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Analysis of electroencephalography (EEG) signals gathered by brain–computer

interface (BCI) recently demonstrated that deep neural networks (DNNs)

can be e�ectively used for investigation of time sequences for physical

actions (PA) classification. In this study, the relatively simple DNN with fully

connected network (FCN) components and convolutional neural network (CNN)

components was considered to classify finger-palm-hand manipulations each

from the grasp-and-lift (GAL) dataset. The main aim of this study was to

imitate and investigate environmental influence by the proposed noise data

augmentation (NDA) of two kinds: (i) natural NDA by inclusion of noise EEG data

from neighboring regions by increasing the sampling size N and the di�erent

o�set values for sample labeling and (ii) synthetic NDA by adding the generated

Gaussian noise. The natural NDA by increasing N leads to the higher micro and

macro area under the curve (AUC) for receiver operating curve values for the

bigger N values than usage of synthetic NDA. The detrended fluctuation analysis

(DFA) was applied to investigate the fluctuation properties and calculate the

correspondent Hurst exponents H for the quantitative characterization of the

fluctuation variability. H values for the low time window scales (< 2 s) are higher

in comparison with ones for the bigger time window scales. For example, H

more than 2–3 times higher for some PAs, i.e., it means that the shorter EEG

fragments (< 2 s) demonstrate the scaling behavior of the higher complexity

than the longer fragments. As far as these results were obtained by the relatively

small DNN with the low resource requirements, this approach can be promising

for porting such models to Edge Computing infrastructures on devices with the

very limited computational resources.
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1 Introduction

Recently, deep learning (DL) methods based on deep neural networks (DNNs) were
effectively used for processing different data (LeCun et al., 2015). In healthcare and elderly
care, they become very popular for processing the very complex multimodal medical data
(Chen and Jain, 2020; Esteva et al., 2019). Usage of DL is especially important in the view
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of availability of various brain–computer interfaces (BCI) used for
collection and analysis of electroencephalography (EEG) signals
generated by brain activities (Roy et al., 2019; Kotowski et al.,
2020; Lawhern et al., 2018). In the context of critically important
tasks, for example, for air-space applications, BCIs are intensively
used for the mental workload assessment on professional air traffic
controllers during realistic air traffic control tasks (Aricò et al.,
2016b,a; Di Flumeri et al., 2019).

DNNs were actively used for analysis of EEG data in a different
fields (Li et al., 2020; Aggarwal and Chugh, 2022; Zabcikova et al.,
2022) such as air-space (Aricò et al., 2016b,a; Di Flumeri et al.,
2019), medicine (Chen et al., 2022;Wan et al., 2019; Gu et al., 2021),
education (Xu and Zhong, 2018; Gang et al., 2018; Belo et al., 2021),
entertainment (Kerous et al., 2018; Gang et al., 2018; Vasiljevic
and de Miranda, 2020; Cattan, 2021), and other applications
(Zabcikova et al., 2022). Usually, components of convolutional
neural network (CNN) (Lawhern et al., 2018; Lin et al., 2020; Gu
et al., 2021; Gatti et al., 2019; Gordienko et al., 2021c), recurrent
neural networks (RNN) (An and Cho, 2016; Wang et al., 2018b;
Pancholi et al., 2021; Kostiukevych et al., 2021), and other including
components of fully connected networks (FCN) (Gordienko et al.,
2021c; Kostiukevych et al., 2021) are used in them. These models
combine some methods of EEG feature extraction with the use of
various filters and show significant improvement of performance
in comparison with other models. For instance, 3D CNN model
based on multi-dimensional feature combination improves the
classification accuracy of sensorimotor area activated tasks in the
brain (Wei and Lin, 2020). Some of the DNNmodels demonstrated
their quite high efficiency on some tasks such as sleep stage
classification, stress recognition, fatigue detection, motor imagery
classification, emotion recognition, and emotion classification (Gu
et al., 2021). As to the domain operator-specific scenarios, some
interesting results were obtained for EEG hand movement force
and speed forecasting with the accuracy > 80% (Gatti et al., 2019)
and the conflict prediction accuracy≈ 60% (Vahid et al., 2020).

Some hybridization approaches become popular recently. For
example, CNN components combined with RNN components
(including long short-term memory (LSTM) blocks) were
investigated recently to resolve action classification problem.
For instance, various RNN architectures were compared in
performance for identifying hand motions for GAL dataset from
EEG recordings (An and Cho, 2016; Kostiukevych et al., 2021) and
for AJILE dataset (Wang et al., 2018b).

As it is well-known in computer vision, for example, for image
classification tasks, data augmentation (DA), in general, and noise
data augmentation (NDA), in part, can improve the performance
of DNNs. Various strategies for applying DA methods to EEG
data were considered recently that allow to improve classification
accuracy when the limited volume of the data is available (George
et al., 2022). NDA methods can be performed by adding Gaussian
noise (Cecotti et al., 2015; Freer and Yang, 2020; Gordienko et al.,
2021c) or by creating synthetic EEG data (Zhang and Liu, 2018;
Aznan et al., 2019; Fahimi et al., 2020). The similar numerous
NDA-related approaches were proposed (Freer and Yang, 2020;
Gordienko et al., 2021c; George et al., 2022), and many others were
reviewed recently in several surveys (Rommel et al., 2022; Lashgari
et al., 2020; Talavera et al., 2022).

Although the results are promising and intriguing, their
statistical reliability remains uncertain due to potential external
influences under real-world conditions. That is why the main of
this study was to imitate and investigate environmental influence
by the proposed NDA of two kinds: (i) natural NDA by inclusion
of noise EEG data from neighboring regions by increasing the
sampling size N and the different offset values for sample labeling
(see details below) and (ii) synthetic NDA by adding the generated
Gaussian noise.

It should be noted that DA is a widely used technique that
enhances a model’s ability to generalize by making it more robust to
variations in input data. Common DA methods include geometric
transformations, noise-based modifications (such as roughening,
adding, or mixing), and generative approaches. However, in EEG
analysis, geometric transformations such as scaling, rotation, and
reflection are not directly applicable. Unlike structured tables,
text, or images, EEG signals are continuous and vary over
time. Even after feature extraction, they remain time series data.
Applying geometric transformations, such as rotation, to EEG
signals would disrupt their temporal structure, compromising their
meaningful features.

Among various ways for adding noise to the EEG signals in
purpose of DA Li et al. (2019); Parvan et al. (2019); Ko et al. (2021);
Sun and Mou (2023), the following are of great interest due to their
intuitive understanding:

• inject various types of noise (such as uniform, Gaussian,
Poisson, salt, and pepper noise, and various color noise
types) with different parameters (for instance: mean and
standard deviation).

• manipulate the time segment of interest by
shifting/adding/cropping/combining operations with
including/subtracting the information about background
and signal.

• synthesize the signal by encoding/decoding and
generative approaches.

Like geometric transformation methods, noise addition-based
DA has been widely applied in successful DL studies for CV
(Simonyan and Zisserman, 2014; He et al., 2016). This approach
enhances DA by introducing randomly sampled noise values into
the original data. Injecting structured noise patterns (e.g., white
Gaussian or pink noise) with a specific signal-to-noise ratio (SNR)
can alter the spectral characteristics of a time series by introducing
additional frequency components to the signal spectrum (Borra
et al., 2024).

