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In cognitive neuroscience, the integration of deep neural networks (DNNs) with

traditional neuroscientific analyses has significantly advanced our understanding

of both biological neural processes and the functioning of DNNs. However,

challenges remain in e�ectively comparing the representational spaces of

artificial models and brain data, particularly due to the growing variety of

models and the specific demands of neuroimaging research. To address

these challenges, we present Net2Brain, a Python-based toolbox that provides

an end-to-end pipeline for incorporating DNNs into neuroscience research,

encompassing dataset download, a large selection of models, feature extraction,

evaluation, and visualization. Net2Brain provides functionalities in four key areas.

First, it o�ers access to over 600 DNNs trained on diverse tasks across multiple

modalities, including vision, language, audio, and multimodal data, organized

through a carefully structured taxonomy. Second, it provides a streamlined

API for downloading and handling popular neuroscience datasets, such as the

NSD and THINGS dataset, allowing researchers to easily access corresponding

brain data. Third, Net2Brain facilitates a wide range of analysis options,

including feature extraction, representational similarity analysis (RSA), and linear

encoding, while also supporting advanced techniques like variance partitioning

and searchlight analysis. Finally, the toolbox integrates seamlessly with other

established open source libraries, enhancing interoperability and promoting

collaborative research. By simplifying model selection, data processing, and

evaluation, Net2Brain empowers researchers to conduct more robust, flexible,

and reproducible investigations of the relationships between artificial and

biological neural representations.

KEYWORDS

cognitive neuroscience, deep neural networks, neuroimaging data analysis, artificial
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1 Introduction

Over the past decade, DNNs have emerged as a powerful class of computational tools

in visual neuroscience. DNNs outperform other models in predicting brain activity during

visual processing and have been instrumental in explaining and exploring the nature of

visual brain functions (Yamins and DiCarlo, 2016; Kietzmann et al., 2019; Saxe et al., 2021;
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Cadieu et al., 2014; Khaligh-Razavi and Kriegeskorte, 2014; Yamins

et al., 2014; Guclu and Van Gerven, 2015; Cichy et al., 2016; Zhuang

et al., 2021). By comparing the predictive power of key DNN

properties, such as model architecture, objective functions, and

training regimes, researchers are advancing our understanding of

the computational and functional characteristics of visual cortex

regions (Dwivedi et al., 2021; Ratan Murty et al., 2021; Richards

et al., 2019; Cichy and Kaiser, 2019; Doerig et al., 2022; Bakhtiari

et al., 2021; Khaligh-Razavi and Kriegeskorte, 2014; Guclu and

Van Gerven, 2015; Seeliger et al., 2018).

However, the rapid growth and accelerating use of DNNs

in visual neuroscience pose significant challenges for individual

researchers and the field as a whole. One key challenge is the

continual evolution and rapidly expanding number of DNNs,

presenting researchers with a very large set of experimental choices.

This complicates the selection of appropriate models for specific

research questions, as there is no systematic method to assess

models beyond individual comparisons. Consequently, this makes

it difficult to consolidate and compare findings from previous

studies, limiting the integration, and generalization of results

obtained with DNNs.

A second, related challenge is the absence of standardized

protocols and criteria for selecting and predicting brain data. This

issue spans all aspects of research with DNNs, from extracting

their internal representations to how models are linked to brain

activity and comparing model performance. As a result, researchers

often develop individualized approaches and rely on custom code,

which can negatively impact documentation, reproducibility and

generalization of findings (Miłkowski et al., 2018).

To address these challenges, we introduce Net2Brain, an easy-

to-use, end-to-end toolbox for bridging neuroscience with AI

research. Net2Brain tackles the first challenge by systematically

organizing over 600 models, simplifying the process of selecting

and comparing DNNs. It addresses the second challenge by

offering standardized yet flexible procedures for all experimental

steps, eliminating the need for custom coding. This streamlines

access to neuroscience datasets, facilitates preprocessing, and

provides widely used analysis options, along with tools for

data analysis and visualization. With these features, Net2Brain

supports and accelerates research at the intersection of artificial

and biological neural networks in a sustainable, robust, and

reproducible manner.

