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Objective: NIHSS for stroke is widely used in clinical, but it is complex and 
subjective. The purpose of the study is to present a quantitative evaluation 
method of stroke association based on multi-dimensional gait parameters by 
using machine learning.

Methods: 39 ischemic stroke patients with hemiplegia were selected as the 
stroke group and 187 healthy adults from the community as the control group. 
Gaitboter system was used for gait analysis. Through the labeling of stroke 
patients by clinicians with NIHSS score, all gait parameters obtained were used 
to select appropriate gait parameters. By using machine learning algorithm, a 
discriminant model and a hierarchical model were trained.

Results: The discriminant model was used to distinguish between healthy people 
and stroke patients. The overall detection accuracy of the model based on KNN, 
SVM and Randomforest algorithms is 92.86, 92.86 and 90.00%, respectively. The 
hierarchical model was used to judge the severity of stroke in stroke patients. 
The model based on Randomforest, SVM and AdaBoost algorithm had an overall 
detection accuracy of 71.43, 85.71 and 85.71%, respectively.

Conclusion: The proposed stroke association quantitative evaluation method 
based on multi-dimensional gait parameters has the characteristics of high 
accuracy, objectivity, and quantification.
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1 Introduction

Stroke has a high incidence rate, mortality, disability, and 
recurrence rate, ranking among the leading causes of death among 
residents for many years (Wan and Dong, 2017; Wang W. et al., 
2017). More than 60% of stroke patients still have different degrees 
of neurological dysfunction after treatment (Wang L. D. et  al., 
2018), which seriously affects the quality of life of patients. The 
main reasons for the delay before hospitalization of stroke patients 
were that they could not quickly identify the signs of stroke or did 
not give first aid at the first time. Early warning of the occurrence 
or recurrence of stroke and active emergency measures are of great 
significance for reducing the disability rate and mortality rate of 
stroke and improving the prognosis of patients (Nagao et al., 2020) 
Patients with hemiplegia need to assess the motor function of 
lower limbs, which is conducive to the formulation of rehabilitation 
plans, and the monitoring of limb function during the rehabilitation 
process, to adjust the treatment plan in time. NIHSS is the most 
widely used clinical and experimental stroke functional 
examination scale, which is recognized as reliable, effective, and 
sensitive (Nagao et al., 2020; Khalil and Lahoud, 2020). It can help 
clinicians accurately assess and communicate with each other 
about the neurological deficit of stroke patients and guide patients 
to make long-term rehabilitation and nursing plans (Wang 
Y. X. et al., 2016; Wu et al., 2019; Jauch et al., 2013). However, 
NIHSS contains many contents, which is complex and professional 
and cannot be mastered by ordinary patients outside the hospital. 
Therefore, for stroke evaluation, a simple, quantitative, objective, 
and rapid method or system is needed.

2 Related work

With the development of science and technology, gait analysis 
technology has been gradually applied to the gait research of stroke 
(Wan et al., 2014; Aoki et al., 2013; Estrada-Barranco et al., 2022; 
Mizuta et al., 2022; Chow and Stokic, 2021). At present, gait analysis 
in clinic is mostly used to reveal that there are obvious differences in 
gait of stroke patients in many aspects. By determining gait 
characteristics (gait parameters) of stroke patients, it can effectively 
evaluate the effect of rehabilitation quality of stroke patients (Seok 
et al., 2021; Hussain and Park, 2021; Titus et al., 2018; Hu et al., 
2009). In addition, there are a small number of artificial intelligence 
studies on gait analysis of stroke patients, such as distinguishing 
whether it is stroke according to the symmetry, regularity, and 
stability of gait (Kim et al., 2022; Krawczyk et al., 2012), and there 
are also studies on classification and evaluation of gait of stroke 
patients (Li et al., 2019; Andrea et al., 2016; Kaczmarczyk et al., 2009; 
Cui et al., 2018). Almost no artificial intelligent studies of stroke are 
based on more comprehensive spatial–temporal characteristics 
(parameters) of gait.