In the context of DA for EEG, numerous studies were
performed to investigate the impact the noise-induced DA for EEG.
Some of the recent results are shortly summarized in Table 1.

DA by Gaussian noise involves adding Gaussian white noise
to recorded EEG signals (Wang et al., 2018a). In practice, a
perturbation E(t) ∼ N(0, σ 2) is independently sampled for each
channel and acquisition time and added to the original signal X,
resulting in the augmented data: [X](t) = X(t) + E(t) Here, σ

represents the standard deviation of the noise distribution. This
parameter determines the magnitude of the transformation as
larger values lead to greater distortion of the original signal. The
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TABLE 1 Examples of EEG classification studies (“Reference” column) with noise-based DA with various noise parameters (“Noise Type”) on some

standard or custom datasets (“Dataset Reference”) with the di�erent numbers of classes (“Nc”), neural network architectures (“NNA”), and the reported

improved accuracy (“Accuracy, (%)”) by absolute values or changes (denoted with + sign).

References Noise Dataset Nc NNA Accuracy (%)

Gaussian White Noise

Zhang et al., 2017 NA custom (Zhang et al., 2017) 4 CNN 97.5

Behncke et al., 2018 NA KPO (Behncke et al., 2018) 2 ConvNet 75±9

Behncke et al., 2018 NA RGO (Behncke et al., 2018) 2 ConvNet 62±7

Lashgari et al., 2021 N(0, set) BCI C 2008 2a (Brunner et al., 2008) 4 CNNwA 93.6≥ 91.57

Lashgari et al., 2021 N(0, set) BCI C 2008 2b (Leeb et al., 2008) 2 CNNwA 87.83≥ 87.60

George et al., 2022 N(0, cmean) custom (Cho et al., 2017b) 4 CNN 78.30-86.51≥ 77.73

George et al., 2022 N(0, cmean) EEG-BCI (Kaya et al., 2018) 2 CNN 81.74-83.01≥ 80.73

Tunnell et al., 2022 N(0, 1) DEAP (Koelstra et al., 2011) 2 EEGNet 77.16≥ 66.30

Wu et al., 2022 N(0, set) SleepEDF (Kemp et al., 2000) 5 neuro2vec 86.53≥ 85.49

Wu et al., 2022 N(0, set) Epilepsy (Andrzejak et al., 2001) 2 neuro2vec 44.30≥ 40.24

Wu et al., 2022 N(0, set) Ninapro (Pizzolato et al., 2017) 18/40 neuro2vec 86.69≥ 84.32

Gou et al., 2022 NA BCI-CRC-WRC (Pizzolato et al., 2017) 3 EEGNet 54.72≥ 48.34

Collazos-Huertas et al., 2023 NA GigaScience (Cho et al., 2017a) 10 EEGNet+ScoreCam 78.2≥ 69.7

Lopez et al., 2023 N(0,MW) MAHNOB-HCI (Soleymani et al., 2011) 3(a) HyperFuseNet 41.56≥ 40.90

Lopez et al., 2023 N(0,MW) MAHNOB-HCI (Soleymani et al., 2011) 3(v) HyperFuseNet 44.30≥ 40.24

Ashfaq et al., 2024 N(0, 0.01) CogAge (Nisar et al., 2020) 7 MHyCoL +5, +30

Ashfaq et al., 2024 N(0, 0.01) UniMiB-SHARMicucci et al., 2017 17 MHyCoL +5, +30

Lee et al., 2024 NA BCI C 2020 (Jeong et al., 2022) 6 DeiT +0.49 . . . 10.57

Cai et al., 2024 N(set, set) custom (Cai et al., 2024) 6 CNN 85.2≥ 58.6

Wang et al., 2024 NA OpenBMI (Lee et al., 2019) 2 MRCNN 82.47≥ 79.45

Wang et al., 2024 NA SingleArmMI (Wang et al., 2024) 4 MRCNN 43.19≥ 37.36

Falaschetti et al., 2024 N(0, 0.03) custom (Falaschetti et al., 2024) 6 LSTM 95.2

Borra et al., 2024 NA 9 MOABB sets (Jayaram and Barachant, 2018) 2/4 SpeechBrain-MOABB +14. . . 25.2

Cho et al., 2017b NA custom (Cho et al., 2017b) 3 CNN 93–95

Ouyang et al., 2024 NA custom Brainlink (Ouyang et al., 2024) 4 BRIEDGE 98.78≥ 98.07

Ouyang et al., 2024 NA custom EyeState (Ouyang et al., 2024) 2 BRIEDGE 92.51≥ 84.75

Ouyang et al., 2024 NA custom BCI-2000 (Ouyang et al., 2024) 4 BRIEDGE 66.02≥ 56.05

Ouyang et al., 2024 NA custom Hybrid (Ouyang et al., 2024) 10 BRIEDGE 86.50≥ 63.72

Uniform noise

Freer and Yang, 2020 [–0.5,5] scaled BCI C IV (Tangermann et al., 2012) 4 CNN +5.3

Various noise types (uniform, white, pink, impulse)

Sun et al., 2024 NA Multi-dataset (Sun et al., 2024) 3 CNN+GCN+Transf 96.7,93.3,93.3

[1] NA, the noise parameters were not detailed (not available) in the studies.

[2] set, the set of various values was investigated.

[3] cmean , the Gaussian noise is generated with zero mean and standard deviation equal to the class mean.

[4]MW, the Gaussian noise signal with zero mean is added to each sample, with its standard deviation being computed modality-wise (MW).

[5] (a), (v), two classification schemes: (a) - the arousal scheme (3 classes: calm, medium aroused, and excited), (v) - the valence scheme (3 classes: unpleasant, neutral valence, and pleasant).

primary motivation for this DA is to enhance model robustness
against noise in EEG recordings, which are known to have a
limited SNR. Gaussian noise augmentation is controlled by the
parameter σ , which dictates the standard deviation of the sampled
noise. Selecting an appropriate σ value is as crucial as choosing

the DA method itself. For example, when σ exceeds 0.2, EEG
signals become excessively noisy, making the DA systematically
detrimental to learning (Rommel et al., 2022).

For instance, spectrogram images of motor imagery EEG have
been augmented by introducing Gaussian noise (Zhang et al.,
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2020). White noise manifests as random fluctuations uniformly
distributed across all frequencies in the EEG signal. It can originate
from various sources, including thermal noise in EEG equipment,
sensor artifacts, or external electrical interference. This noise
reduces the SNR, making it challenging to discern neural patterns
and potentially masking true neural activity. The effect is especially
problematic for low-amplitude signals, such as those originating
from deep brain regions.

Another method for increasing data diversity involves injecting
random matrices into the raw data, typically sampled from
Gaussian distributions (Okafor et al., 2017). Gaussian noise
injection applies a randomly generated matrix from a Gaussian
distribution to the original data as a form of DA. While these
methods are straightforward and intuitive, they can sometimes
exacerbate model overfitting due to the high similarity between
the original and augmented data. In particular, several studies have
augmented EMG signals by adding Gaussian noise to the original
dataset and adjusting the SNR (Atzori et al., 2016; Zhengyi et al.,
2017; Tsinganos et al., 2018).

Another study uses injecting random Gaussian noise generated
based on the statistical properties of the data. The mean value of
trials for the target class is computed; then, Gaussian noise with a
zero mean and a standard deviation equal to the class mean (cmean

in Table 1) is generated. This noise is added to randomly selected
trials to create artificial frames. This simple yet effective method
preserves the original waveform characteristics while introducing
slight numerical variations across trials (George et al., 2022).