2 Related work

Several toolboxes are already available carrying out research

at the intersection of neuroscience and AI. Below, we briefly

characterize these toolboxes and demonstrate how Net2Brain

complements them (see Appendix Table 1 for a structured

comparison).

The RSAToolbox offers a comprehensive set of functions

for comparing the representational spaces of different systems,

including those of brains and DNNs. Starting from the internal

representations of DNNs provided by the user, it facilitates all

subsequent steps of analysis and statistics through RSA (Nili et al.,

2014; Kriegeskorte, 2008). Net2Brain incorporates key features of

the RSAToolbox, such as RSA and weighted RSA, while extending

its functionality with additional tools like linear encoding and

variance partitioning analysis. Moreover, Net2Brain integrates

feature extraction capabilities, allowing users to directly interact

with both the RSAToolbox and other analysis pipelines within a

broader experimental framework.

THINGSvision extracts activations from a wide range of pre-

trained vision-related DNNs for user-provided images, enabling

comparisons between DNNs and the THINGS brain and

behavioral datasets (Hebart et al., 2019). Net2Brain complements

THINGSvision by offering an end-to-end pipeline that includes

feature extraction from a large set of models. In addition, it provides

easy access to other brain datasets, such as NSD (Gifford et al., 2023)

and BOLDMoments (Lahner et al., 2024), and extends to DNNs

beyond vision, including multimodal, audio, and large language

models.

BrainScore is an online benchmarking platform (Schrimpf

et al., 2018, 2020) where users submit models to be compared

against a set of brain activations, generating a score that reflects

how well the model’s activations predict brain activity. BrainScore

primarily uses encoding models and focuses on non-human

primate visual brain data. Net2Brain complements BrainScore by

streamlining access to human visual brain datasets and providing

a diverse range of evaluation functions commonly used in the

literature, while also enabling users to prepare and submit research

to BrainScore.

The Algonauts Project and the Sensorium competition are

recurring online challenges that invite participants to predict

human and non-human brain data, typically recorded in visual

experimental settings (Cichy et al., 2019; Lahner et al., 2024;

Gifford et al., 2023; Willeke et al., 2022; Turishcheva et al., 2024).

Participants submit brain data predictions, which are tested against

held-out empirical data, with the best prediction winning the

challenge. Net2Brain complements these efforts by offering offline,

user-defined flexibility in terms of experimental parameters at all

stages.

3 The Net2Brain toolbox: overview
and core functionality

Net2Brain (see Figure 1) is a Python-based, end-to-end, open-

source toolbox designed to relate DNNs to human brain data that

is publicly available on GitHub.1 The repository includes a well-

documented codebase and a comprehensive collection of Python

notebooks that provide practical, step-by-step tutorials for utilizing

the toolbox’s various features as well as notebooks demonstrating

how to replicate previous studies using Net2Brain. In addition,

the Net2Brain documentation website offers multiple resources,

including tutorial videos and extended guides covering everything

from basic setup to advanced applications. Net2Brain follows a

modular and interoperable design philosophy, enabling seamless

integration with other toolboxes, such as THINGSvision and the

RSAToolbox. This approach allows researchers to extend existing

workflows with Net2Brain’s functionalities or flexibly build new

workflows by combining different sources.

1 https://github.com/cvai-roig-lab/Net2Brain
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FIGURE 1

The complete pipeline of Net2Brain, divided by core functionalities. (A) Model taxonomy, helping users select models based on architecture and task.

(B) Dataset downloads, providing access to key neuroscience datasets. (C) Feature extraction from model layers. (D, E) RDM creation, generating

Representational Dissimilarity Matrices for RSA, including Weighted RSA and Searchlight analysis. (F, G) Encoding models and variance partitioning

analysis for evaluating model performance in predicting brain responses. (H) Visualization of results through the plotting module.
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The end-to-end pipeline of Net2Brain consists of six main

components (see Figure 1 for an overview): First, the taxonomy

module (Figure 1A) assists in selecting appropriate models from

a diverse set of over 600 models spanning various modalities and

architectures. Second, the dataset selection module (Figure 1B)

provides access to multiple human brain datasets. Third, the

feature extraction module (Figure 1C) extracts internal model

representations. Fourth, the RDM creation module (Figure 1D)

generates representational dissimilarity matrices (RDMs) from

both model activations and brain data when performing RSA.

