Hosseinzadeh et  al., 2005; Axmacher et  al., 2008; Medvedev and 
Kanwal, 2008; Buzsaki and Silva, 2012; Kucewicz et al., 2014; Pail et al., 
2020; Dickey et al., 2022). Also, heightened activity in these frequency 
ranges has been observed in pathological conditions and, in particular, 
numerous studies have demonstrated a significant increase in HFOs 
in the context of epilepsy. Those studies have revealed that HFOs are 
one of the most common early manifestations recorded within 
minutes before seizure onset and appear to be a reliable EEG correlate 
of ictal onset zone (Lee et al., 2000; Medvedev, 2002; Worrell et al., 
2004; Gardner et al., 2007; Jacobs et al., 2008; Blanco et al., 2010; 
Medvedev et al., 2011). Several research groups have suggested that 
detection of HFOs is necessary for a more accurate localization of 
epileptogenic tissue. Improvements in accuracy may improve surgical 
outcome in patients with localization-related intractable epilepsy 
because the removal of HFO-generating areas correlates with good 
surgical outcomes (Bragin et al., 1999; Worrell et al., 2004; Gardner 
et al., 2007; Besio et al., 2010; Zijlmans et al., 2012; Staba et al., 2014; 
Frauscher et al., 2017; Medvedev et al., 2019; Thomschewski et al., 
2019). Thus, in addition to epileptic discharges, HFOs are now 
considered as an important biomarker of epileptogenic tissue.

High-frequency bursts are frequently accompanied by 
low-frequency waveforms, such as sharp waves and spikes. These 
patterns may signify specific forms of cross-frequency coupling. The 
most typical examples pertinent to epilepsy include the Ripple-on-
Spike, where a high-frequency burst is riding on a spike, as well as the 
Ripple-on-Oscillation, where a high-frequency burst is riding on a 
slow wave. Given that epileptic seizures are often accompanied by 
specific patterns of cross-frequency coupling between slow and fast 
activity, it is important to explore the possibility that cross-frequency 
coupling may be used as a tool for automated detection of seizures.

Absence seizures are traditionally characterized by spike-and-
wave activity with the dominant frequency of 3–4.5 Hz. This specific 
narrow frequency range and the regular morphological features of 
absence seizures offer a good starting point from which to evaluate 
epilepsy using a new CFC approach. More specifically, these reliable 
characteristics of absence epilepsy in combination with research 
connecting HFO’s with epileptogenic tissue (Chaitanya et al., 2015) 
suggest the possibility of interaction between low and high frequency 
bands. Furthermore, approaches that can unveil these dynamic 
relationships may identify more comprehensive signatures of absence 
epilepsy (e.g., beyond describing which waveband amplitudes are 
merely involved). Therefore, such approaches hold promise both for 
optimal classification power and for advancing the understanding of 
the neurobiology of seizures.

Methods utilizing cross-frequency coupling have shown predictive 
power in various areas of EEG research including epilepsy state 
classification (Jacobs et al., 2018). There are various types of coupling 
(i.e., power-to-power, power-to-phase, phase-to-phase, etc.). These 
different types are thought to have independent neural mechanisms 
as well as different or complimentary functional significance (Jirsa and 
Muller, 2013). While many forms of CFC have not been well-
researched, one of the better-studied forms of CFC is phase-to-
amplitude coupling (PAC), which is well known to have an association 
with various cognitive processes related to memory and perception 
(Gross and Gotman, 1999; Axmacher et  al., 2008; Medvedev and 

Kanwal, 2008; Buzsaki and Silva, 2012; Kucewicz et al., 2014; Dickey 
et al., 2022). In many cases, PAC refers to the phase of a slower wave 
modulating the amplitude of the faster wave. In regards to seizure 
classification, prior studies (including both EEG and intracranial 
EEG) have linked delta-HFO coupling with epileptogenic tissue, and 
have employed this feature in discriminating between ictal and 
interictal states (Ibrahim et  al., 2014; von Ellenrieder et  al., 2016; 
Edakawa et al., 2016). For example, Jacobs et al. (2018) used a random 
forest algorithm on PAC and obtained a sensitivity (Sens) of 87.9% and 
specificity (Spec) of 82.4% for classification of pre-clinical seizure 
states. More specifically, they found increases in coupling between 
delta (2–4 Hz) and gamma (20–50 Hz) bands to be a key feature for 
classifying the seizure EEG patterns (Jacobs et al., 2018). Fujita et al. 
(2022) using a deep learning (DL) classifier found training the 
network on PAC significantly improved seizure classification over 
training on the raw data, achieving 90% accuracy (Acc) using the 
former method (Fujita et al., 2022). It is notable that the delta-theta 
activity coupled with the gamma band is not strictly pathological, and 
is thought to be  involved in working memory, sensory and other 
cognitive processes (Lisman and Jensen, 2013). While highly 
informative, PAC remains just one of many presumably 
complimentary forms of cross-frequency coupling that may hold keys 
to functional and pathological states of the brain.