In other studies, DA has proven effective in addressing the
challenge of limited learning caused by small training sets in
EEGNet, leading to significant improvements in classification
accuracy. As a result, the data were expanded by a factor of three,
and the standard deviation of the added Gaussian noise was set to
0.1 (Cai et al., 2024).

The modality-wise approach was proposed in Lopez et al.
(2023), where the Gaussian noise signal with zero mean is added to
each sample, with its standard deviation computed modality-wise
(MW in Table 1), ensuring that the augmented signal achieves a
signal-to-noise ratio (SNR) of 5dB.

In addition to Gaussian noise, various types of colored noise
can also be present in EEG signals due to physiological and
environmental factors. These noise types typically manifest as
interference, distorting the true brain activity and complicating
accurate analysis and interpretation. Below are some examples of
how different types of colored noise may appear in EEG signals of
brain activity:

Pink noise (1/f noise) is characterized by greater power at lower
frequencies, with a gradual decrease in power as the frequency
increases. This type of noise can naturally arise from brain activity,
particularly during resting states, or be introduced by background
physiological processes such as muscle activity or skin potentials.
Pink noise can dominate low-frequency bands, potentially masking
slow-wave oscillations that are crucial for sleep studies or resting-
state EEG analysis.

Brown (red) noise displays even more power at lower
frequencies than pink noise, with a steeper decline as the
frequency increases. It can arise from long-term drift in
electrode potentials or baseline shifts in the EEG signal,

often caused by environmental factors that affect the EEG
setup. This results in large, slow oscillations that can dominate
the EEG trace, potentially masking lower-frequency brain
rhythms. While Gaussian (white) noise is frequently applied,
the specific use of brown noise has not been widely explored
in the literature, but exploring brown noise injection could
potentially offer new avenues for enhancing EEG data
augmentation techniques.

Blue noise is characterized by an emphasis on high frequencies,
manifesting as rapid, small-amplitude fluctuations in the signal.
It can originate from high-frequency environmental interference,
such as electronic devices or power lines, or from muscle activity,
including micro-movements of the scalp or jaw. This type of noise
can mask high-frequency neural signals, such as gamma rhythms
(30–100 Hz), and may lead to false-positive detections in high-
frequency analyses.

Violet noise is an extreme form of high-frequency noise,
with a stronger emphasis on higher frequencies than blue noise.
It can be caused by electronic interference within the EEG
system, such as sudden changes in electrode contact, such as
detachment or movement. This noise can introduce sharp spikes
or rapid fluctuations that resemble artifacts, potentially disrupting
the analysis of high-frequency components, such as event-related
potentials (ERPs).

In some studies, several types of noises (in addition to white
Gaussian noise) were investigated (Tangermann et al., 2012; Sun
et al., 2024). To increase the number of training samples and
address the variability and randomness of EEG signals, several noise
DA strategies were implemented (Sun et al., 2024). Specifically,
the noise DA strategies were adopted to enhance EEG data by
simulating various noise sources that may be encountered in real-
world environments. The types of noise applied were: (1) uniform
noise, (2) Gaussian noise, (3) pink noise, (4) impulse noise, and (5)
power-line noise. These noise types were randomly incorporated
into the processed clean EEG signals at different proportions
(ranging from 10% to 70% of the average amplitude of the EEG
signal), thus generating a greater number of training samples.
These DA strategies not only enhance the model’s robustness to
existing noise in the original signals but also improve the model’s
generalization capabilities in the presence of unknown noises. The
introduction of noise through DA strategies has a positive effect
on model training, particularly with Gaussian and pink noise. This
suggests that such disturbances are prevalent in real EEG data as
the noise-augmented strategies enhance the diversity of the samples
and the generalization ability of the model. Overall, as the intensity
of the added noise increases, both pink noise and Gaussian noise
initially decrease and then increase the model prediction error. The
optimal results are achieved when noise is added at 30% of the
average signal intensity.

In the field of DA for EEG, the use of random shifts has been
explored to some extent. However, dataset shift (where the data
distribution during inference differs from that during training)
is common in real biosignal-based applications. To enhance
robustness, probabilistic models with uncertainty quantification
are adapted to assess the reliability of predictions. Despite this,
evaluating the quality of the estimated uncertainty remains a
challenge. Recently, the framework was proposed to assess the
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ability of estimated uncertainty to capture various types of
biosignal dataset shifts with different magnitudes (Xia et al., 2022).
Specifically, three classification tasks were used that were based on
respiratory sounds and electrocardiography signals to benchmark
five representative uncertainty quantification methods. Extensive
experiments reveal that, while Ensemble and Bayesian models
provide relatively better uncertainty estimates under dataset shifts,
all the tested models fall short in offering trustworthy predictions
and proper model calibration. In another study, time-axis shifts
of EEG trials were applied to generate artificial signals for DA
purposes (Sakai et al., 2017). Again, the effectiveness of such
geometric transformations is debated. Given the non-stationary
nature of EEG signals, transformations like shifting may interfere
with inherent features, potentially corrupting the data (Kalashami
et al., 2022). Thus, while random shifts have been used in DA
for EEG, their effectiveness continues to be a subject of ongoing
research and discussion.

Another approach to applying DA for EEG involves noise
injection through the inclusion of neighboring regions and other
manipulations with data. A recent study utilized such DA strategies
to address the challenge of small sample sizes. Specifically,
translations and vertical flip operations were employed to capture
a broader range of temporal information. The data were extracted
from 0 to 500 ms after stimulation and then translated. Five time
points within the first 200 ms after stimulus onset were randomly
selected, and data from 500 ms later were collected. This method
increased the dataset size 6-fold. Subsequently, the data were
flipped by taking the opposite value of the augmented data, further
expanding the dataset to 12 times its original size (Gou et al., 2022).

Similarly, other research efforts explore different data
augmentation strategies, including Generative Adversarial
Networks (GANs) and Variational Autoencoders (VAEs), to
generate synthetic EEG data for training (Habashi et al., 2023;
Ibrahim et al., 2024).

GANs, initially introduced for image generation, have also
shown promise as a potential DA solution for EEG. GANs and
their variants generate artificial data by training two competing
networks: a generative network and a discriminative network.
The generative network takes random noise from a predefined
distribution (e.g., Gaussian) and attempts to create synthetic data
that resemble real samples, while the discriminative network
is trained to differentiate between real and synthetic data.
Through adversarial training, the generative network progressively
improves, ultimately producing highly realistic EEG signals (Zhang
et al., 2021; Bao et al., 2021; Carrle et al., 2023; Ibrahim et al., 2024).

VAEs offer another approach to generating synthetic EEG
data. Like a conventional autoencoder, a VAE consists of an
encoder that transforms raw data into a latent representation and
a decoder that reconstructs the data from this latent space. To
generate new samples, the VAE randomly samples points from the
learned latent distribution and passes them through the decoder,
which reconstructs them into novel data. Both GANs and VAEs
generate new samples indirectly by learning meaningful latent
representations of the original data (Bao et al., 2021; Sun and Mou,
2023).