In this paper, combined with the NIHSS score for stroke in clinic 
and gait analysis, the study is on quantitative evaluation and analysis 
of stroke association using machine learning method. Since the gait 
analysis system is wearable and easy to operate simply, the objective 
of the study is to warn the occurrence or recurrence of stroke outside 
the hospital, and to assist doctors in quantitative, objective and 
simple identification and grading of stroke degree in the hospital. 
Specifically, as it is shown in graphical abstract, through the labeling 
of stroke patients by clinicians with NIHSS score, all gait parameters 
obtained from gait analysis system were used to select appropriate 
gait parameters. By using machine learning algorithm, a discriminant 
model for distinguishing between normal healthy people and stroke 
patients, and a hierarchical model for judging the severity of stroke 
in stroke patients were trained. Finally, experiments were conducted 
to evaluate the effectiveness of the two trained models.

GRAPHICAL ABSTRACT
Diagram of quantitative evaluation method of stroke association based on gait parameters.

Abbreviations: NIHSS, National Institutes of Health Stroke Scale; SVM, Support 

Vector Machine; KNN, K-Nearest Neighbor.
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3 Materials and methods

3.1 Participants of study

39 ischemic stroke hemiplegic patients admitted to Beijing Chao-
Yang Hospital, Capital Medical University from June 2018 to October 
2018 were selected as the stroke group, including 24 males and 15 
females, aged (63.4 ± 14.5) years, with a height of (169.3 ± 7.1) cm and 
a weight of (77.5 ± 7.5) kg; 187 healthy adults from the community 
served as the control group, including 68 males and 119 females, aged 
(47.4 ± 12.4) years, with a height of (165.2 ± 7.4) cm and a weight of 
(69.7 ± 17.6) kg. Inclusion criteria: ① patients with gait abnormality 
caused by acute stroke; ② the muscle strength of the affected limb is 
grade IV or above, and can walk independently; ③ the cognitive 
function is normal and can cooperate with the gait parameter 
acquisition process. Exclusion criteria: ① vestibular / cerebellar 
dysfunction and other lower limb muscle, bone and nervous system 
diseases that can cause walking disorders; ② Serious systemic diseases 
such as heart, lung, liver, and kidney dysfunction. Inclusion criteria of 
the control group: no nervous system, lower limb muscle, bone and 
other diseases, no serious cardiopulmonary diseases. The study was 
approved by the institutional review board of Beijing Chao-yang 
Hospital, Beijing China, and was conducted in accordance with the 
Declaration of Helsinki. All participants have signed informed consent 
forms. The study protocol was submitted and approved by the 
Research Ethics Committee of the Beijing Chao-Yang Hospital (the 
number is 2018-sci-153). Institutional Review Board reference date is 
2018-6-11.

3.2 Test tools of gait analysis

The gait analysis equipment used in this study was the Gaitboter 
gait analysis system developed by the Institute of computing 
technology, Chinese Academy of Sciences. The system includes a 
wearable gait acquisition device and corresponding gait analysis 
software that integrates motion sensors, plantar membrane pressure 
and sound. Gaitboter is a sports shoe with a multi-sensor fusion gait 
data acquisition circuit built in. The sensors include accelerometers, 
gyroscopes, and plantar membrane pressure sensors (sampling rate is 
80 Hz) and micro microphones (sampling rate is 4,000 Hz). The 
mobile phone or tablet with gait analysis software can collect and 
analyze the gait data obtained by the acquisition device through 
Bluetooth. Previous experiments show that due to the fusion of 
multiple sensor information, the accuracy of gait space–time 
parameters measured by the system used in this paper is higher than 
that measured by the system using only inertial sensors such as 
acceleration and gyroscope (Wang C. et al., 2016; Wang C. et al., 2017) 
at the same time, it has good sensitivity and reliability (Kong 
et al., 2018).

3.3 Test methods of gait analysis

① The experimental operator was an experienced doctor who 
explained the experimental process and precautions to the subjects 
before the test; ② The subjects wore comfortable and light clothes and 
chose wearable gait analysis equipment of appropriate size; ③ Choose 

a 10 m long and 3 m wide walkway with sufficient light, flat ground 
and no obstacles as the gait analysis walkway; ④ During the test, the 
subjects were required to walk in a straight line at a uniform speed 
with their own gait without interference. According to the actual 
situation of the subjects, tried to let the subjects walk more times, that 
is, different subjects walked different times, and each walking process 
covered about 2–50 steps. Gait information collected by wearable 
devices was transmitted to mobile phones or tablets through 
Bluetooth. The gait parameters of subjects were analyzed automatically. 
Before the formal test, the subjects needed to walk on the walkway 
twice to adapt to the environment.