Power-to-power coupling (PPC) is another type of cross-
frequency coupling having a solid research base (Llinas et al., 1999; 
Shirvalkar et al., 2010; Popov et al., 2018; Wang et al., 2018; Sheremet 
et al., 2019) attesting to its significance, yet in contrast with PAC, it has 
a surprising lack of research in the area of seizure classification. PPC 
has been used for well over two decades in both murine and human 
studies, and across data types including local field potential (LFP), 
EEG and MEG. Some examples include tracking coupling between 
theta and gamma or other sets of frequencies within the rat 
hippocampus (Sheremet et al., 2019). PPC is found to be involved with 
successful memory retrieval (Shirvalkar et al., 2010) and other PPC 
patterns have been associated with specific states including sleep and 
anesthesia (Ferraris et al., 2018). While there is a sound foundation of 
research attesting to the value of PPC for identifying biomarkers, it has 
not been researched in the area of seizure classification.

Power-to-power coupling should be  particularly amenable to 
long-term monitoring of patients due to its methodological simplicity 
(standard time course correlations). For these reasons of 
computational efficiency and speed, PPC would seem to lend itself 
well to real-time implementation when compared to other CFC 
methods. Additionally, this mode of coupling may be more robust to 
noise due to its reliance on power (or amplitude) rather than phase, 
the latter of which may be more susceptible to signal noise (Giehl 
et al., 2021). For these reasons, the PPC metric was chosen as the 
mode of analysis.

In this study we focus on absence seizures because they are the 
most common type of childhood epilepsy and represent several 
challenges to clinicians. These challenges stem from the unique 
characteristics of absence seizures and their impact on the individuals 
who experience them. Absence seizures are often subtle and brief, 
lasting only a few seconds. The lack of convulsions or dramatic 
physical movements can make them less noticeable to observers, 
including clinicians. This subtlety may lead to under-recognition and 
misinterpretation of the seizures. Furthermore, the presentation of 
absence seizures can vary among individuals. Some may experience 
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typical absences with staring spells, while others may exhibit more 
atypical features, such as subtle facial movements or eye fluttering. 
This variability makes diagnosis and recognition challenging for 
clinicians. The symptoms of absence seizures can also overlap with 
other neurological or psychiatric conditions. Clinicians must 
differentiate absence seizures from conditions like daydreaming, 
attention-deficit/hyperactivity disorder (ADHD), or other types of 
seizures. This requires a comprehensive clinical evaluation, including 
EEG monitoring.

Thus, while absence seizures are generally considered less severe 
than some other types of seizures, they present a range of challenges 
for clinicians, from the subtlety of their presentation to their potential 
impact on cognitive function and daily life. Accurate counting of 
absence seizures is crucial for optimizing therapy. Current diagnostics 
rely on clinical history, in-hospital video-EEG monitoring, and 
patient-maintained seizure diaries. However, research indicates that 
patients report only 6% of all experienced absences (Keilson et al., 
1987), while caregivers report 14% (Akman et al., 2009). Therefore, a 
multipronged approach, including careful clinical evaluation and 
long-term EEG monitoring, is essential to address those challenges 
and to provide optimal care for individuals with absence seizures.

Scalp EEG is being used for long-term continuous monitoring 
with patients both in the intensive care units (ICU) and outside of the 
hospital. Patients may have spontaneous absence seizures that are easy 
to miss by the ICU staff or others, and long-term scalp EEG 
monitoring reduces the possibility of such oversight. Detecting 
seizures is critical for proper diagnostics and the increasing 
development of more portable and wearable EEG devices is making 
long-term monitoring of patients more practical and accurate.

Automated analysis is obviously important for real-time 
monitoring, and cutting-edge artificial intelligence techniques, 
particularly deep learning neural networks, offer robust tools for the 
automated analysis of EEG, including the exploration of cross-
frequency coupling between distinct EEG rhythms. Deep learning 
stands out from other types of machine learning (ML) in that it is 
specialized for big datasets (including image matrices), complex 
features, and has superior ability to detect multifaceted latent patterns. 
For these reasons, it is not surprising that many successful 
classification studies have relied on various DL networks 
(Schirrmeister et  al., 2017; Liu et  al., 2022). This method is thus 
optimally suited for validating intricate cross-frequency coupling 
patterns for seizure classification. In this context, we  introduce a 
Stacked Sparse Autoencoder (SSAE) specifically trained to identify 
absence seizure activity based on unique cross-frequency coupling 
patterns within scalp EEG.

2 Methods

EEG records (sampling frequency = 250 Hz) from the open 
source Temple University Hospital database [the TUSZ corpus, (Shah 
et al., 2018)] were used in the study. This dataset contains de-identified 
relatively short records of EEG from epilepsy patients of different ages 
with seizures annotated by neurologists (including both the seizure 
type as well as the start and stop times of the seizure). The dataset 
contained recordings that include 19 scalp EEG channels in 
accordance with the 10–20 configuration. The recordings’ sampling 
rate of 250 Hz allows for a range of high frequencies to be evaluated 