The proposed study contributes to investigation of novel
approaches for noise-based DA for EEG classification with
emphasis on influence of adding the randomly generated artificial

noise and the natural noise created by inclusion of neighboring
EEG data segments. This exploration is crucial as it could reveal
and compare how artificial and natural noise DA can impact
EEG classification performance for various noise DA parameters,
for example, with increased sample size, varied offsets, etc. It is
especially important for lightweight DNN architectures, designed
for Edge Intelligence setups, to ensure efficient EEG processing with
minimal computational resources, advancing biologically relevant
and computationally efficient DA methods.

For effective application of noise-based DA methods, a clear
understanding of the characteristics and sources of these noise
types in real-world scenarios is necessary. That is why this study
is limited to the simplest noise types that can be intuitively
understandable and potentially interpreted. This study aims to
provide a thorough understanding of noise-based DA by Gaussian
noise injection to mimic random fluctuations evenly distributed
across all frequencies in the EEG signal that can be caused by
the environment.

The methods of statistical analysis and detrended fluctuation
analysis (DFA) are widely used to investigate the fluctuation
properties of the measured metrics and calculate the correspondent
Hurst exponents (Hurst, 1956). For this purpose, the relatively
small DNN [that was described and analyzed in details in
Gordienko et al. (2021c)] with components of FCNs and CNNs
was considered to classify physical activities (namely, hand
manipulations) from the grasp-and-lift (GAL) dataset (Luciw et al.,
2014; Kaggle, 2020). The special attention was paid to the analysis of
the previous, mid- and post-action segments of the corresponding
brain activity to anticipate them before the start of the action.

Finally, this study is targeted on investigation of EEG data
collected by BCI to resolve classification problem for some physical
activities (namely, hand manipulations) by the relatively simple
DNN. The DNN was applied for analysis of preliminary (prior-
activity), current (in-activity), and following (post-activity) parts
of the relevant brain EEG signals. This problem is very important
in the view of complex practical conditions where EEG activity
can be disturbed by other physiological activities and, especially,
external environmental noise. On the one hand, such disturbances
can worsen the classification performance but, on the other hand,
in reverse can improve it if it will be used during training as data
augmentation (DA) technique.

2 Materials and methods

In this section, several important experimental aspects are
explained: the dataset with EEG brain activities for six types of
physical activities, structure of the model, metrics, workflow, and
data augmentation techniques.

2.1 Dataset

In this study, the open “grasp-and-lift” (GAL) dataset is used
that contains information about brain activity of 12 persons (Luciw
et al., 2014; Kaggle, 2020): more than 3,900 trials (monitored and
measured by the sampling rate of 500 Hz) in 32 channels of the
recorded EEG signals. The person tries to perform six types of
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FIGURE 1

Timeline of physical actions: trigger channel vs. time.

physical activities, namely: “HandStart”—moves hand to an object
(for example, some gadget), “FirstDigitTouch”—touches the object
by finger (for example, press a button), “BothStartLoadPhase”—
takes (“grasps”) the object by fingers, LiftOff—raises (“lifts”) the
object by fingers, Replace—returns the object by fingers back,
BothReleased–releases fingers. The data from GAL dataset were
previously processed in a standard way (Kostiukevych et al., 2021;
Gordienko et al., 2021c) with taking into account the correspondent
time position of physical actions (actually hand movements here)
and their duration (Figure 1).

It should be emphasized that these kinds of physical activity
can be naively divided in three parts depending on the feasibility
of their classification: the easiest (HandStart), medium (LiftOff,
Replace, and BothReleased), and hardest (BothStartLoadPhase
and FirstDigitTouch) classification. But BothStartLoadPhase and
FirstDigitTouch activities strongly overlap in this experiment and
that is why hardly can be recognized as separate activities (this is
planned to be fixed by collection of the original data in the same
fashion in our future research).

As a part of an explanatory data analysis (EDA), visualizing and
analyzing the experimental EEG data from GAL dataset (Gramfort
et al., 2013) was performed by means of MNE open-source Python
(Gramfort et al., 2013). For example, all EEG data measured by the
BCI-sensors with their predefined spatial position can be plotted as
subtopomaps of an evoked potential trough timeline (Figure 2).

2.2 Models

From subtopomaps of an evoked potential trough timeline
(Figure 2), one can evidently see the complex distribution of
EEG sifgnals over scalp. As far as EEG signals interfere with
each other due to their electromagnetic nature (Figure 2), the
combinations of the data channels can be effectively used for
their processing on the basis of FCN, CNN, and RNN like it was
demonstrated in our previous studies (Gordienko et al., 2021c;
Kostiukevych et al., 2021). In this research, the relatively small
“vanilla” DNN (Gordienko et al., 2021c) was used here. The
main motive for the usage of CNNs was to use convolution
operations inside an EEG time sequence of each EEG channel

where all 32 EEG channels were considered to be independent
ones. Then, the workflows from 32 EEG channels were combined
in fully connected dense layers and then transmitted to the
classification layer. The idea is to use 1D convolution operations
across all 32 EEG channels for each time step. The mentioned
“vanilla” DNN contains three convolutional layers [with 32
filters and kernel (3,1); 64 filters and kernel (5,1); 128 filters
and kernel (7,1)] followed by batch normalization and max
pooling layers with pool kernel (2,1) with dropout (0.1) and
FCN layers.

2.3 Metrics

Several standard metrics were used such as accuracy and
loss that were calculated during validation phase of the model
learning with checkpointing states for the minimal value and
maximal value of loss and accuracy, respectively. In addition, the
area under curve (AUC) was measured for receiver operating
characteristic (ROC) with their micro and macro versions, and
their mean and standard deviation values. It is important because
for the given threshold, the accuracy measures the percentage of
objects correctly classified, regardless of which class they belong
to. As far as AUC is threshold-invariant, AUC can allow us to
measure the quality of the models considered here independently
from the selected classification threshold. The AUC can consider
various possible thresholds and can provide the wider range of
the classifier performance. During validation phase, the models
with the best accuracy and loss values were saved for the testing
phase. For smooth line fitting by locally weighted polynomial
regression method (LOWESS) (Cleveland et al., 2017) using
weighted least squares, giving more weight to points near the
point whose response is being estimated and less weight to points
further away.

To investigate the high level of the fluctuations of the measured
metrics, that was observed in our previous studies, DFA (detrended
fluctuation analysis) was applied here. DFA was proposed to study
some memory effects in sequences of the complex biological
structures (Peng et al., 1993). During the last decades, it was
successfully used in investigation of sequences by means of
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FIGURE 2

Topographic maps of specific time points of evoked data (from 32 EEG channels) for the considered physical actions: (A) HandStart, (B)

FirstDigitTouch, (C) BothStartLoadPhase, (D) LiftO�, (E) Replace, and (F) BothReleased actions.

the scaling properties of the fluctuation function F(n) of non-
overlapping time intervals of length n. F(n) is expected to scale as
nH , where H is the Hurst exponent (Hurst, 1956).

2.4 Workflow and data augmentation

The training, validation, and testing stages of the whole
workflow (Figure 3) for the proposed simple DNN model were
applied for the single epoch only, because the main aim was not
the highest possible performance, but feasibility analysis of reliable
classification under induced noise. The introduced noise was of
two kinds: (i) natural NDA by inclusion of noise EEG data from
neighboring regions by the different offset values (see details below)
and (ii) synthetic NDA by adding the generated Gaussian noise.

During each training iteration, the callbacks were organized to
save the best models (with the highest accuracy and lowest loss) for
the subsequent testing stage. The number of signal samples (N) in
each Input EEG time Sequence (IS) was in the range from 100 to
2,000. These ISs were collected in a random way from the whole
timeline of the experimental EEG data.