Fifth, the evaluation module relates brain activations to model

representations using RSA or encoding models, enriched by

advanced comparative techniques like variance partitioning

(Figures 1E–G). Finally, the plotting module visualizes the

results (Figure 1H). For details on runtime and memory usage

across different architectures and computing environments, see

Appendix Table 2. In the following sections, we will describe each

module in more detail.

3.1 Model taxonomy module

The model taxonomy module (Figure 1A) is designed to

help researchers select the most suitable models from a pool

of over 600 DNNs, based on their research objectives (see

Appendix Tables 3, 4). This set includes both pre-trained and

randomly initialized models. The taxonomy organizes models

based on various attributes, including architecture types (e.g.,

Convolutional Neural Networks, Large Language Models), training

tasks (e.g., image classification, video classification), datasets used

for training [e.g., ImageNet (Russakovsky et al., 2015), COCO

(Lin et al., 2014)], and training methods [e.g., supervised vs. self-

supervised techniques like SimCLR (Chen et al., 2020) and MoCo

He et al. (2020)].

The module also includes functions for targeted searches.

For example, the model_like_name() function helps

researchers find models similar to a term of choice, while the

find_model_by_custom() function enables custom-defined

searches based on a combination of attributes. These functions

return a list of suitable models along with their labels, allowing the

user to select them during the feature extraction step.

3.2 Dataset selection module

The dataset selection module of Net2Brain (Figure 1B) loads

preprocessed brain data from our database along with the

corresponding stimuli that elicited the brain responses, allowing

for the extraction of DNN activations by processing the same

stimuli used in the neuroscience experiment. The module readily

accommodates custom datasets, enabling researchers to load their

own data into Net2Brain.

Net2Brain streamlines access to a collection of popular datasets

widely used in the cognitive neuroscience research community,

each including its own set of corresponding regions of interest

(ROIs) (see Appendix Table 5). These integrated datasets are based

on healthy participants and include the NSD dataset, formatted

for the Algonauts Challenge 2023 (Gifford et al., 2023), which

contains high-resolution fMRI responses to tens of thousands of

natural scenes; an additional NSD subset containing the 1,000

stimuli viewed by all eight subjects (Allen et al., 2022); the

THINGS fMRI-Dataset (Hebart et al., 2023, 2019), featuring brain

responses to images of everyday objects; the Algonauts 2019

dataset, which focuses on predicting brain activity in response to

object recognition using fMRI and MEG data (Cichy et al., 2019);

the BOLD Moments Dataset from Algonauts 2021, capturing

fMRI responses to short naturalistic video clips to study dynamic

visual perception (Lahner et al., 2024) and a set of complex

natural scenes used to study navigational affordances in the

human visual system (Bonner and Epstein, 2017). In the coming

months, we plan to expand this collection further by incorporating

datasets from the cNeuromod project. For the NSD dataset,

Net2Brain offers enhanced functionalities that further facilitate

analysis. It automates the download of segmentation masks and

COCO captions, provides ID translations between NSD and

COCO, and offers additional visualization options for images and

segmentation masks.

3.3 Feature extraction module

The feature extraction module (Figure 1C) enables the

extraction of internal representations from models pre-trained for

different tasks, randomly initialized networks, or user-provided

models. Net2Brain also suggests a set of summarizing layers

for extraction, while also allowing researchers the flexibility to

select any layer of interest. In addition to its core functionality,

the module includes dimensionality reduction techniques (e.g.,

Principal Component Analysis (PCA), Sparse Random Projection)

to efficiently manage and analyze high-dimensional model

activation data.

3.4 RDM creation module

The RDM creation module (Figure 1D) generates RDMs from

both the brain data loaded by the dataset selection module and the

model activations passed from the feature extraction module.