in the data (up to 120 Hz). The studies were conducted in accordance 
with the local legislation and institutional requirements and the 
relevant ethical guidelines and regulations, and was approved by the 
Georgetown-MedStar Institutional Review Board. All records with 
absence seizures available in the TUSZ corpus were taken into 
analysis. The total number of patients was 12. The annotations for each 
EEG record contained the seizure type (as determined both by EEG 
as well as clinical/behavioral characteristics) alongside the respective 
onset and offset times of that seizure. The duration of EEG records in 
the dataset varied from 5 to 35 min and the number of seizures in each 
record varied from one to 18. Although the TUSZ EEG records are not 
very long, they do represent continuous recordings which may include 
interictal, preictal and postictal activity. For the classification 
purposes, all segments containing only seizures (i.e., from the 
annotated onsets to the corresponding offsets) were cut from the 
initial records and used as the first data class comprising 94 seizure 
segments. Non-seizure segments (the second data class) were cut from 
the initial records such that they matched the number and the 
durations of seizure segments for each patient. The second class is 
referred to as ‘background’ activity. Thus, the overall dataset was 
balanced across two classes (the same number and the same duration 
of both seizure and background segments for each patient) with the 
average segment duration = 8.6 ± 5.3 s (mean ± standard deviation).

All EEG segments were taken into analysis as raw signals (i.e., 
without any preprocessing) in order to test the suitability of the 
current method to be applied to the raw EEG either online or offline. 
The analysis was performed using a modified script based on the 
PowPowCAT toolbox for EEGLAB (Thammasan and Miyakoshi, 
2020). First, the spectrogram based on short-time Fourier transform 
was calculated for each EEG segment using the Matlab spectrogram 
function with half-overlapping one-second epochs and a Hamming 
window, for frequencies from 1 to 120 Hz (logarithmic scale: [1 1.28 
1.56 1.85 … 19.1 19.8 20.6 … 110.6 113.7 116.8 120] Hz). The 
spectrogram provided the modulations of spectral power across time 
(within a given EEG segment) for each frequency, channel and 
segment. For each pair of frequencies and each EEG channel, power-
to-power coupling was calculated as a Pearson correlation between the 
corresponding spectral-power time courses across a given EEG 
segment resulting in the channel-specific PPC matrices. Those 
matrices were averaged across all 19 EEG channels resulting in the 
CFC matrix for a given EEG segment.

The segment-specific PPC matrices (of size 100×100) were 
converted into the 4,950-point vectors by taking only the elements 
below the main diagonal (because PPC matrices are symmetrical 
around the main diagonal). These vectors were then used as training 
and testing sets for the Stacked Sparse Autoencoder (SSAE). The SSAE 
method begins by using unsupervised training to find the most 
characteristic features of the input classes and thus reduces the 
dimensionality of the inputs. This feature may be important to make 
the data analysis more robust against the intrinsic noise and individual 
variations of the EEG signal (see Results and Discussion below). The 
SSAE network was created with Matlab (v. R2023b) and consisted of 
two hidden encoder-decoder layers and the softmax layer with two 
outputs for binary classification ‘seizure vs. background’. The default 
(i.e., recommended by Matlab) values of the SSAE network internal 
hyper-parameters and structure were used which included L2 and 
sparsity regularizers. Regularizers are usually used to prevent 
overfitting of the network and increase its ability to generalize. L2 

https://doi.org/10.3389/fninf.2025.1513661
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Medvedev and Lehmann 10.3389/fninf.2025.1513661

Frontiers in Neuroinformatics 04 frontiersin.org

regularization adds the squared magnitude of coefficients to the loss 
function thus penalizing large weights while the sparsity constraint 
penalizes the loss function such that only a few neurons are active in 
a hidden layer. This helps the automatic detection of the most relevant 
features in the training sets. As a result of a preliminary exploration of 
the autoencoder with the given dataset, the optimal parameters of the 
hidden layers were found as achieving the stop condition during 
training (see Methods) in a shortest time (~6 min). The first encoder-
decoder layer had 500 elements/neurons and the second layer had 50 
elements/neurons. Thus, the reduction in input dimensionality by a 
factor of ~100 was achieved with two hidden layers.

A well-established approach ‘leave-one-subject-out’ was used for 
cross-validation purposes. For each subject, the SSAE training was 
performed using data from all other subjects and the selected subject’s 
segments (not used in training) were then tested and classified by the 
trained network. This approach eliminates bias in the results if the data 
from a single subject is included in both the train and test set and thus 
tests the model generalizability for data not used in training. The results 
from all subject-specific tests were then averaged across all subjects for 
the final values (mean ± standard deviation) of sensitivity, specificity and 
accuracy. To further evaluate the performance of the SSAE classifier, the 
receiver operating characteristic (ROC) curve as well as the precision-
recall (PR) curve were calculated using Matlab function rocmetrics. As a 
result, the following parameters: AUC (area under the ROC curve), 
AUPRC (area under the PR curve) and the F1 score were derived.

3 Results

Among the 12 patients whose data were used in this study, there 
were 5 males and 7 females. The max/min age of the patients was 
22/4 years and the average age was 10 ± 6.1 years. Demographic data 
of patients and clinical characteristics of their absence seizures are 
presented in Table 1. Half of patients had ‘atypical’ absence seizures 
due to their ‘focal’ features at the onset (for example, seizure activity 
predominantly at the frontal or temporal electrodes with rapid 
secondary generalization) or the presence of minor muscular 
phenomena (eye blinking or involuntary twitching).

