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Introduction: Computational models are valuable tools for understanding

and studying a wide range of characteristics and mechanisms of the brain.

Furthermore, they can also be exploited to explore biological neural networks

from neuronal cultures. However, few of the current in silico approaches

consider the energetic demand of neurons to sustain their electrophysiological

functions, specifically their well-known oxygen-dependent firing.

Methods: In this work, we introduce Digitoids, a computational platform

which integrates a Hodgkin-Huxley-like model to describe the time-dependent

oscillations of the neuronal membrane potential with oxygen dynamics in

the culture environment. In Digitoids, neurons are connected to each other

according to Small-World topologies observed in cell cultures, and oxygen

consumption by cells is modeled as limited by diffusion through the culture

medium. The oxygen consumed is used to fuel their basal metabolism and the

activity of Na+-K+-ATP membrane pumps, thus it modulates neuronal firing.

Results: Our simulations show that the characteristics of neuronal firing

predicted throughout the network are related to oxygen availability. In addition,

the average firing rate predicted by Digitoids is statistically similar to that

measured in neuronal networks in vitro, further proving the relevance of this

platform.

Dicussion: Digitoids paves the way for a new generation of in silico models of

neuronal networks, establishing the oxygen dependence of electrophysiological

dynamics as a fundamental requirement to improve their physiological

relevance.

KEYWORDS

in silico modeling, neuron firing, oxygen metabolism, in vitro neuronal network,
digitalized neuronal network

1 Introduction

Exploring how neurons process and transmit information is crucial for advancing our
knowledge of the brain. Along with the study of biological neural networks in cultures or in
in vitro slices (Chiappalone et al., 2019; Compte et al., 2003; Humpel, 2015; Van Pelt et al.,
2005), computational, or in silico, models have been successfully exploited, e.g., to support
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the study of neuronal network modulation and delineate potential
mechanisms underlying activity patterns (Doorn et al., 2023;
Masquelier and Deco, 2013; Sukenik et al., 2021; Wen et al.,
2022). Several model-based solutions for generating virtual
representations of neural cells able to replicate the salient
properties of experimentally observed behaviors have been
proposed (Lonardoni et al., 2015). For instance, intuitive and easy
to use simulators (e.g., BRIAN 2, NEST, NEURON) have been
employed to simulate spiking neural network models (Gewaltig
and Diesmann, 2007; Hines and Carnevale, 2001; Stimberg et al.,
2019). Traditionally, they include mathematical descriptions of
the single-neuron activity, ranging from simple phenomenological
characterization of neuronal spiking (Izhikevich, 2003) to more
complex, biophysical conductance-based simulations of ion fluxes
between the intra and the extracellular space (Hodgkin and Huxley,
1952b), as well as models of cell-cell connections to replicate the
neuronal network architecture (Markram et al., 2015; Masoli et al.,
2022; Potjans and Diesmann, 2014). Some studies also incorporate
more sophisticated models, e.g., including astrocytes via tripartite
synapses (Lenk et al., 2020).

However, few of these approaches include energetic
considerations, i.e., the dynamics of ATP hydrolysis (Kuznetsov,
2024; Wei et al., 2014). It is well-known that metabolism is
involved in brain functionality: nutrients—and, in particular,
oxygen (O2)—fuel brain specialized functions, determining the
electrophysiological dynamics and brain plasticity, up to cognitive
functions (Watts et al., 2018). More specifically, beyond the
basic activities common to other cells (e.g., DNA and RNA
synthesis), resource uptake in neurons is also dedicated to
support spiking, because of the role of the Na+-K+-ATP pump
in signal propagation (Attwell and Laughlin, 2001; Lennie,
2003). Since ATP dephosphorylation depends on the rate of
O2 consumption, its dynamics can be monitored (Brosel et al.,
2018; Özugur et al., 2020). O2 dependence is also crucial for
in vitro slice preparations, requiring humid and well-oxygenated
environment for their culturing (Sanchez-Vives et al., 2000).
An analytical formulation describing O2-dependent firing was
proposed by Wei and collaborators (Wei et al., 2014) to elucidate
the mechanisms of seizure development and termination, as well
as their interaction with energy metabolism. This model assumes
that O2 variations depend on the diffusion from the bath solution
and on the neuronal consumption rate for firing, but it does
not consider that O2 can also be consumed for sustaining other
metabolic functions of the cell (Attwell and Laughlin, 2001; Lennie,
2003).