RDMs (Kriegeskorte, 2008) are a technique that abstracts

incommensurable multivariate measurement spaces–such as those

from DNNs and brain measurements–into a common similarity

space. This is achieved by computing RDMs, which are 2Dmatrices

that summarize the representational geometry of a measurement

space. RDMs are indexed by rows and columns representing the

experimental conditions compared, and they store the dissimilarity

between activation patterns associated with these conditions.When

the same stimulus set is used across different measurement

spaces, the resulting RDMs are of equal format and can be

directly compared.

To calculate dissimilarity between activation patterns, the RDM

creation module offers a range of common distance metrics (e.g.,

pearson, cosine, euclidean) and allows users to define custom
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metrics as needed. Hardware-accelerated computing via GPU and

matrix chunking techniques enable efficient RDM computation

even for large activation datasets.

3.5 Evaluation module

The evaluation module provides tools for linking model

activations to brain responses using either RSA or encoding

techniques. RSA relies on comparing RDMs between models and

brain data, while encoding techniques directly map raw model

features to brain responses using a regression model.

For RSA (Kriegeskorte, 2008) (see Figure 1E), the module

compares the model and brain RDMs generated by the RDM

creation module. By default, the standard RSA uses Pearson

correlation distance to measure the similarity between the RDMs,

and thus the representational spaces of both systems, though

users can define other metrics based on their research needs.

The module offers flexible correlation averaging methods across

subjects, supporting both squared and direct correlation averaging.

Additionally, the module supports weighted RSA, an advanced

form of RSA that adjusts the influence of data points in

the computation (Kriegeskorte, 2008). The module also enables

spatially unbiased fMRI searchlight analysis (Kriegeskorte et al.,

2006; Haynes and Rees, 2005).

For encoding models, the module offers two related options.

The first option is linear regression, using model activations to

predict brain activity patterns (Yamins et al., 2014; Naselaris et al.,

2011) (see Figure 1F), which includes Ridge Regression and stacked

encoding (Lin et al., 2024). Stacked encoding combines multiple

feature spaces through a weighted linear combination. The module

also implements veRSA (voxelwise encoding RSA), combining

encoding models with representational similarity analysis to

evaluate alignment between predicted and actual voxel patterns

(Khaligh-Razavi et al., 2017; Conwell et al., 2024). The similarity

between predicted and actual brain data provides a measure of

how well the model predicts brain activity. The second option

is variance partitioning analysis (Legendre, 2008) (see Figure 1G),

and structured variance partitioning (Lin et al., 2024), which

decomposes the variance in brain data through multiple linear

regression. These methods attribute variance to different sources,

such as various model outputs or experimental conditions. While

traditional variance partitioning helps identify which aspects of

the model align most closely with brain data, structured variance

partitioning leverages known relationships between features during

hypothesis testing, allowing for targeted questions about similarity

between feature spaces and brain regions even when feature spaces

are correlated.

The module also includes Centered Kernel Alignment

(CKA) (Kornblith et al., 2019), which measures similarity

across high-dimensional spaces. Additionally, it supports

distributional comparisons, such as Jensen-Shannon Divergence

and Wasserstein Distance, which assess the statistical alignment

between representational distributions.

In all cases, the evaluation module outputs results in a

standardized format, ensuring integration with the visualization

and plotting module.

3.6 Visualization module

Net2Brain includes plotting functionalities (see Figure 1H)

that enable users to visualize evaluation results in a publication-

ready format. Users can create bar plots to display correlation

values from the evaluation module, including noise ceilings,

statistical significance, and optionally pairwise significance for all

model layers to provide a comprehensive overview. Alternatively,

users can opt for a condensed view that highlights only

the best-performing layer, which is especially useful when

analyzing multiple models and regions of interest. For time

series data, such as EEG, similar options are available through

line plots.

4 Walkthrough through an example
application

To demonstrate how Net2Brain works, we present a walk-

through of a detailed case study. In this example, we focus on the

predictive capabilities of various Large Language Models (LLMs)

and vision transformers in modeling activity in the human visual

cortex. This is a timely topic in visual neuroscience, as LLMs

have recently and unexpectedly emerged as strong models for

high-level visual cortex activity - an alternative to the vision-

centric models traditionally used (Doerig et al., 2022; Toneva

and Wehbe, 2019; Muttenthaler et al., 2023; Schwartz et al.,

2019). Our objective with these experiments is to evaluate the

performance of different DNNs in predicting visual brain activity,

and explore which aspects of these artificial models influence their

predictive accuracy.