Two typical examples of cross-frequency matrices for EEG activity 
during absence seizures taken from two different patients are shown in 
Figure 1. The overall pattern of the power-to-power frequency coupling 
was characterized by multiple discrete local maxima forming a ‘grid’ 
always symmetrical along the main diagonal. An approximately equal 
spacing between those maxima suggested that they reflected cross-
frequency coupling between harmonics. Harmonics are integer 
multiples of the fundamental frequency arising in the spectral domain 
as a consequence of the main waveform not being strictly sinusoidal. 
Therefore, a relatively high coupling between the main frequency and 
its spectral harmonics is expected because harmonics occur at 
predictable intervals within the main waveform. For example, in 
Figure 1A some maxima (off the main diagonal) are present at the 
xy-coordinates of (15, 30) and (30, 15) Hz and (15, 45) and (45, 15) Hz 
(black solid circles). These maxima are likely to represent harmonics of 
the main frequency 15 Hz. Also, there are maxima at (28, 56) and (56, 
28) Hz (brown dashed circles) which represent the first harmonic of 
frequency 28 Hz. Similarly, in Figure  1B there are maxima at the 
xy-coordinates of (20, 40) and (40, 20) Hz (black solid circles) which 
represent the first harmonic of the main frequency 20 Hz.

The cross-frequency patterns in the data, however, were not 
limited to the harmonics of the frequencies within the beta range. For 
example, Figure 1B also shows maxima at the coordinates of (20, 54) 
and (54, 20) Hz (the brown dashed ovals), and clearly the frequencies 
20 Hz and 54 Hz are not harmonically related. Moreover, there are 
multiple maxima within the gamma band 40–80 Hz (the pink dashed 
circle) which demonstrate the coupling of gamma frequencies not 
harmonically related to each other (e.g., 58 and 66 Hz, arrows in 
Figure 1B).

Cross-frequency coupling matrices group-averaged over all 
background as well as absence seizure EEG segments are shown in 
Figures 2A,B. Statistical testing for the difference between the two 
conditions (seizure versus background) showed that power-to-power 
coupling during seizures was significantly stronger for a wide range of 
frequencies from 6 to ~60–90 Hz (Figure 2C) (Mann–Whitney U-test, 
p < 0.05, FDR-corrected for multiple comparisons).

During training, the network with L2 and sparsity regularizers 
achieved a squared error smaller than 10−2 (the stop condition) with 

TABLE 1 Demographic information and clinical features of patients’ absence seizures.

Subject # Gender Age Clinical features of absence seizures

675 F 4, 6 Atypical absence seizure (blinking).

1113 F 20 Absence seizures.

1413 F 10, 14 3 to 6 Hz generalized spike and slow wave activity; seizures lasting 10–16 s.

1795 F 9 Atypical absence seizures. 3 to 5 Hz spike and slow wave activity preceded by symmetric focal (frontal) 

activity.

1984 M 6 Atypical absence associated with involuntary twitching and motion arrest.

2448 M 4 Typical of absence seizures but with a possibility of a secondarily generalized mechanism including the left 

frontal activity seen at the onset.

2657 M 5 Multiple absence seizures.

3053 F 5 EEG suggests more than one mechanism for seizures in this patient.

3281 M 13 The seizures were frontally predominant and relatively characteristic of absence epilepsy.

3306 F 13 Typical absence seizures.

3635 M 6 Generalized SW discharge with a clear underlying frontal focality.

8608 F 22 Atypical absence seizure with focal features (subtle focal slowing and sharp waves at T3, T5, and C3).
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about 400 iterations. After that, fine tuning was performed. Figure 3A 
shows the confusion matrix with the results of classifying seizures 
versus background segments by the SSAE network. On average, the 
trained network was able to correctly classify EEG segments (not used 
in training) at a sensitivity of 93.13%, a specificity of 99.48%, and an 
overall accuracy of 96.83%. Given the total duration of all EEG 
segments analyzed, the false positive rate of 0.52% = 100% - specificity; 
(Figure 3A) translates to 3.2 false alarms per hour.

The ROC and the PR curves are shown in Figures 3B,C with the 
corresponding values of the areas under the curve: AUC = 0.94 ± 0.057 
(for the two-class average ROC), AUPRC = 0.92 ± 0.062 (for seizures), 
and the F1 score = 0.96 ± 0.046 (mean ± standard deviation).

Although the primary analysis of EEG records described above 
was purposefully done without conventional EEG preprocessing, in 
order to see whether preprocessing might improve the classification 
results, we  repeated the same analysis after the following 
preprocessing steps: high-pass filtering at 0.1 Hz cutoff (a zero-
phase FIR filter with the filtfilt function), notch filtering (filtering 
out the line frequency and its harmonics using the CleanLine 

EEGLAB toolbox), re-referencing to common average, Independent 
Component (IC) decomposition using the AMICA algorithm, and 
the automated removal of artifactual (‘bad’) ICs using the ICLabel 
algorithm (Pion-Tonachini et al., 2019). An IC was removed based 
on the following two criteria. First, if any of its probabilities 
(assigned by the ICLabel algorithm as a percentage) of being 
‘muscle’, ‘eye’, ‘heart’, ‘line noise’ or ‘channel noise’ was greater than 
the probability of being ‘brain’ or ‘other’. Second, if the sum of the 
percentages of all the above artifactual assignments for this IC was 
greater than 50%.