To mimic the natural NDA, the labels of physical activities for
each IS were defined by ground truth (GT) values in the following
three locations: at the beginning, medium, and end moment inside
IS. These positions were denoted by the offset values, for example,
if offset = 0, then label (IS) = GT (beginning); if offset = 0.5,
then label (IS) = GT (medium); if offset = 1, then label (IS) =
GT (end). Actually, it allowed us to get the GT labeling without
neighboring regions without the correspondent physical action
(offset = 0.5), GT labeling with some neighboring regions after
the correspondent physical action (offset = 0), and GT labeling
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FIGURE 3

Main stages of the whole workflow.

with some neighboring regions before the correspondent physical
action (offset = 1). Actually, GT labeling with offset = 0 and offset =
1 provides inclusion of some natural EEG noise after and before
the actual physical action. Of course, EEG activity related to the
physical action signal (PAS) can take place before and after the
actual physical action, but the increase of the number of signal
samples (N) can lead to the PAS-to-noise ratio (PAS-NR) decrease
and imitate the higher influence of the natural noise.

Under these conditions, the training, validation, and testing
stages were independently done in an iterative way for 20 values
of N with the step of 100. Finally, N values were obtained in
the range from 100 to 2,000 that resulted in 20 iterations of
training, validation, and testing phases. For each instance of N,
the dataset was distributed in approximate proportion of 82% (≈
300 examples)/9% (≈ 300 examples)/9% (≈ 300 examples) for
training/validation/testing sets, respectively. As a result, 20 trained
models were obtained for each iteration (one model per each input
sequence with N values); then, 20 sets of metrics, including AUC,
and its micro andmacro versions, were calculated and plots of these
metrics vs. N were constructed (see below).

3 Experimental

3.1 DNN training/validation/testing stages

During EDA stage, the GAL data were preprocessed in
the standard way described in details in our previous studies

(Gordienko et al., 2021c; Kostiukevych et al., 2021). In Figure 2,
the topographic maps of specific time points of evoked data (from
32 EEG channels) for some physical actions (FirstDigitTouch and
LiftOff) are shown. Here, the most characteristic parts of EEG
signals and their spatial distributions over a scalp are shown for the
better understanding the very complex details of EEG brain activity.

As it was demonstrated before (Gordienko et al., 2021c;
Kostiukevych et al., 2021), some physical actions (such as
HandStart) are followed by very pronounced patterns with the
local minimums and maximums, while many others (such as
BothStartLoadPhase, LiftOff, Replace) are hardly recognizable by
unique patterns. In addition, it should be noted for several actions
(such as HandStart, and especially Replace and BothReleased) that
significant brain activity is started some milliseconds before the
correspondent movements, but it is quite dubious tomake the same
statement about other actions in the view of the unrecognizable
different patterns. The main idea of this study is based on our
previous studies (Gordienko et al., 2021c; Kostiukevych et al.,
2021) and consists in the hypothesis that relatively small DNNs
even can classify the EEG patterns of the currently undergoing
physical actions in the presence of some induced noise even, but
the additional aspects include the investigation of impact induced
by natural and synthetic kinds of noise.

At testing stage, AUC values were measured (dotted lines in
Figure 4) and their smoothed fits were obtained by LOWESS-
method (solid lines in Figure 4). For various actions and
offsets, AUC values (Figure 4) demonstrate the high intensity of
fluctuations with increase of N that can be explained by the
influence of the non-relevant (to the current physical activity)
regions of the increased time sequence under investigation
(imitating the natural noise addition).

3.2 Noise data augmentation

The effect of the natural noise addition (by offsets 0 and 1
with various levels by increasing N) can be observed by calculation
of the correspondent macro AUC (Figure 5A) and micro AUC
(Figure 5B) values. It is evident that offsets 0 and 1 lead to the
lower micro and macro AUC values in comparison with the GT
labeling by offset = 0.5, and the AUC decrease is higher for the
higher N values.

To investigate stability of the results obtained, the additional
artificial “synthetic” NDA as the values generated with mean = 0
and different standard deviations σsynth (such as 0.001, 0.01, 0.1, and
0.2) was applied to the original normalized data (Figure 6).

Calculation of maximal (Figure 7), mean (Figure 8), minimal,
and range (Figure 9), and standard deviation (Figure 10) of AUC
values was performed for the different offset values and synthetic
noise σsynth values.

From the results obtained, the similar tendency can be observed
for all actions: maximal AUC values (Figure 7) are higher for offset
= 0.5 than for other offset values (0 and 1) and significantly bigger
than standard deviation values. The maximal AUC values for offset
= 0 are slightly higher than for offset = 1, but these differences
cannot be considered as statistically significant and they are in the
limits of standard deviation values.
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FIGURE 4

Comparison of AUC values as a function of the number of samples for the di�erent physical actions (dotted lines) and their smoothed fits by

LOWESS-method (solid lines) for the o�sets imitating the natural noise addition: (A) 0, (B) 0.5, and (C) 1.
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FIGURE 5

Comparison of macro (A) and micro (B) AUC values as a function of the number of samples for the di�erent o�set values (colors) without the

synthetic noise (dotted lines) and with the synthetic noise σsynth = 0.2 (solid lines).

ThemeanAUC values (Figure 8) are evenmore higher for offset
= 0.5 than for other offset values (0 and 1) and significantly bigger
than standard deviation values also. The mean AUC values for
offset = 0 are even more higher than for offset = 1, but again these
differences cannot be considered as statistically significant and they
are in the limits of standard deviation values.

On the contrary, the range AUC values (Figure 9), which are
differences between maximal and minimal AUC values, are lower
for offset = 0.5 than for other offset values (0 and 1), and these
differences are significantly bigger than standard deviation values.
Similarly, the range AUC values for offset = 0 are lower than for
offset= 1, and these differences are also statistically significant and
beyond the limits of standard deviation values.

As it was seen from the previous Figure 9, the standard
deviation AUC values (Figure 9) are significantly lower for offset=
0.5 than for other offset values (0 and 1). Similarly, the standard
deviation AUC values for offset = 0 are significantly lower than
for offset= 1.

To analyze the metrics for the steady region for N in the
range from 1,000 to 10,000 samples, AUC (mean ± stdev) values
were calculated (Table 2) along with the other metrics such as
maximal AUC values and ranges (differences between maximal
and minimal AUC values) (Table 3). The bold font in Table 3
denotes the highest values for the same level of σsynth, and the
italic font does the lowest ones. HandStart action demonstrates the
highest AUC values, and FirstDigitTouch and BothStartLoadPhase
demonstrates the lowest ones. The important aspect is that for
different actions, implication of the natural noise (presented by
offsets) leads to the different consequences. For example, Replace
and BothReleased actions have the lowest AUC decrease and
highest AUC values for offset 0. As a possible explanation for
these results, Replace and BothReleased actions can have the higher
PAS-NR (in comparison with other actions) for offset 0 because
of the more EEG activity for “after” (post-process) part of the
relevant sampling. At the same time, mediocre performance for
FirstDigitTouch and BothStartLoadPhase can be explained by their
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FIGURE 6

Comparison AUC values as a function of the number of samples for the di�erent o�set values (colors) without the synthetic noise (A) and with the

synthetic noise σsynth = 0.2 (B).

coincidence in time (see Figure 1) that is the real drawback of the
GAL dataset used.