4 Quantitative evaluation method of 
stroke association based on 
multidimensional gait parameters

The subjects in the stroke group were scored by experienced 
doctors according to the NIHSS to assess the severity of stroke. 
NIHSS consists of 11 evaluation indexes, including consciousness 
level, gaze, visual field, facial paralysis, upper limb movement, lower 
limb movement, etc. The higher the score, the worse the function. 
The minimum score is 0 and the maximum score is 42. In previous 
studies, Kongyouqi et al. (Kong et al., 2018), Gaitboter gait analysis 
system was used to analyze and detect the gait of stroke patients and 
healthy control group. It was found that compared with the control 
group, the stride of the stroke group was shorter, the gait frequency 
and speed were decreased, and the swing phase time, support phase 
and bipedal support time were prolonged (p < 0.01). Based on this 
conclusion, as it is shown in graphical abstract, this paper presents an 
intelligent gait analysis method for stroke: firstly, appropriate gait 
features were selected from all the existing gait features (gait 
parameters); secondly, stroke patients were labeled with NIHSS score 
by clinicians; finally a classification model for stroke patients 
(hereinafter referred to as the discrimination model) and a 
classification model for stroke severity (hereinafter referred to as the 

FIGURE 1

Diagram of stroke gait analysis model establishment process.
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hierarchical model) through machine learning algorithm were 
trained. The establishment steps of the two models were basically 
divided into data set selection, data normalization processing, feature 
selection, classification algorithm selection and model training, 
which are described in detail below. Figure 1 shows the flow diagram 
of model construction.

4.1 Data set selection

Gait characteristics: A high-precision gait detection and 
parameter calculation method were adopted (Wang C. et al., 2016; 
Wang C. et  al., 2017; Wang C. et  al., 2018). A total of 32 gait 
characteristic parameters were calculated. According to the parameter 
categories, they were classified as follows (Table 1):

Feature correlation analysis: As it is shown in Figure 2, stride is 
positively correlated with step speed, and stride is also positively 
correlated with ground angle and the sagittal max angle; Step speed 
is positively correlated with the sagittal max angle; Left time is 
positively correlated with right swing phase; The cross min (max) 
angle is positively correlated with foot rotation; Ground angle is also 
positively correlated with step speed; The left (right) of cross min 
(max) angle is positively correlated with the left (right) of cross max 
(min) angle, which is consistent with the situation of normal gait 
walking. These gait feature parameters will be used as the features of 
our next model training data set, which is divided into training set 
and test set.

As we know, by using all 32 feature parameters including the 
highly correlated ones, the machine learning models can be biased, 
therefore, reducing the features redundancy before using all 32 feature 
parameters in machine learning models is important. In addition, too 
many features may also lead to over-fitting and more calculation, and 
too few features may lead to under-fitting. In this paper, cross-
validation was used to select the optimal feature combination and 
eliminate redundant features and aimed at evaluating the impact of 
different feature subsets on model performance (In the section Feature 
Selection, there is a detailed introduction).

Data label: For the label of the data in the data set (including 
training set and test set), we adopted the NIHSS score which is used 
to assess the severity of stroke patients. The NIHSS consists of 11 
evaluation indexes, each of which has a score range of 0–4 points. A 
score of 0 indicates that the evaluation index has normal function, and 
the higher the score, the worse the function. After all the 11 evaluation 
indicators are evaluated, the total score of NIHSS will be generated. 
The minimum score is 0 and the maximum score is 42 (Hage, 2011), 
as it is shown in Table 2. Experienced clinicians score stroke patients 
in the data set through the NIHSS mentioned above, and it is 
data label.

4.2 Data normalization processing

The gait characteristic parameters described above represent 
different physical meanings, and the numerical magnitude is also very 
different. Therefore, before model training, we need to normalize all 
the data, otherwise, especially the features with large data values will 
have a great impact on model training (Duda, 2001). The 
normalization method is to quantitatively convert the values, that is, 
the values corresponding to each parameter are mapped to a small 
range. Here we  take (−1, 1), and the normalization calculation 
formula is as follows in Equation 1:

 max min

21 xx
x x

′ = − +
−  

(1)

xis the value of the original data, x′ is the scaled value, maxx  is the 
maximum value and minx  is the minimum value in the data.