The average CFC matrices after preprocessing are shown in 
Supplementary Figure S1, and, in comparison to the CFC matrices 
without preprocessing, they look very similar (compare Figure 2 and 
Supplementary Figure S1). EEG preprocessing slightly improved the 
classification of EEG segments (‘seizure versus background’) with the 
following results: Sens = 96.31%, Spec = 99.87%, and Acc = 98.51% 
(Supplementary Figure S2). However, all these classification metrics 
as well as the areas under the corresponding curves (the ROC curve 
and the precision-recall curve) were not significantly higher in 

FIGURE 1

Two examples of cross-frequency matrices of EEG activity during absence seizures from two patients (linear frequency scale is used to demonstrate 
the arithmetic progression-like frequency relationships between harmonics). Circles, ovals and arrows show examples of a relatively stronger coupling 
between different frequencies including both harmonic and non-harmonic relations. See text for details.

FIGURE 2

Cross-frequency coupling analysis without EEG preprocessing. Power-to-power matrices are group-averaged over all background segments (A) as 
well as absence seizures (B) (logarithmic frequency scale). (C) Statistically significant differences between two conditions for each frequency–
frequency pair are shown in green (Mann–Whitney test, p < 0.05, FDR-corrected for multiple comparisons).
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comparison with the metrics obtained without preprocessing (Mann–
Whitney test, p > 0.1 for all individual comparisons).

There is a question whether cross-frequency coupling, as an EEG 
feature, presents any advantage compared to the spectral power used 
in many published classification approaches. To address this question, 
we ran an additional analysis using spectral power for classification 
purposes. For each EEG segment, the output of the PowPowCAT 
function also provided power spectra (i.e., the spectrogram averaged 
across time). Similar to the PPC matrices, the channel-specific spectra 
were averaged across channels and the resulting segment-specific 
spectra were used as an input to the SSAE (Supplementary Figure S3, 
left). Classification based on the power spectrum produced slightly 
worse but non-significantly different results compared to the 
classification based on PPC: 90.1 ± 21 vs. 93.1 ± 4.98; 98.4 ± 5 vs. 
99.5 ± 1.8; 95.5 ± 10 vs. 96.8 ± 6.4 (%, mean ± st. dev.; for Sens, Spec, 
and Acc, respectively) (Supplementary Figure S3, right). Importantly, 
however, the standard deviations for the spectrum-based classification 
metrics were significantly larger compared to the PPC-based 
classification (Bartlett’s test; Table  2). The larger variance of the 
spectrum-based classification results was likely due to the individual 
differences in spectral characteristics of the EEG. Also, this result 
indicates that cross-frequency coupling may provide an EEG feature 
which is more robust against the individual variations.

To compare the performance of the SSAE-based classifier with the 
ML algorithms, we used the Support Vector Machine (SVM) and the 
Random Forest (RF) classifiers using the same PPC matrices as input 
and the same ‘leave-one-subject-out’ cross-validation approach. 
Matlab functions fitclinear and fitensemble were used for the SVM and 
RF classifiers, respectively. For each subject ‘left-out’, the SVM training 
was performed using 5-fold cross-validation on the remaining subjects 
with the subsequent testing of the excluded subject. For the RF 
classifier, the number of trees varied from 1 to 250 with the control of 
the out-of-bag error. It appeared that the error leveled out in the range 
of 20–140 trees and remained at the lowest value thereafter, 
insignificantly affecting the classification accuracy. After the 
preliminary testing, the RF-based classification was performed with 
number of trees = 140 with the same ‘leave-one-subject-out’ 
procedure. Both SVM and RF classifiers performed worse than the 
SSAE classifier with lower values of Sens, Spec and Acc as well as a 
significantly greater variance of those metrics (Table 2).

4 Discussion

Ongoing research in machine learning and deep learning is 
actively exploring absence seizures to identify their critical features, 

TABLE 2 Performance comparison of the PPC-SSAE classifier with other classifiers.

Sensitivity Specificity Accuracy

Mean, % St. Dev., % Mean, % St. Dev., % Mean, % St. Dev., %

PPC-SSAE 93.1 5.0 99.5 1.8 96.8 6.4

Spectra-SSAE 90.1 21.0*** 98.4 5.0** 95.5 10.0*

PPC-SVM 81.1 32.0** 97.1 14.0*** 90.0* 16.0**

PPC-Random Forest 78.0* 24.6*** 91.5** 13.2*** 85.6*** 11.6**

PPC, power-to-power coupling; SSAE, stacked sparse autoencoder; SVM, support vector machine. PPC-SSAE, algorithm based on PPC as a classifying feature and the stacked sparse 
autoencoder as a classifier; Spectra-SSAE, algorithm based on the EEG spectrum as a classifying feature and the SSAE classifier; PPC-SVM, algorithm based on PPC as a classifying feature and 
the SVM classifier; PPC-Random Forest, algorithm based on PPC as a classifying feature and the Random Forest classifier. The PPC-SSAE algorithm is compared to all three other algorithms 
with statistically significant differences indicated by asterisks: p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***) (t-test for the comparison of the mean values, Bonferroni-corrected; Bartlett’s test 
for the comparison of variances, Matlab function vartestn).