3.3 Detrended fluctuation analysis

Detrended Fluctuation Analysis (DFA) (Peng et al., 1993, 1995;
Bianchi, 2020) was applied to analyze fluctuations of AUC values
and the correspondent Hurst exponent values after eliminating
the temporal trend (Figure 13). For the time sequences, the
Hurst exponent value (H) can indicate whether a process is
persistent or anti-persistent, but here the Hurst exponent is used
for the other purpose, namely, for quantitative estimation of
fluctuations svariability.

In general, the Hurst exponent, H, is intrinsically related to the
fractal dimension, which quantifies the “roughness” or variability
of a time series (Hurst, 1956). Specifically, the value of H provides
insight into the degree of smoothness in the data: Sequences
that exhibit greater variability and are more irregular (i.e., more
jagged) are associated with lower values of H, approaching zero.

Conversely, smoother sequences yield values of H closer to
one. This relationship between H and the fractal dimension is
instrumental in characterizing the long-term dependence and self-
similarity in stochastic processes. The Hurst exponent can also
characterize a process (Bianchi, 2020) depending on the range of
the measured values: H in the range [0.0, 0.5) corresponds to a
very noisy process; the value H = 0.5 relates to uncorrelated
process; H in the range (0.5, 1.0] relates to persistency where long-
range correlations and relatively little noise can be observed; and
H > 1.0 characterizes a non-stationary process with stronger
long-range correlations. The correspondent open-source Python
package “fathon” was used for DFA and further analysis of metric
fluctuations (Bianchi, 2020).

4 Discussion

The results obtained show that different actions can be classified
with the quite different reliability. The different kinds of physical
activity take the different level of physical activation and the
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FIGURE 7

Comparison of maximal AUC values as a function of the number of samples for the di�erent o�set values (colors) without the synthetic noise (A) and

with the synthetic noise σsynth = 0.2 (B). The error bars denote the standard deviation values.

correspondent EEG activity, for example, HandStart (fingers, palm,
forearm, and shoulder are activated) includes involvement of
more limbs than LiftOff (fingers, palm, and forearm) and Replace
(fingers, palm, and forearm), and even more than BothReleased
(several fingers and palm), BothStartLoadPhase (two fingers), and
FirstDigitTouch (one finger). It should be noted that the observed
performance of classification demonstrates some correlation where

the higher performance by AUC (Figure 4) corresponds to the
more pronounced physical activity in the following order from
the highest AUC values to the lowest ones: HandStart →

LiftOff → Replace → BothReleased → BothStartLoadPhase →

FirstDigitTouch (Figure 4).
In addition, for N values in the range [100, 1,500], HandStart

action demonstrates the asymmetric behavior with regard to the
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FIGURE 8

Comparison of mean AUC values as a function of the number of samples for the di�erent o�set values (colors) without the synthetic noise (A) and

with the synthetic noise σsynth = 0.2 (B). The error bars denote the standard deviation values.

offset values 0 and 1 (Figure 4C), namely: AUC values grows much
faster with N for offset = 1 (the dotted and smoothed red lines in
Figure 4A) than for offset = 0 (the dotted and smoothed red lines
in Figure 4C). It means that the related brain activity measured
as “before” (pre-process) part of the correspondent EEG time
sequences is more pronounced than “after” (post-process) part. As
a result, this phenomenon allows us to classify HandStart before

the actual physical action even as it was assumed in our previous
studies (Gordienko et al., 2021c,b; Kostiukevych et al., 2021). It is in
contrary to the kinds of activities that demonstrate similar behavior:
similar growth of AUC values for N values in the range [100, 1,500]
the offset values 0 and 1, and decay for N > 1500.

In general, AUC values are higher for the offset value 0.5 (in
comparison with the offset values 0 and 1), steadily for N values in
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FIGURE 9

Comparison of range AUC values as a function of the number of samples for the di�erent o�set values (colors) without the synthetic noise (A) and

with the synthetic noise σsynth = 0.2 (B). The error bars denote the standard deviation values.

the range [100, 1,500] and nearly constant for N > 1, 500 for all
kinds of activities (Figure 4B) as it was also shown in our previous
studies (Gordienko et al., 2021c; Kostiukevych et al., 2021). That is
why labeling by the offset of 0.5 seems to be the more significant for
the classification problem. It should be noted that the uncertainty
of AUC values estimated as their standard deviations decreases
with an increase of N up to N = 2, 000 for offset = 0.5 and up

to N = 3, 000 for offset = 0 and offset = 1. It should be noted
the visually very pronounced fluctuations of all these metrics with
N can be explained by the influence of the non-relevant (to the
current physical activity) regions of the increased time sequence
under investigation.

It should be noted that application of the natural NDA by
increasing N leads to the better micro and macro AUC values for
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TABLE 2 AUC (mean ± stdev) (Figures 8, 10) values for the steady region (Figure 4) from 1,000 to 10,000 samples.

o�set = 0

Noise (σsynth) 0 0.01 0.1 0.2

HandStart 0.845± 0.036 0.845± 0.033 0.850± 0.034 0.844± 0.035

FirstDigitTouch 0.716 ± 0.025 0.719± 0.029 0.719± 0.033 0.714± 0.032

BothStartLoadPhase 0.720± 0.022 0.720± 0.026 0.719± 0.029 0.717 ± 0.031

LiftOff 0.780± 0.040 0.781± 0.038 0.778± 0.044 0.773± 0.042

Replace 0.828± 0.022 0.824± 0.023 0.827± 0.019 0.821± 0.025

BothReleased 0.820± 0.021 0.820± 0.022 0.819± 0.026 0.819± 0.025

o�set = 0.5

Noise (σsynth) 0 0.01 0.1 0.2

HandStart 0.946± 0.011 0.945± 0.011 0.945± 0.013 0.942± 0.012

FirstDigitTouch 0.806 ± 0.023 0.804± 0.023 0.802± 0.022 0.801± 0.023

BothStartLoadPhase 0.800± 0.019 0.801± 0.019 0.801± 0.019 0.797 ± 0.020

LiftOff 0.875± 0.015 0.875± 0.016 0.878± 0.016 0.871± 0.016

Replace 0.900± 0.016 0.902± 0.014 0.900± 0.016 0.902± 0.014

BothReleased 0.888± 0.019 0.888± 0.018 0.886± 0.016 0.885± 0.019

o�set = 1

Noise (σsynth) 0 0.01 0.1 0.2

HandStart 0.743± 0.059 0.741± 0.062 0.736± 0.062 0.727± 0.062

FirstDigitTouch 0.669± 0.048 0.673± 0.042 0.671± 0.046 0.661± 0.048

BothStartLoadPhase 0.668± 0.041 0.668± 0.043 0.670± 0.040 0.660± 0.047

LiftOff 0.694± 0.055 0.700± 0.051 0.698± 0.060 0.691± 0.054

Replace 0.816± 0.037 0.822± 0.037 0.813± 0.038 0.810± 0.039

BothReleased 0.809± 0.032 0.806± 0.035 0.805± 0.032 0.800± 0.039

The bold font denotes the highest values for the same level of the noise, and the italic font does the lowest ones.