The formulation proposed by Wei’s team was applied to brain
tissue slices. However, O2 is also crucial in in vitro cultures: for
example, in traditional monolayers, cells are inevitably exposed
to different O2 levels when varying the amount of medium or
the O2 boundary concentration (Al-Ani et al., 2018; Gordon and
Amini, 2021; Pacitti et al., 2019; Walsh et al., 2005). Starting
from Wei et al.’s model, we have developed a computational
platform able to mimic the in vitro electrophysiological behavior of
neuronal cultures at the single-cell and network level. We refer to
Digitoids as the digitalized versions of in vitro neuronal monolayers
obtained from dissociated neurons, in which the dependence
on O2 concentration of network dynamics is considered. As
in vitro networks can have different culture conditions and
layouts (Antonello et al., 2022; Downes et al., 2012; Emre Kapucu

et al., 2022; Hyvärinen et al., 2019), the platform is purposely
designed to be modular, thus the user can generate Digitoids
matching any type of in vitro neuronal network. Here we describe
the theory and computational setup of Digitoids. For testing
the performance and highlighting the crucial role of O2 in
describing firing dynamics in neuronal cultures, we digitalized
the layouts of neuron monolayers seeded on commercial micro-
electrode arrays (MEAs). The O2-dependent model of firing and
metabolism was implemented on digitalized networks to assess if
a degree of similarity can be found between the Digitoids’ output
and the corresponding experimental data from MEA recordings,
comparing the predictivity of our platform to that of traditional
models which neglect the dependence of firing activity on O2
supply. Albeit preliminary, these results highlight the significant
role of O2 dynamics in network behaviors and thus the necessity of
including energetic considerations while mathematically describing
electrophysiological activity in cell cultures.

2 Materials and methods

2.1 Theory and outline of the
computational platform

Figure 1. A shows the in vitro scenario simulated by the
Digitoids. It is composed of a well seeded with neurons, supplied
with a layer of culture medium of height h. The cells are assumed to
be homogeneously distributed on the bottom of the well (at z = 0).
Four phenomena occur in the system: i) O2 diffusion through the
medium, ii) O2 consumption by neurons to fuel both basic cellular
processes and electrophysiological activity, iii) neuron firing and iv)
neural network dynamics, i.e., the transfer of electrical information
via synaptic-mediated connections among cells. Considering the
symmetry of the system, O2 diffusion can be assumed to occur
only along the z axis and independently of the x and y directions
(McMurtrey, 2016; Patterson and Mazurek, 2010; Place et al., 2017).
Each neuron at z = 0 consumes O2 as described in the subsection
2.1.2 Single-neuron model, generating an axial concentration
gradient and a consequent downward flux. Moreover, O2 diffusion
and reaction can be simulated as “background dynamics”, given
that their characteristic times are significantly longer than those of
the electrophysiological phenomena occurring on the x, y plane,
where the neuron monolayer lies (Table 1). Transfer information
is mainly influenced by the strength and number of synaptic
connections between neurons. Thus, the O2-dependent single-
neuron dynamics can be decoupled from those of the network
as a whole. As such, the network (Figure 1A) can be considered
as the integration of modules describing the O2 consumption—
depending on its downward diffusion—as well as the firing for
a single neuron (Figure 1B), modulated through the extent of its
in-plane connectivity. Under these assumptions, the single-neuron
metabolic and electrophysiological activity can be determined at
each time step according to the O2 concentration perceived by
the cells at z = 0, which is in turn updated depending on the
single-neuron consumption and allows computing the diffusive
flux magnitude along the medium column. On this basis, the O2
concentration profile at the subsequent time step can be estimated
and the process iterated over time.
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TABLE 1 Characteristic times of the phenomena involved in the
single-neuron model: O2 diffusion—in the x direction and in the x-y
plane, O2 consumption, neuron firing and synapses.

Phenomenon Characteristic
time (s)

References

O2 diffusion in z direction ∼ 0.6 (Magliaro et al., 2019)

O2 diffusion on x-y plane ∼ 6 104 (Magliaro et al., 2019)

O2 consumption ∼ 31 (Magliaro et al., 2019)

Neuron firing ∼ 10−3 (Bean, 2007)

Synapses ∼ 2 10−4 (Ashwin et al., 2016;
Wang et al., 2010)

From the evaluation of such characteristic times, it was possible to assume that single-neuron
dynamics are decoupled from the network ones.

FIGURE 1

Overview of the Digitoids platform. (A) The in vitro scenario to be
modeled: we describe a neuronal monolayer where cells are
seeded at the bottom of a well, filled with culture medium reaching
height h. The top layer of culture medium interfaces with air,
allowing O2 to diffuse and reach the cells, which consume it to
sustain their metabolism and for firing. (B) Sketch of the coupling
between O2 diffusion through the culture medium and
single-neuron activity. We assume that single-cell dynamics can be
decoupled from the network ones: a neuron lies in plane x-y and is
covered by a medium column of height h, where O2 diffuses from
top to the bottom along z axis. The biophysical phenomena
involved are listed on the right: O2 diffusion, O2 consumption,
neuron spiking and neuron-to-neuron connections.

The computational platform was developed in Matlab (version
R2023b the Mathworks Inc., Boston Massachusetts), exploiting the
Simulink toolbox.