FIGURE 3

(A) Confusion matrix showing the results of recognition of seizures and background segments by the SSAE network. The mean values (%) ± standard 
deviations (%) are shown for sensitivity, specificity and overall accuracy (the bottom row) as well as for positive predictive values for each class (two 
upper cells in the right-hand column). (B, C) The results of two-class classification (seizure versus background) for the trained SSAE neural network. 
The ROC curve representing the classification results over both classes (B). The precision-recall curve for the seizure class (C). The corresponding 
metrics, i.e., the areas under the curves, AUC (B) and AUPRC (C), are also shown.
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aiming to gain deeper insights into the electrophysiological roles 
that these features play, with the goal of improving seizure detection 
and prediction. In both murine and human studies, successful 
training of the networks usually involves using relevant time and 
frequency domain metrics especially frequency and amplitude, and 
sometimes phase (Fanselow et al., 2000; Xanthopoulos et al., 2009; 
Richard et al., 2015; Kumar et al., 2021). Most studies use wavelet 
analysis techniques to account for non-stationarity of the EEG 
signal and improve time and frequency localization of various EEG 
patterns. Entropy-related metrics, especially permutation entropy 
(PE), was also very useful in training networks, and decreases in PE 
were found in both preictal and ictal segments in comparison to 
background (Li et al., 2007). Furthermore, specific spatial features 
were found to characterize absence seizures such as increased 
cortico-thalamo-cortical synchrony in murine models, or 
reductions in overall functional connectivity patterns during 
generalized spike-and-wave discharges in humans (van Luijtelaar 
et al., 2016; Kumar et al., 2021).

Many studies found that the harmonics of the fundamental 
frequencies of seizures are highly specific and critical to the 
classification success (Sitnikova et al., 2009; Buteneers et al., 2013). 
Harmonic spectral analysis involves broad wavebands (i.e., 1–120 Hz) 
that include HFOs which are increasingly recognized as crucially 
important in the pathophysiology of epilepsy. The energy in these 
higher frequency harmonics are found to be important signatures 
differentiating between regular sleep spindles, artifacts and true spike-
and-wave discharges that all share the same fundamental frequency 
(Sitnikova et al., 2009). The interdependent and harmonic architecture 
of the EEG frequency spectrum has been well described by authors 
such as Buzsáki Buzsaki and Draguhn (2004) and Klimesch (2013) 
and indicates that a comprehensive analysis of EEG activity should 
involve a view of the cross-frequency dynamics.

4.1 Comparison with other 
machine learning and deep learning 
methods

The use of ML algorithms and DL neural networks in studies 
attempting to recognize and predict absence seizure EEG activity has 
been rapidly advancing in the past decades, generating promise in 
improving both clinical treatment as well as the neurobiological 
understanding of this disorder. Studies since the early 1990’s describe 
the ability of ML and DL methods to recognize absence seizures with 
high level of sensitivity (~95%) albeit often with higher rates of false 
positives (Jando et al., 1993; Vadasz et al., 1995). Many of these earlier 
studies used genetic murine models of absence epilepsy and implanted 
EEG electrodes. More recent ones apply these techniques to humans 
using only scalp EEG and with the ability to run the computation not 
only offline, but also in real time (Alam et al., 2024).

This ability to differentiate the pre-seizure from the seizure state is 
now being successfully applied to humans using scalp EEG with as few 
as 19 scalp electrodes (Kumar et al., 2021). Schirrmeister et al. (2017) 
used spectral power between alpha-high gamma bands with a 
convolutional neural network (CNN) and achieved accuracies as high as 
84% (Schirrmeister et al., 2017). In a more recent exploration with a 
shallow CNN applied to scalp EEG data from human subjects, Zhang 
et al. achieved a sensitivity of 92.2% with a low false positives rate (FPR) 
of 0.12 per hour (Zhang et al., 2020). Other studies too have used various 
ML and DL models for seizure detection and/or prediction in human 
scalp EEG using different features with accuracy ranging from ~70% to 
higher than 90–95% (Li et al., 2016; Sridevi et al., 2019; Ansari et al., 
2021; Liu et al., 2022; Thara et al., 2023; Alam et al., 2024).

The current SSAE-based classification results are on par with or 
better than several studies based on other DL neural network 
classifiers such as: CNN and BiLSTM (Liu et al., 2022; Schirrmeister 

TABLE 3 Seizure classification/detection studies using deep learning neural networks.

Author and 
year

Feature Classifier Sens Spec Acc Dataset Fs, Hz No. of 
subjects

Subject-
specific 
algorithm

Lin et al. (2016) Raw data SSAE 93–100% 90–100% 96% Bonn 173 5 No

Schirrmeister 

et al. (2017)

Raw data CNN - - 84% TUH 250 14 Yes

Akut (2019) Raw data CNN 100% 100% 100% Bonn 173 5 No

Zhang et al. 