4.3 Feature selection

Feature selection is very important for the final training model. 
Improper feature selection leads to poor classification performance of 
the trained model. Even if the feature selection is appropriate, the 
number (dimension) of features will also have a great impact on the 
classification performance of the final training model. Too many 
features may lead to over-fitting and more calculation, and too few 
features may lead to under-fitting. The feature selection methods used 
in this study is a kind of ensemble-learning-based methods that aim 
to construct a group of feature subsets from several different 
algorithms, and then produce an aggregated result out of the group. 
In this way, the instability and perturbation issues of single algorithm 
can be alleviated, and also, the subsequent learning (model training) 
tasks can be  enhanced (Li et  al., 2017). In this paper, we  use 
Randomforest (Ho, 1995; Ho, 1998; Hastie et al., 2001; Mariana and 
Lucian, 2016; Biau and Scornet, 2015), AdaBoost (Joglekar, 2016; Kégl, 
2013; Collins et al., 2002), GradientBoosting (Friedman, 2001; Mason 
et al., 1999; Zhu, 2016; Ayyadevara, 2018), DecisionTree (Rokach and 
Maimon, 2008; Freund and Mason, 2002; Fürnkranz, 2017). Although 
a comparison of Randomforest-based feature selection methods 
(Speiser et al., 2019) presented that the method VSURF (Genuer et al., 
2015) & Boruta (Kursa and Rudnicki, 2010) implemented in the R 
package are preferable, combined to the characteristics of this study, 
the reason for not choosing this method is: (a) it is a feature selection 
method obtained by a single method (not ensemble-learning method), 

TABLE 1 Gait characteristic parameters (Tian et al., 2021).

Type Gait parameters

Temporal 

parameter 

characteristics 

(8)

left swing phase\right swing phase

left stance phase\right stance phase

left time\right time

left double time\right double time

Spatial 

parameter 

characteristics 

(24)

left stride\right stride

left step frequency\right step frequency

left step speed\right step speed

left foot rotation\right foot rotation

left off ground angle\right off ground angle

left ground angle\right ground angle

left sagittal min angle\right sagittal min angle

left sagittal max angle\right sagittal max angle

left coronal min angle\right coronal min angle

left coronal max angle\right coronal max angle

left cross min angle\right cross min angle

left cross max angle\right cross max angle
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without considering the instability and perturbation issues of a single 
algorithm; (b) it also does not consider the coherence of subsequent 
learning (model training) tasks, such as the inconvenience of 
integration caused by the different environments of R language and 
the overall system implementation (Python); (c) our paper adopts an 
ensemble-learning-based method, which can improve the robustness 

of feature selection by integrating multiple model algorithms; (d) the 
method used in our paper integrates the feature importance of 
multiple model algorithms to fully control the process of feature 
selection, and it has good flexibility, controllability and interpretability. 
Specifically, the algorithm in our study filters the features and selects 
the most important features. The idea of this method is to directly use 
the machine learning model to select features, establish prediction 
models for each individual feature and response variable, and use 
cross-validation to select models. The specific steps and processes are 
shown in Figure 3.

According to Figure 3, the typical process of feature selection 
is to first determine the selection criteria and then determine 
which features to select. Here, the selection criteria is the feature 
numbers/dimensions, and the determination of which features 
should be selected is the highest ranking of feature importance 
according to the numbers/dimensions. Feature numbers 
(dimensions) are gotten as follows: Considering that there are 32 

FIGURE 2

Relevance analysis of features.

TABLE 2 Table of comparing between NIHSS scores and stroke severity.

Score Stroke severity

0 None

1–4 Slight

5–15 Moderate

16–20 Moderate to severe

21–42 Serious
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feature parameters in the data set, in order to avoid the problems 
of over-fitting and under-fitting caused by too much or too little 
feature selection, we selected the top 10 features, 20 features and 
32 features (all features) from the ranking(feature sets were 
manually divided into small, medium, and large three different 
levels subsets: 10/20/32) according to their importance, and used 
LogisticRegression (Cox, 1958; Liu et al., 2009; Lin et al., 2007), 
GaussianNB (Long et  al., 2012; James and Vimina, 2022), 
DecisionTree, Randomforest, SVM (Vapnik, 1998; Zheng et al., 
2008; Tong and Chang, 2001) algorithm for cross-validation to 
obtain their accuracy. Then we  compared the accuracy of 10 
features, 20 features and 32 features in the case of each algorithm, 
and further comprehensively judged the number of features 
selected by the final classifier.