We chose to replicate a well-established finding in the

neuroscience literature to demonstrate the robustness and accuracy

of Net2Brain’s methods. By showing that Net2Brain can reproduce

reliable results, we aim to encourage both replication and novel

experimental designs using the toolbox.

To support this case study, we provide a step-by-step tutorial

notebook, available in the "notebooks" directory of the Net2Brain

repository, titled "Net2Brain Linear Encoding". This tutorial

guides users through each step of the process, from the initial

model selection using Net2Brain’s model taxonomy to final result

visualization and includes detailed implementation information for

those seeking a comprehensive guide.

4.1 Step 1: model selection using
Net2Brain’s taxonomy

In the first step, we leverage Net2Brain’s model taxonomy to

select suitable models for our experiment, as shown in Figure 2A.

By applying the taxonomy’s filter functions, we generate a list of

models that we further refine based on our experimental goals.

Our objective is to evaluate the performance of different LLMs in

predicting visual brain activity, so we focus on models that allow us

to assess various aspects of LLM functionality.

We start by filtering for multimodal models that process

both visual and textual inputs. This leads us to select CLIP’s
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FIGURE 2

Workflow of the example experiment conducted using Net2Brain. (A) Model Taxonomy, highlighting the selection of multimodal and language

models. (B) Dataset Selection: involves retrieving the NSD fMRI dataset, focusing on brain activations from subject 1. (C) Feature Extraction:

activations are extracted from vision and language models using images and COCO captions [with visualization from Meng et al. (2022)]. (D) Linear

Encoding: a model is trained to predict brain activity from each DNN layer across brain regions. (E) Demonstration of applying the trained models to

unseen data, comparing predicted brain activations with actual responses using Pearson correlation to assess predictive accuracy.

ViT-B/32 (Radford et al., 2021), a model equipped with dual

encoders for images and captions. CLIP’s dual-encoder architecture

offers insights into how each encoder processes its respective

input, allowing us to compare the contributions of visual and

textual information in predicting brain activity. Next, we select

two variants of the BERT encoder model that differ in their
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pre-training tasks: bert-base-uncased and bert-large-cased-whole-

word-masking (Devlin et al., 2018). The key difference lies in their

pre-training objectives: the bert-base-uncased model is trained

to predict individual masked tokens, while the bert-large-cased-

whole-word-masking model is trained to predict entire masked

words, which may consist of multiple tokens. This comparison

allows us to investigate how the different pre-training tasks,

particularly whole word vs. subword prediction, affect brain activity

prediction accuracy.

Finally, to explore a different architecture, we select GPT-2

(Radford et al., 2018), a transformer-based decoder model that

generates text by predicting the next word in a sequence. Including

GPT-2 enables us to assess whether its generative nature and

distinct architecture affect its ability to predict visual brain activity

compared to the encoder models chosen earlier.

4.2 Step 2: downloading the NSD dataset

In the second step (see Figure 2B), we identify and prepare the

relevant dataset, with Net2Brain’s dataset API facilitating access to

a diverse array of options. For this experiment, we focus on the

NSD dataset, a large collection of brain responses recorded using

7T fMRI across the cortex in response to a wide range of real world

images selected from the COCO database, which includes captions,

annotations, and segmentation masks. Due to its high quality and

extensive number of conditions, this dataset is particularly well-

suited for exploring the relationship between DNNs and the visual

brain.

We use the fMRI data of subject 1 as preprocessed for the

Algonauts Challenge 2023. This dataset consists of preprocessed

fMRI responses projected onto a common cortical surface group

template, focusing on a subset of cortical surface vertices in the

visual cortex. Each voxel’s activity was independently z-scored

for each session, and responses were averaged across repeated

presentations of the same stimuli. During the NSD experiment,

each subject viewed approximately 10,000 distinct images, each

presented three times, resulting in 30,000 image trials. The

experiment spanned 40 scan sessions, with the final three sessions

withheld for the test split of the Algonauts Project 2023 Challenge.