(2020)

Raw data Shallow CNN 92% - - CHB-MIT 256 - No

Liu et al. (2022) Raw data CNN, BiLSTM 86%, 89% - 97.5%

93.7%

CHB-MIT, 

SH-SDU

256 33 No

Fujita et al. 

(2022)

PAC DCNN 90% 90% 90% Innov. AI 

Hosp.

1000–

2000

180 No

Khan et al. 

(2022)

Scalogram Various CNNs 95% 95% 95% TUH 250 9 No

Yang et al. 

(2023)

Temporal 

spectral

Multiple NNs 98% 100% 85% TUH 250 14 No

Thara et al. 

(2023)

Raw data CNN, VGGNet, 

ResNet

- - 97% TUH 250 - No

This work PPC SSAE 93% 99% 97% TUH 250 12 No

Sens, sensitivity; Spec, specificity; Acc, accuracy; Fs, sampling frequency, hyphen (−), no data.
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et al., 2017; Zhang et al., 2020; Thara et al., 2023; Khan et al., 2022), 
DCNN (Fujita et al., 2022), multiple neural networks (not specified) 
(Yang et al., 2023) (see Table 3). We are aware of only one study based 
on a convolutional neural network which reported 100% for sensitivity, 
specificity and accuracy (Akut, 2019). However, this study was done 
on a dataset of only 5 patients which raises a question about the 
generalizability of this result. A comprehensive comparison of various 
CNN networks, including pretrained GoogLeNet and AlexNet as well 
as the authors’ original hybrid model (AG86), was done in Khan et al. 
(2022). Their hybrid model AG86 combined the best features of 
GoogLeNet (inception layer) and AlexNet (starting and ending layers) 
and demonstrated a better performance than several other pretrained 
networks (Khan et al., 2022). Although the proposed SSAE classifier 
showed a slightly lower sensitivity (93%) compared to the AG86 model 
(95%), it achieved better specificity (99%) and accuracy (97%) 
(Table 3). Also, the SSAE classifiers usually have just two hidden layers 
and thus have a simpler architecture compared to the CNN networks 
which require multiple hidden layers to achieve a comparable 
reduction in dimensionality (Akut, 2019), and this requires more 
computational resources. For example, in Akut’s study the training was 
done on Tesla K80 GPU to achieve faster computation time. The GPU 
used 12 GB Memory, 61 GB RAM and 100 GB SSD (Akut, 2019). In 
comparison, the proposed SSAE classifier was realized on a laptop 
(with the Windows 10 Enterprise OS) with Intel(R) Core(TM) 
i5-5300U CPU at 2.30GHz, 16 GB RAM and ~ 1 GB hard drive space. 
This speaks to an excellent computational efficiency of the SSAE 
classifier. EEG classification using SSAE is a novel approach and we are 
aware of only one study where a SSAE classifier for seizure detection 

also demonstrated very good performance (Sens = 93%÷100%; 
Spec = 90%÷100% and Acc = 96%) (Lin et al., 2016).

It is also important to compare the DL-based models with more 
traditional ML algorithms. Since 2012, emerging research in epilepsy 
classification utilizing ML has shown dramatic improvements in 
sensitivity, specificity, and/or accuracy (up to 100% sensitivity). For 
example, one of these studies used increasingly larger datasets than 
previous studies such as with the number of patients up to 23 (Chandel 
et al., 2016), and still obtaining a sensitivity of 100%. It is worth noting 
that the ML methods typically outperformed DL neural networks in 
seizure classification on certain datasets achieving sensitivity at 100% 
as well as specificity and accuracy at 99% (Saeed et al., 2016; Chandel 
et al., 2016; Khan et al., 2012; Ansari et al., 2021) (see Tables 3, 4). 
Moreover, the ML algorithms are more compact and allow an effective 
implementation in hardware (Alam et  al., 2024). However, more 
recent research on DL has shown similar capabilities (Khan et al., 
2022; Thara et al., 2023; Akut, 2019), and more research with DL is 
warranted. The DL-based classification algorithms can continue to 
improve by broadening their approach to patient-independent 
training, including larger datasets with more patients, and optimizing 
sensitivity, specificity and accuracy. In the current study, the 
performance of the SVM and Random Forest classifiers were 
significantly lower compared with the SSAE classifier and lower than 
the reported results for the ML classifiers in many other studies (see 
Tables 2, 4). It is likely that the more modest results with the SVM and 
RF classifiers were due to a more stringent ‘leave-one-subject-out’ 
cross-validation used in the current study. Also, the larger variance of 
the classification metrics (Sens, Spec, and Acc) with the SVM and 

TABLE 4 Seizure classification/detection studies using machine learning algorithms.

Author 
and year

Feature Classifier Sens Spec Acc Dataset Fs, Hz No. of 
subjects

Subject-
specific 
algorithm

Khan et al. 

(2012)

Skewness 

kurtosis

Simple linear 

classifier 100% - - CHB-MIT 256 10 Yes

Li et al. (2016) Entropy LDA - - 89.0%

Peking Univ. 

Hosp. 256 10 No

Saeed et al. 

(2016) Entropy, CSD SVM 100% - - CHB-MIT 256 10 Yes

Chandel et al. 

(2016)

Spectral, 

entropy Linear classifier 100% - - CHB-MIT 256 23 Yes

Jacobs et al. 