In this case, final features selection are as follows: The number 
of features has been determined above, so we need to determine 
the specific features. The ranking of feature importance was 
selected by the ensemble of four different models/algorithms: 
Randomforest, AdaBoost, Gradientboosting and Decisiontree. 
According to the number of previously determined features, 
we selected the corresponding number of features with the highest 
ranking according to their importance, and finally formed a 
feature vector.

Discriminant model: According to the above feature selection 
algorithm, 10 features, 20 features and 32 features were selected for 
cross-validation with 5 common algorithms, and their corresponding 
accuracy is shown in Table 3. It can be seen from the table that when 
10 features are selected, the classifier has better classification effect 
and less calculation. Figure  4 shows the visual sorting of feature 
importance selected by the ensemble of four different models/
algorithms: Randomforest, AdaBoost, Gradientboosting and 
Decisiontree algorithms (the abscissa is the relative importance of 

features). In this way, the 10 features we finally selected form a feature 
vector: right step speed, left step speed, right off ground angle, left off 
ground angle, right sagittal min angle, left sagittal min angle, right 
stride, left stride, right sagittal max angle, left sagittal max angle.

Hierarchical model: According to the feature selection 
algorithm, 10 features, 20 features and 32 features are selected for 
cross-validation with five common algorithms, and their 
corresponding accuracy is shown in Table 4. It can be seen from the 
table that when 10 features are selected, the classifier has better 
classification effect and less calculation.

Figure 5 shows the visual sorting of feature importance selected 
by the ensemble of four different models/algorithms: Randomforest, 
AdaBoost, Gradientboosting and Decisiontree algorithms (the 
abscissa is the relative importance of features). In this way, the 10 
features finally selected form a feature vector: healthy side ground 
angle, affected side ground angle, healthy side off ground angle, 
affected side off ground angle, healthy side cross max angle, affected 
side cross max angle, healthy side stride, affected double time, healthy 
side sagittal max angle, affected side sagittal max angle.

4.4 Classification algorithm selection

After determining the features of model training, it is necessary 
to select a classification algorithm. We  selected the classification 
algorithm of the model through cross-validation. Specifically, 
we selected nine common classification algorithms and calculated the 
performance indicators of each classification algorithm. Each 
algorithm performed 5-fold cross-validation calculations, calculated 
the prediction accuracy for five times, and obtained the prediction 
accuracy of the algorithm (the average value of 5 times, and the 
average accuracy is one of the commonly used evaluation indicators). 
We compared the corresponding accuracy values obtained in the case 
of each algorithm, and finally selected the algorithm with higher 
accuracy value as our model training algorithm.

Discriminant model: According to the determination method 
mentioned above, each algorithm’s accuracy value, standard deviation 
and confidence interval are shown in Table 5. Through comparison, 
the following three algorithms are selected for classifier modeling: 
KNN, SVM and Randomforest.

Hierarchical model: According to the determination method 
mentioned above, each algorithm’s accuracy value, standard deviation 
and confidence interval are shown in Table 6. Through comparison, 

FIGURE 3

Process of feature selection based on ensemble-learning-based methods.

TABLE 3 Discriminant model: table of comparing for features selection.

Algorithm 10 features 20 
features

32 features

LogisticRegression 90.42% 87.19% 82.09%

GaussionNB 88.46% 86.49% 87.19%

DecisionTree 84.09% 82.67% 78.76%

Randomforest 89.75% 88.46% 89.15%

SVM 89.77% 89.77% 88.55%
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the following three algorithms are selected for classifier modeling: 
SVM, Randomforest and AdaBoost.

4.5 Model training

Model training is to build a classifier, that is, the process of model 
training and parameter tuning according to the previously selected 
data sets, features and algorithms, and its output is the built model. In 
this paper, a 5-fold cross-validation method is used for parameter 
tuning. Its basic idea is to group the training sets in the original data 
set. One part is used as the training set to train the model, and the 
other part is used as the test set to evaluate the model.