For this study, we have merged the fMRI data from both

hemispheres and combined data from the ventral and dorsal

pathways (V1–V3). The regions of interest for this experiment

include the early visual cortex (V1, V2, V3, hV4), which is

responsible for processing low-level visual features such as edges,

orientation, motion, and spatial frequencies. The word form

regions (VWFA-1, VWFA-2) specialize in recognizing written

words and orthographic patterns, offering insights into text-related

neural processing. The face-selective region (FFA-1) plays a key role

in face recognition, while the scene-selective region (PPA) is known

for its involvement in processing spatial layouts and scenes. These

regions provide a comprehensive view of neural responses across

different levels of visual and textual processing.

In addition to the fMRI data and stimulus images, we download

captions associated with each image sample from the COCO

database. As we focus on LLMs in this study, the captions will serve

as the stimuli for which we will extract model activations during the

feature extraction phase.

4.3 Step 3: feature extraction

After downloading the NSD dataset and selecting the

appropriate models, we proceed to the feature extraction process

(see Figure 2C) to obtain model activations. For this, we use the

feature extraction module. We provide the path to the dataset and

the names of the selected models as inputs to the feature extractor,

which then extracts features from the predefined or user-specified

layers of each model. For all models, we focus on the final layers of

key blocks within the architectures.

Net2Brain stores the extracted activations for each model layer

in individual numpy files. These files contain a dictionary where

each image ID serves as a key, with the corresponding activations

from that layer as the values. We repeat this extraction and storage

process for all selected models. The resulting files will serve as the

basis for the subsequent evaluation.

If we were using RSA, RDMs would be created from the

activations using the RDM creation module before passing them

to the evaluation module. In this example, however, we will use

linear encoding to relate model activations to brain data. Therefore,

we will use the raw activation values as inputs for the evaluation

function.

4.4 Step 4: evaluation by linear encoding

To begin the evaluation process, we load the linear encoding

module within Net2Brain, rather than the RSA or variance

partitioning module (see Figures 2D, E). The evaluation is

conducted separately for each layer of each model. We input the

extracted activations, reduced via PCA to 100 components, along

with the corresponding NSD brain data. The module splits the

image and brain data into training and testing sets, using an 80/20

train-test split across three cross-validation folds. For each fold, a

linear regression model from scikit-learn (Pedregosa et al.,

2011) is trained on the training data to map model activations

onto brain responses. It is then tested on the unseen test data. The

predictive ability of the model is assessed by computing the Pearson

correlation between the predicted and actual brain responses to the

test data, providing a quantitative measure of model performance

(see Figure 2F). This process is repeated for all selected models

and layers. Upon completion, the linear encoding module returns

a dataframe containing the results, which are ready to be visualized

in the next step.

4.5 Step 5: visualizing results

After obtaining the dataframe from the Linear Encoding

module, we use Net2Brain’s plotting module to visualize the

results. Figure 3 shows the predictive power of each layer for

the investigated models across a set of brain regions: the

early visual cortex, face-selective area FFA-1, parahippocampal

place area PPA, and visual word form areas VWFA-1 and

VWFA-2.

The visualizations reveal several key experimental observations.

First, focusing on the visual encoder of the CLIP transformer

architecture (red bars), we observe a hierarchical correspondence
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FIGURE 3

Visualization of Pearson correlation (R) across all model layers for each brain region of subject 1. Each color represents a distinct model, with darker

hues indicating earlier layers and lighter hues representing later layers. Statistically significant results (p < 0.05) are marked with an asterisk. Each

subplot corresponds to a specific region of interest, showing the correlation between model layers and brain regions. Regions include the early visual

cortex (V1, V2, V3, hV4), face-selective region (FFA-1), scene-selective region (PPA), and word form regions (VWFA-1, VWFA-2). Model labels include

“BERT” (11 layers), “BERT (word token)” (23 layers), “CLIP_Text”, “CLIP_Vision”, and ‘GPT2” (all with 11 layers).

between the human brain and the model. Specifically, low-level

visual regions are better explained by early model layers, while

high-level visual regions are better explained by late model layers.