(2018) PAC Random Forest

87.9–

97.5% 82.4–95% 80–95%

Toronto 

Western Hosp. 500–1,024 12 Both

Liu et al. 

(2018) PAC SVM - -

97.5–

100%

CHB-MIT, 

Bonn 256, 173 28 -

Sridevi et al. 

(2019)

Spectral, 

entropy

LDA, NB, DT, 

SVM, KNN 80% 86% 83%

SCTIMST, 

Fortis Malar 

Hosp. 256–400 18 No

Ansari et al. 

(2021) Spectral Linear classifier 100% 99% 99%

AIIMS, CHB-

MIT 128–256 30 No

Alam et al. 

(2024) Various QDA classifier 100% - 99.4% Bonn 173 5 No

Sens, sensitivity; Spec, specificity; Acc, accuracy; Fs, sampling frequency, hyphen (−), no data.
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Random Forest algorithms point to the lower generalizability of the 
ML classifiers compared to the SSAE classifier in the current study.

Growing interest in using DL for seizure classification is partly 
related to how its unique characteristics may allow for increased 
generalizability including across individuals, seizure types, sleep 
vs. wake conditions, and eventually moving from dual 
classification (e.g., seizure vs. background) to ternary classification 
(e.g., seizure vs. preictal vs. background). The ability of the DL 
networks to eliminate or at least reduce the need for feature 
extraction may be part of this generalization. Getting rid of the 
human bias on what features define a seizure may improve seizure 
classification. In place of the ‘extracted-by-a-human’ features, DL 
has an ability to find more abstract and higher-level representations 
(Akut, 2019). DL’s greater number of hidden layers alongside 
nonlinear activation functions expand its abilities for finding 
intricate and nonlinear patterns in the data. Given that the brain 
is non-linear and its EEG signals are non-stationary and complex, 
it seems appropriate to continue to evaluate whether and how DL 
may match or improve traditional ML accuracy in 
seizure classification.

Our method has built on the efficacious components of the 
existing research in regard to the deep learning techniques, 
significant CFC biomarkers, and the emerging relationships of 
HFOs to epilepsy. The novelty and significance of this approach 
includes validation of a hitherto unexplored phenomenon of cross-
frequency interactions (specifically, power-to-power coupling) in 
the context of identifying new biomarkers of absence seizures. 
Building on prior research which suggests the key importance of 
HFOs in epilepsy, this approach also holds promise for clinical 
application in long-term monitoring of patients with 
absence seizures.

It is becoming clear that there is a complex interplay between 
spectral, harmonic and spatial features that can reliably characterize 
absence epilepsy. PPC analysis has a level of sensitivity to these 
features already known to have utility in seizure classification (i.e., 
spectral power), and in addition, it provides important information 
on cross-frequency interaction. In this way, PPC represents a novel 
powerful, hitherto underutilized, tool to probe the unique cross-
frequency signatures of epileptiform activity. It holds promise for 
further enhancing the optimization between sensitivity and specificity. 
This becomes particularly crucial in scenarios where data is less 
pristine or encompassing multiple states such as sleep and wakefulness. 
The results not only confirm the utility of a new approach to classify 
absence seizures with high accuracy, but also strongly suggest that 
continuing research on cross-frequency coupling will deepen our 
knowledge of the underpinnings of epileptic seizures by further 
clarifying the involvement of HFOs (which are already known to 
be  deeply related to epilepsy), harmonic patterns, as well as 
interdependent relationships between different frequency bands 
more generally.

5 Limitations of the study

A limitation of the current study is the use of a single public 
dataset (TUSZ) which has EEG records of absence seizures from just 
12 patients. Also, the available EEG records are not very long (5 to 
35 min in duration). While the number of patients (12) is comparable 

to other classification studies (Table 3; with the exception of Chandel 
et al., 2016; Ansari et al., 2021; Fujita et al., 2022), this may still limit 
the generalizability of our results. However, the absence seizure dataset 
from the TUSZ corpus is relatively balanced by the gender of patients 
(7 females and 5 males) and it also contains a wide range of patient 
ages, from pediatric to young adult (4–22 years). The ‘one-subject-out’ 
cross-validation did demonstrate good generalizability across this 
range of patients’ ages.

Another limitation is that it is unclear whether the classification 
performance in the present study is achieved due to a specific feature 
set (i.e., power-to-power coupling matrices) or a specific classifier type 
(i.e., the autoencoder). However, the use of another feature namely, 
power spectrum, which has been used in many other studies, (e.g., 
Ansari et al., 2021; Yang et al., 2023), did not improve classification. 
Importantly, the PPC-based classification had significantly smaller 
variance compared to the spectrum-based one.

6 Conclusion

The results provide evidence both for the parameters of power-to-
power coupling having utility for seizure classification and also for an 
approach using PPC alongside SSAE neural networks being efficacious 
for automated classification of seizures within scalp EEG. Importantly, 
the trained SSAE network showed generalizability in detecting 
seizures with high sensitivity (93%), very high specificity (99.5%) and 
accuracy higher than 96% with all patients tested. Automated analysis 
based on deep learning networks can significantly accelerate the 
analysis of EEG data and increase their diagnostic value.
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