Discriminant model: as shown in Table 7, we selected totally 156 
patients and normal people as the training set to build the discriminant 

model. For three different algorithms, the relevant parameters 
obtained are: KNN parameter n_neighbors = 6, SVM parameter 
c = 2.1, max_iter = 21, kernel = poly, Randomforest parameter n_ 
estimators = 9.

Hierarchical model: as shown in Table  8, we  selected 32 
patients with a total of 515 steps as our total sample, of which the 
training set is composed of 25 patients with a total of 457 steps to 
build the hierarchical model. For three different algorithms, the 
relevant parameters obtained are: Adaboost parameter n_
estimators = 7, learning_ rate = 1.8, SVM parameter C = 0.1, max_
iter = 7, kernel = poly, Randomforest parameter n_ 
estimators = 52.

5 Experimental results

Based on the trained discriminant model and hierarchical model 
for stroke gait analysis, 226 cases of data (including normal healthy 
people and stroke patients) were collected from Beijing Chao-Yang 
Hospital, Capital Medical University, and the models trained in this 
paper were tested to verify the effectiveness. The experiment is divided 
into two parts. The first part (hereinafter referred to as Experiment 1) 
is to verify the discriminant model, that is, to distinguish between 
normal healthy people and stroke patients, and the second part 
(hereinafter referred to as Experiment 2) is to verify the hierarchical 
model, that is, to judge the severity of stroke in stroke patients.

FIGURE 4

Discriminant model: order of feature’s importance.

TABLE 4 Hierarchical model: table of comparing for features selection.

Algorithm 10 features 20 features 32 features

LogisticRegression 44.30% 43.50% 43.59%

GaussionNB 47.98% 47.51% 46.59%

DecisionTree 55.75% 54.61% 52.97%

Randomforest 67.10% 66.19% 62.03%

SVM 64.25% 63.68% 64.11%
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5.1 Experimental data

The details of the subjects participating in the experiment 
are shown in Table  7. This data is used as the data set of 
Experiment 1.

In Table 7, 32 of 39 stroke patients were scored and labeled by 
clinicians with NIHSS. The scores of the labeled patients are 
distributed between 1 and 5 points, that is, all patients are non-severe 
stroke patients, as shown in Table 9. During the test, the patients were 
required to walk on a flat ground along a straight line. According to 

the actual situation of the patients, the patients should walk as many 
times as possible, that is, different patients walked at different times. 
Each walk covered about 2–50 steps.

In this paper, we calculated the parameters of each step in each 
walk of each patient to form the data set of Experiment 2. The total 
number of steps of 32 patients was 515. In consideration of the 
symmetry of the sample, we classified the patients with a NIHSS score 
of 1 as very mild stroke, and the patients with a NIHSS score of 2–5 as 
mild stroke. The specific experimental data of Experiment 2 are 
shown in Table 8.

FIGURE 5

Hierarchical model: order of feature’s importance.

TABLE 5 Discriminant model: comparing between different algorithms for algorithm’s selection.

Algorithm Accuracy±standard deviation 95% confidence interval

KNN (Altman, 1992; Wong et al., 2009; Soucy and Mineau, 2001) 0.8978 ± 0.0711 (0.8096, 0.9860)

Perceptron (Freund and Schapire, 1999; Gallant, 1990; Ruck, 1990) 0.8530 ± 0.0504 (0.7905, 0.9156)

AdaBoost 0.8589 ± 0.0333 (0.8176, 0.9002)

Stochastic Gradient Descent (Robbins and Monro, 1985) 0.8405 ± 0.0674 (0.7569, 0.9242)

LogisticRegression 0.8595 ± 0.0647 (0.7792, 0.9398)

SVM 0.9105 ± 0.0510 (0.8471, 0.9738)

DecisionTree 0.8204 ± 0.0636 (0.7415, 0.8993)

Randomforest 0.9105 ± 0.0229 (0.8821, 0.9389)

GradientBoosting 0.8268 ± 0.0601 (0.7522, 0.9014)
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5.2 Experimental results

The purpose of the experiment is to verify the performance of the 
discriminant model based on machine learning to distinguish between 
normal healthy people and stroke patients, and the performance of the 
hierarchical model to distinguish the severity of stroke in 
stroke patients.