This pattern aligns with previously observed findings (Cichy et al.,

2016; Eickenberg et al., 2017; Guclu and Van Gerven, 2015), and

suggests a parallel processing hierarchy in both human brains and

DNNs.

Second, we find that language-related models (i.e., the text

encoder of CLIP, the two BERT variants, and GPT-2) rival the

visual transformer of CLIP in predicting brain activity in high-level

visual areas. However, in low-level visual areas, the visual encoder

of CLIP outperforms the language models. Between the two BERT

variants, there is no significant difference in their performance

across the brain regions. These results are consistent with prior

research (Doerig et al., 2022; Haynes and Rees, 2005), suggesting

that the high-level ventral visual cortex conducts complex semantic

analyses of visual input, akin to the semantic content captured in

captions describing the visual stimuli.

5 Discussion

In this paper, we introducedNet2Brain, a Python-based toolbox

designed to facilitate the integration of DNNs with cognitive
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neuroscience research. Net2Brain promotes four key goals: (1)

streamlining research, (2) fostering a collaborative and integrative

research environment, (3) providing low-threshold access, and (4)

increasing the reliability and generalizability of research. Below, we

outline how Net2Brain contributes to each of these areas.

First, Net2Brain streamlines research by offering an end-

to-end solution that includes a model taxonomy to guide the

selection of appropriate models, along with feature extraction,

evaluation, and visualization modules that automate the full

workflow once parameters – such as model, dataset, metrics, and

their finer settings – are manually specified. Second, it fosters

a collaborative and integrative research environment through its

modular design, enabling researchers to use Net2Brain in its

entirety or to integrate specific components into their existing

workflows. Third, it provides easy access to a broad range of models

and offers automated access to key datasets, accelerating innovative

and interdisciplinary research, particularly for junior researchers.

By reducing technical barriers, Net2Brain allows researchers to

focus more on scientific questions rather than computational

complexities. Fourth, it enhances the reliability and generalizability

of research by providing a standardized way to test multiplemodels,

making it easier to replicate studies and assess the generalizability

of results.

Net2Brain is designed to evolve and adapt to the needs of the

research community. Ongoing development efforts aim to expand

its functionalities by incorporating additional datasets, enhancing

the processing of multimodal data and including video datasets.

We are also introducing new evaluation metrics and expanding

the toolbox’s visualization capabilities to offer deeper insights.

Additionally, more tutorials are being developed to help researchers

effectively utilize these new features.

With its modular and adaptable design, we envision Net2Brain

to be a highly valuable tool for researchers working at the

intersection of DNNs and neuroscience. Net2Brain is expected

to continuously evolve through community-driven use and

contributions, ensuring it remains aligned with the needs of the

scientific community and continues to expand its capabilities.

6 Limitations

Net2Brain provides researchers the freedom to select and

combine models for their experiments without imposing

restrictions. Although this flexibility encourages diverse

neuroscientific approaches, it also requires users to ensure

their experimental designs are conceptually sound. To support

informed choices, however, the taxonomy module provides

detailed insights into each model’s training tasks, datasets, and

methods, helping users understand the context and characteristics

of their selected models.

While Net2Brain offers a robust set of evaluation metrics,

it does not encompass every method currently available for

comparing DNNs and brain data. However, its modular design

allows users to integrate their own evaluation techniques

seamlessly. By continuously incorporating feedback from the

community, Net2Brain regularly expands its offerings, ensuring the

toolbox evolves to meet diverse research needs.

Net2Brain does not include built-in visualization tools for

projecting fMRI data onto brain surfaces, focusing instead

on facilitating comparisons between DNNs and preprocessed

brain data. Users can complement Net2Brain with specialized

visualization tools like Pycortex (Gao et al., 2015) and Nilearn

(Abraham et al., 2014).

The datasets provided through Net2Brain represent a

carefully curated subset of those available in the neuroscience

community, serving as a starting point for research and tutorials.

While not exhaustive, this collection is designed to balance

accessibility with functionality, and users can easily extend their

analyses by incorporating additional datasets tailored to their

specific needs.

While these limitations reflect the trade-offs necessary to

balance flexibility and usability, Net2Brain’s community-driven

approach ensures that it will continue to address user needs and

expand its capabilities over time.
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