N values beyond the physical action duration which is ∼ 0.3 s
(that is equal to ∼ N=150 samples, see Figure 1) and up to ∼3
s (N = 1,500) for offset = 0.5. For example, micro and macro
AUC values are equal to ∼ 0.65 for sampling length N = 200
samples (that corresponds to ∼ 0.4 s), and increase of N up to N

= 1,500 leads to the better micro and macro AUC values equal to
∼ 0.87 (Figures 5, 6). But to the moment it is unclear whether this
improvement caused by the availability of EEG signals relevant to
the physical action beyond action itself or by natural NDA. The
additional interesting aspect is that micro and macro AUC values
are much lower for the offset 0 and 1 (in comparison with offset
= 0.5), but AUC values are improving with N (Figures 5, 6) up to
∼6–7 s (N = 3,000) for offset= 0 and offset= 1. It means that heavy
bias of labeling is not useful because it leads to distortion of PAS-NR
due to the lower signal and higher noise values. Application of the
synthetic NDA (Figures 5, 6) in the wide range of noise levels (σsynth
from 0.001 up to 0.2) demonstrates the general stability of the DNN
used for classification of all activities with the similar micro and
macro AUC values in the limits of their fluctuations.

AUC fluctuations caused by the added synthetic NDA, shown
in Figures 11, 12, are not significant in comparison with AUC
fluctuations without synthetic NDA due to increase of sampling
size N.

To characterize AUC fluctuations (Figures 11, 12) with regard
to the added synthetic NDA, the DFA was applied and analyzed
for original (non-added noise) EEG time sequences (Figure 13A)
and ones with NDA (Figure 13B). From DFA point of view,
some very intensive actions (such as HandStart and LiftOff)
demonstrate the very high stability to noise data augmentation
with negligible changes of fluctuation amplitudes measured like
differences (Figure 13) between the correspondent AUC fluctuation
values for original (without added noise) (Figure 13A) and noise-
augmented EEG time sequences (Figure 13B).

For FirstDigitTouch, BothStartLoadPhase, and Replace
activities, the synthetic NDA actually lead to decrease of the AUC
fluctuations (Figure 13C) with slow decay of this improvement
with increase of N (due to above mentioned non-relevant
noisy neighboring regions, i.e., the natural NDA). In contrary,
for HandStart and BothReleased activities, the synthetic NDA
actually lead to increase of the AUC fluctuations (Figure 13C)
with slow decay also. Liftoff activity does not demonstrate any
significant changes.

The measurements of the Hurst exponent values Hfull (the full
range of window scales with n < 10, 000, time < 20 s), Hlow (the
low window scales with n < 1, 000, time < 2 s), and Hhigh (the
bigger window scales with n > 1, 000, time > 2 s) were performed
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TABLE 3 Maximal and range AUC values for the steady region from 1,000 to 10,000 samples (Figures 4, 11, 12).

o�set = 0

AUC (max) AUC (range)

Noise (σsynth) 0 0.01 0.1 0.2 0 0.01 0.1 0.2

HandStart 0.899 0.909 0.908 0.901 0.140 0.146 0.150 0.154

FirstDigitTouch 0.771 0.787 0.795 0.767 0.126 0.131 0.143 0.137

BothStartLoadPh 0.763 0.767 0.781 0.769 0.097 0.115 0.126 0.159

LiftOff 0.844 0.861 0.848 0.844 0.180 0.186 0.245 0.181

Replace 0.872 0.873 0.867 0.869 0.094 0.101 0.094 0.136

BothReleased 0.874 0.876 0.871 0.875 0.107 0.112 0.132 0.109

o�set = 0.5

AUC (max) AUC (range)

Noise (σsynth) 0 0.01 0.1 0.2 0 0.01 0.1 0.2

HandStart 0.969 0.967 0.972 0.965 0.050 0.054 0.058 0.056

FirstDigitTouch 0.862 0.855 0.850 0.848 0.102 0.122 0.100 0.108

BothStartLoadPh 0.847 0.842 0.839 0.847 0.094 0.082 0.087 0.106

LiftOff 0.915 0.913 0.916 0.910 0.075 0.076 0.086 0.078

Replace 0.930 0.932 0.932 0.926 0.104 0.080 0.091 0.079

BothReleased 0.918 0.914 0.914 0.919 0.100 0.092 0.076 0.101

o�set = 1

AUC (max) AUC (range)

Noise (σsynth) 0 0.01 0.1 0.2 0 0.01 0.1 0.2

HandStart 0.852 0.842 0.841 0.833 0.228 0.238 0.249 0.278

FirstDigitTouch 0.762 0.758 0.749 0.747 0.243 0.183 0.193 0.228

BothStartLoadPh 0.738 0.749 0.740 0.751 0.158 0.221 0.223 0.211

LiftOff 0.796 0.809 0.791 0.775 0.288 0.289 0.261 0.229

Replace 0.882 0.886 0.883 0.875 0.168 0.158 0.167 0.191

BothReleased 0.859 0.870 0.853 0.874 0.141 0.168 0.143 0.276

The bold font denotes the highest values for the same level of the noise, and the italic font does the lowest ones.

for various actions and levels (standard deviations σsynth = 0) of the
synthetic noise (Table 4). H values are rounded to 2 decimal digits
in Table 4 because the bigger number of significant digits seems to
be statistically insignificant.

The general tendency is that for the low window scales (n <

1, 000, time< 2 s),Hlow values are higher in comparison withHhigh

values for the bigger window scales (n > 1, 000, time> 2 s) that can
be seen from the slope of curves in Figure 13 and Table 4. It means
that EEG fragments with the duration of scale n < 1, 000 (time < 2
s) demonstrate the scaling behavior of the higher complexity than
the fragments n > 1, 000 (time > 2 s), i.e., Hlow > Hhigh (Table 4).
It should be noted that step-like increases in the middle and in the
end of all curves in Figure 13 can be explained by overlapping with
the next portion of PAS data related to the other trial of recorded
physical activities which are contained in the whole timeline of the
experimental EEG data.

Despite the previously mentioned findings, the study has
several limitations that should be taken into account in future
works. First, the use of a single epoch for training (which was

observed to be enough for saturation of the training process of
the relatively small DNN with the quite small capacity) may limit
the model’s overall performance. In future research, the multiple
training epochs for the more complex DNN should be employed
to potentially improve model performance and generalization
with attention to the impact of hyperparameter tuning (e.g.,
learning rate, batch size) on model performance and convergence.
Second, the focus on feasibility analysis rather than maximizing
performance might have constrained the exploration of more
complex DNN architectures. In the next stage of the investigation,
the more complex DNN architectures (such as deeper CNNs,
recurrent neural networks, and transformer models) should be
performed with a more comprehensive hyperparameter search
to optimize model performance to potentially achieve higher
classification accuracy. Third, the study relies mainly on the GAL
dataset, which may not fully capture the variability and complexity
of real–world EEG signals. In the extended version, this study
should include investigation of the model’s performance on other
publicly available EEG datasets with different characteristics in
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FIGURE 10

Comparison of standard deviation AUC values as a function of the number of samples for the di�erent o�set values (colors) without the synthetic

noise (A) and with the synthetic noise σsynth = 0.2 (B).