 (a) Experiment 1
Test results: as shown in Table  7, we  selected 70 patients and 

normal people as test sets to verify the performance of the model. The 
experimental results are shown in Table 10. From the table:

 1. The model based on KNN, SVM and Randomforest algorithms 
has achieved 98.28, 98.28 and 96.55% detection accuracy for 
normal healthy people, respectively.

 2. The detection accuracy of the model based on KNN, SVM and 
Randomforest algorithms for stroke patients was 66.67, 66.67 
and 58.33%, respectively.

 3. The overall detection accuracy of the model based on KNN, 
SVM and Randomforest algorithms is 92.86, 92.86 and 90.00%, 
respectively.

 (b) Experiment 2
Test results: as shown in Table 8 we selected 32 patients with a 

total of 515 steps as our total sample. The test set consists of 7 
patients with a total of 58 steps to verify the performance of the 
model. It should be  noted that the judgment criterion of this 
experiment is: each prediction result is the prediction result of a 
certain step for a person. If the prediction result of each step is 
consistent with the labeled data, it is judged that the recognition is 

correct, otherwise it is a recognition error. The same judgment is 
made on all the steps of the person, and finally the principle of the 
minority obeying the majority is adopted. In other words, the total 
number of steps judged to be correct is more than the number of 
steps judged to be wrong, then the total judgment result is that the 
detection is correct; Otherwise, it is a detection error. The 
experimental results are shown in Table 11. Subject/tester 1–4 are 
mild stroke patients, and subject/tester 5–7 are very mild stroke 
patients. It can be  seen from the table that the overall detection 
accuracy of the model based on Randomforest, SVM and AdaBoost 
algorithms reaches 71.43, 85.71 and 85.71%, respectively.

6 Discussion

In this paper, a quantitative evaluation method of stroke 
association based on multi-dimensional gait parameters is 
proposed. This method is based on machine learning method, 
training a model, and then analyzing gait of stroke. That is, through 
all existing gait features (gait parameters), select appropriate gait 
features (gait parameters), label stroke patients with NHISS scale by 
clinicians, and finally train a discriminant model for stroke patients 
or not and a hierarchical model for stroke severity grading 

TABLE 7 Data of experiment 1.

Category Number of subjects Age Height Weight Training set Test set

Normal healthy people 187 47.4 ± 12.4 165.2 ± 7.4 69.7 ± 17.6 129 58

Stroke patients 39 63.4 ± 14.5 169.3 ± 7.1 77.5 ± 7.5 27 12

TABLE 8 Data of experiment 2.

Category Number of subjects Number of steps Training set (Steps / 
numbers of people)

Test set (Steps / 
numbers of people)

(0–1) very mild stroke 15 295 264/12 31/3

(2–5) mild stroke 17 220 193/13 27/4

TABLE 9 NIHSS score of strokes.

NIHSS score 
/ point

1 2 3 4 5 Total

Number / person 15 10 5 1 1 32

TABLE 6 Hierarchical model: comparing between different algorithms for algorithm’s selection.

Algorithm Accuracy ± standard deviation 95% confidence interval

KNN (Altman, 1992; Wong et al., 2009; Soucy and Mineau, 2001) 0.6821 ± 0.2295 (0.3972, 0.9670)

Perceptron (Freund and Schapire, 1999; Gallant, 1990; Ruck, 1990) 0.6040 ± 0.1949 (0.3620, 0.8459)

AdaBoost 0.6981 ± 0.1026 (0.5706, 0.8255)

Stochastic Gradient Descent (Robbins and Monro, 1985) 0.6101 ± 0.1212 (0.4596, 0.7606)

LogisticRegression 0.4488 ± 0.1028 (0.3212, 0.5765)

SVM 0.6869 ± 0.1216 (0.5359, 0.8380)

DecisionTree 0.6059 ± 0.1392 (0.4331, 0.7788)

Randomforest 0.7086 ± 0.0769 (0.6132, 0.8041)

GradientBoosting 0.6146 ± 0.1603 (0.4157, 0.8136)
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evaluation through machine learning algorithm. Based on the data 
of 226 cases collected in Beijing Chao-Yang Hospital, Capital 
Medical University, experiments were conducted on the two 
models. The purpose of Experiment 1 was to use the discriminant 
model to distinguish between normal healthy people and stroke 
patients. The experimental results show that the three algorithms 
have achieved 96.55–98.28% detection accuracy for normal people, 

which shows that the classifier can better distinguish healthy 
people. The accuracy of the model based on KNN, SVM and 
Randomforest is 58.33–66.67% for stroke patients. Compared with 
healthy people, the accuracy of stroke patients’ detection is low. This 
is because the NIHSS scores of stroke patients in our test set are 
small, that is, the degree of stroke of these patients is very slight, so 
the classifier is difficult to distinguish under the current training of 

TABLE 10 Experiment 1: test results by model comparing between different algorithms.

Algorithm Average 
Accuracy

Stroke patients Normal control

Total Correct Error Accuracy Total Correct Error Accuracy

KNN 92.86% 12 8 4 66.67% 58 57 1 98.28%

SVM 92.86% 12 8 4 66.67% 58 57 1 98.28%

Random forest 90.00% 12 7 5 58.33% 58 56 2 96.55%

TABLE 11 Experiment 2: test results by model comparing between different algorithms.

Random forest Number of steps Correct steps 
detected

Error steps 
detected

Judged to 
be correct

Mild stroke Tester 1 2 2 0 yes

Tester 2 7 3 4 no

Tester 3 11 0 11 no

Tester 4 7 7 0 yes

Very mild stroke Tester 5 8 7 1 yes

Tester 6 7 6 1 yes

Tester 7 16 16 0 yes

Total 7 58 41 17 5

Accuracy 71.43%

SVM Number of steps Correct steps detected Error steps detected Judged to be correct

Mild stroke Tester 1 2 2 0 yes

Tester 2 7 4 3 yes

Tester 3 11 2 9 no

Tester 4 7 7 0 yes

Very mild stroke Tester 5 8 6 2 yes

Tester 6 7 4 3 yes

Tester 7 16 16 0 yes

Total 7 58 41 17 6

Accuracy 85.71%

Adaboost Number of steps Correct steps detected Error steps detected Judged to be correct

Mild stroke Tester 1 2 2 0 yes

Tester 2 7 4 3 yes

Tester 3 11 3 8 no

Tester 4 7 7 0 yes

Very mild stroke Tester 5 8 7 0 yes

Tester 6 7 5 2 yes

Tester 7 16 11 5 yes

Total 7 58 39 18 6

Accuracy 85.71%
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relatively small data sets. The overall detection accuracy of the 
models by the three algorithms has reached more than 90%, and the 
results of KNN and SVM detection are better, which fully shows 
that the model built in this paper can provide a certain degree of 
early warning for the onset or recurrence of stroke. The purpose of 
Experiment 2 was to use the hierarchical model to distinguish the 
severity of stroke in stroke patients. It can be seen from the result 
that the overall detection accuracy of the models is up to 85.71% 
according to the number of steps, of which the results of AdaBoost 
and SVM are better, which fully shows that the model built in this 
paper can monitor the rehabilitation status of stroke patients after 
stroke. However, because the overall sample size of our experiment 
is not too large, and the selected patients have mild stroke, it has 
limitations. In the future, we need to expand the sample size for 
further in-depth research. In addition, previous studies have shown 
that the presence and progression of cerebral atrophy(subtype of 
ischemic stroke) is a potentially relevant (although still poorly 
characterized) manifestation of acute cerebral small vessel disease-
related to gait disturbances (Grau-Olivares et al., 2010; Smith and 
Arboix, 2012). Because the pathophysiology, prognosis and clinical 
characteristics of acute small vessel ischemic stroke are different 
from other types of cerebral infarction, the two models in the 
proposed method for fine-grained domain of ischemic stroke is also 
one of the future research directions. For example, it can be used to 
study the relationship between lacunar and non-lacunar acute 
stroke (Rudilosso et al., 2022).

7 Conclusion

The two experimental results showed that the stroke association 
quantitative evaluation method by using machine learning based on 
multi-dimensional gait parameters proposed in this paper has the 
characteristics of high accuracy, objectivity, and quantification. It is 
expected to be used in clinical early warning, rehabilitation monitoring 
and evaluation of post-stroke recurrence to assist clinicians 
more efficiently.
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