the other controlled and realistic environment to improve the
generalizability of the findings. Fourth, the analysis is limited to
a specific set of NDA techniques, and the impact of other noise
sources or more sophisticated DAmethods should be also explored.
Moreover, the impact of other NDA techniques (mentioned in
the introductory part of the study, such as generative training
and others) will be necessary to improve model robustness and

explore the impact of physiological noise (e.g., muscle artifacts,
eye blinks) and environmental noise on model performance.
In addition, assessing the additional metrics particularly with
regard to Structural Similarity Index (SSIM) and Peak Signal-
to-Noise Ratio (PSNR) in future research stages will be highly
intriguing and valuable. SSIM could provide insights into the
structural similarity between original and noise-augmented EEG
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FIGURE 11

Noise influence on AUC values for o�set = 0.5: (A) HandStart, (B) FirstDigitTouch, and (C) BothStartLoadPhase.
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FIGURE 12

Noise influence on AUC values for o�set=0.5 (continued from Figure 11): (A) LiftO�, (B) replace, (C) BothReleased.
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FIGURE 13

Fluctuations vs. the number of samples (N) in the input for various actions and levels (standard deviations) of the synthetic noise: (A) σsynth = 0 (no

noise), (B) σsynth = 0.2, (C) di�erence of fluctuations from previous regimes without and with noise. The legends contain Hurst exponent values.
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TABLE 4 Hurst exponents Hfull, Hlow , and Hhigh (rounded to 2 decimal digits) for various actions and levels (by standard deviations σsynth) of the synthetic

noise.

σsynth = 0 (no noise) σsynth = 0.2 (noise)

Hurst exponent Hfull Hlow Hhigh Hfull Hlow Hhigh

HandStart 0.42 0.78 0.43 0.40 0.67 0.41

FirstDigitTouch 0.32 0.92 0.29 0.40 0.64 0.40

BothStartLoadPhase 0.26 0.92 0.23 0.38 0.67 0.37

LiftOff 0.24 0.87 0.21 0.25 0.67 0.22

Replace 0.35 1.07 0.28 0.41 0.72 0.42

BothReleased 0.32 0.77 0.30 0.28 0.50 0.24

signals, helping evaluate how natural noise preserves critical signal
features. Meanwhile, PSNR could serve as a measure of distortion,
indicating how much the augmented signals deviate from the
original ones, which is crucial for maintaining signal integrity in
classification tasks.

5 Conclusion

This research contributes to the field of EEG-based BCI
by investigating the impact of different types of noise on the
classification of physical activities by the following main novel
aspects and contributions: systematic investigation of natural
noise, quantitative analysis of noise impact, and analysis of offset
effects. The study introduces the concept of “natural noise”
by considering EEG data from neighboring regions, simulating
real-world scenarios with varying levels of background EEG
activity. The researchers utilize metrics such as AUC and DFA to
quantitatively assess the impact of both natural and synthetic noise
on classification performance, providing valuable insights into the
model’s robustness. By analyzing the impact of different label offsets
(0, 0.5, 1), the study provides valuable insights into the optimal
time window for EEG signal analysis and classification. These novel
aspects contribute to a better understanding of the challenges and
limitations of EEG-based BCI systems in real-world scenarios and
provide valuable guidance for future research in this area.

The following key aspects of the methodology contribute to
achieving the goal: DA by natural NDA and synthetic NDA, varying
NDA parameters including input sequence length, and thorough
performance evaluation including DFA Analysis. The introduction
of both natural and synthetic noise during DA helps the model to
become more robust and generalize better to real-world scenarios
with varying levels of noise. As to the natural NDA by including
EEG data from neighboring regions, the model learns to handle
variations in EEG signals due to temporal shifts and contextual
influences. As to the synthetic NDA, adding Gaussian noise
increases the model’s tolerance to random fluctuations and noise in
the EEG data. The use of input sequences with varying lengths (N)
allows the model to assess its performance under different levels
of “natural noise” introduced by the inclusion of irrelevant EEG
data. This helps to understand how the model’s performance is
affected by the amount of surrounding EEG data. For performance
evaluation, the use of multiple metrics, including AUC (micro and

macro), accuracy, and loss, provides a comprehensive evaluation
of the model’s performance. For DFA, analysis helps to quantify
the variability and complexity of the AUC fluctuations, providing
insights into the model’s behavior under different noise conditions.
By incorporating these techniques, the authors aim to understand
the feasibility and limitations of classifying EEG signals related to
physical activities in the presence of noise, which is crucial for the
practical application of BCI systems in real-world settings.

The results obtained allow us to conclude that the relatively
simple DNN with components of FCN and CNN even can
be effectively used to classify physical activities (namely, hand
manipulations) from the GAL dataset. Application of natural and
synthetic noises imitates the possible influence from environment.
It should be noted that synthetic noise influence (due to Gaussian
NDA with higher σ values) has the lower impact on the general
ability to provide the better reliable classification of physical
activities than natural noise influence (due to increase of the
sampling size N) that can significantly improve the performance
with reaching the stable metric values after some noise increase.

AUC fluctuations caused by the added synthetic NDA are not
significant in comparison with AUC fluctuations without synthetic
NDA due to increase of sampling size N. It should be emphasized
that application of the natural NDA by increasing N leads to the
better micro and macro AUC values forN values beyond the action
duration which is ∼ 0.3 s and up to ∼ 3 s (N = 1,500) for
offset = 0.5. But to the moment the open question is whether this
improvement caused by the availability of EEG signals relevant to
the physical action beyond action itself or by natural NDA. This
aspect should be resolved by further investigations and on other
open EEG datasets.

Application of the synthetic NDA in the wide range of noise
levels (σsynth from 0.001 up to 0.2) demonstrates the general
stability of the DNN used for classification of all activities
with the similar micro and macro AUC values in the limits of
their fluctuations.

DFA allows us to investigate the fluctuation properties and
calculate the correspondent Hurst exponents for the quantitative
characterization of their variability. As a result of this research,
some PAs can be divided in separate groups of actions that
can be characterized by complexity and the feasibility of
their classification: the easiest (HandStart), medium (LiftOff,
Replace, and BothReleased), and hardest (BothStartLoadPhase and
FirstDigitTouch) classification.
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A general trend is observed in the behavior of the Hurst
exponent H across varying time window scales in EEG data.
Specifically, for shorter time window scales (i.e., < 2 s), the values
of Hlow tend to be significantly higher than those for longer time
window scales (i.e., > 2 s), denoted as Hhigh. This suggests that
EEG segments with durations shorter than 2 s exhibit greater
scaling complexity than those of longer durations. In particular,
Hlow can exceed Hhigh by a factor of 2 to 3 during certain physical
actions, indicating a marked increase in complexity for these
shorter time-scale fragments.

In general, this approach of adding natural noise by extending
sampling size for small DNNs can be used during porting such
models to Edge Computing infrastructures on devices with the very
limited computational resources because the statistically reliable
results were obtained by the relatively small DNN with the low
resource requirements (Kochura et al., 2019; Gordienko et al., 2020,
2021a). The additional possible improvement can be obtained due
to analysis of the optimal configuration for training and inference
stages of the whole workflow that is especially important for
distributed infrastructures (Kochura et al., 2017b; Taran et al., 2017;
Gordienko et al., 2021a; Kochura et al., 2017a). Similar research
could be also useful for classification of GAL-like and any other PAs
before their actual start when some predictionwith PA classification
can be performed on the EEG activity before PA even. By this
approach, the human EEG activity can be estimated with some
proactive feedback such as continuation of PAs which were initiated
by brain only, but unfortunately the PAs were not continued due
to fatigue or some limited physical abilities, but the future detailed
investigation should be performed to take into account the more
various kinds of PAs.
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