2.1.1 Diffusion model
O2 diffusion through the culture medium is modeled as a one-

dimensional phenomenon governed by the Fick’s second law:

∂c
∂t
= D

∂2c
∂z2 (1)

where c (mol m−3) is the O2 concentration and D (m2 s−1) is the
diffusion constant of O2 in the culture medium. Eq. (1) is solved
using the finite difference method according to the initial and
boundary conditions. Specifically, assuming that the well is initially
filled with O2-saturated culture medium, the initial condition is
c (z, 0) = c0, and the air-medium interface maintains a uniform
and time-invariant O2 concentration, i.e., c

(
h, t

)
= c0. Note that,

as neurons consume O2 by means of a surface reaction (i.e., they
sink O2 as an outward flux through the well bottom), there is no
volumetric reaction term to include in Eq. (1).

2.1.2 Single-neuron model
The single-neuron model describes the O2 consumption for

maintaining both vital and electrophysiological functions and the
O2-dependent dynamics in each cell of the network as a function of
the current O2 availability [i.e., c(0, t)] as input.

Regarding the O2 consumption, we assume that 75% of the
available O2 is devoted to fuel neuronal spiking activity (namely,
cf = 0.75 · c), and the remaining 25% (namely, cnf = 0.25 · c)
to sustain basic cell processes (Attwell and Laughlin, 2001; Lennie,
2003). The O2 consumption rate of the whole neuron network
(R (c), in mol m−3 s−1) can be thus expressed as:

R (c) = Rnf
(
cnf
)
+Rf

(
cf
)

(2)

where Rnf
(
cnf
)

is the rate at which O2 is consumed for cellular and
sub-cellular processes not directly linked to electrophysiological
activity, and Rf

(
cf
)

is the O2 consumption contributing to neuron
firing. Specifically, Rnf

(
cnf
)

can be formulated according to the
Michaelis-Menten kinetics (Berger et al., 2018; Magliaro et al.,
2019):

Rnf
(
cnf
)
=

sOCR·ρcells·cnf
km+cnf

(3)

where sOCR (mol s−1) is the maximal consumption rate of a single
cell in the network, ρcells (m−3) is the volumetric cell density of the
monolayer and km (mol m−3) is the Michaelis-Menten constant,
i.e., the O2 concentration corresponding to half saturation of the
consumption rate. On the other hand, Rf

(
cf
)

was described by Wei
and co-workers (Wei et al., 2014) as:

Rf
(
cf
)
= α·Ipump

(
cf
)

(4)

where Ipump (mol m−3 s−1) is the transport rate of ions across
the membrane and α (a.u.) is a conversion factor from pump
transport rate to time variation of O2 concentration. Ipump is related
to intracellular (subscript i) sodium and the extracellular (subscript
o) potassium concentrations as in the following equation:

Ipump =
ρ

1.0+exp
(

25−[Na]i
3

) × 1
1.0+exp

(
5.5−

[
K+
]
o
) (5)

in which we assume that the rate ρ (mol m−3 s−1) at which the
pumps transport ions across the membrane depends on the O2
concentration according to a sigmoidal function.

ρ
(
cf
)
=

ρmax

1+exp
(

20−
cf
3

) (6)

In Eq. (6), ρmax (mol m−3 s−1) is the maximal rate at which
the pump operates, i.e., when the medium is fully oxygenated.
Therefore, Ipump regulates the trans-membrane electrochemical
gradient depending on the O2 availability, which thus influences the
membrane potential V (mV) and the firing activity of the neuron.
The Hodgkin-Huxley (HH) model is used to describe the dynamics
of V (Hodgkin et al., 1952; Hodgkin and Huxley, 1952a):

dV
dt
=

1
C

(Iext−INa−IK−ICl) (7)

where C (µF cm−2) is the membrane capacitance, Iext (µA cm−2)
is the external applied or synaptic current from other neurons,
INa, IK , ICl (µA cm−2) are the sodium, potassium and chloride
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currents. The latter corresponds to a leakage current, as it is mainly
represented by flux of Cl− ions (Hodgkin and Huxley, 1952a).

It is worth highlighting that—as in the traditional formulation
of the HH model—the membrane potential V (Eq. 7) depends on
the potassium and sodium currents INa and IK :

INa ≈ GNam3p (V − ENa) (8)

I ≈ KGKn4 (V − EK) (9)

where m, p, and n are activation and inactivation variables (their
description is given by Supplementary Eqs. 1–7) of voltage-gated
ionic channels, whose values range from 0 to 1 and define the
fraction of open and closed channels throughout the membrane.
For the sake of simplicity, the non-voltage-sensitive leaks were not
reported. As detailed in Eqs. (8) and (9), INa and IK are in turn
functions of the reversal potential ENa and EK , respectively, given
by the Nernst equation:

ENa = 26.64ln
(
[Na+]o
[Na+]i

)
(10)

EK = 26.64ln
(
[K+]o
[K+]i

)
(11)

However, while in the HH model the intracellular concentration
of sodium and the extracellular concentration of potassium are
considered as constants, in this formulation they are modulated
by Ipump, which is a function of the local O2 concentration, as
described through Eqs. (5) and (6). Thus, Nernst potentials of
sodium and potassium (Eqs. 10 and 11) vary with O2. All the
dynamics describing neuronal functioning are here assumed to
occur at 37◦C, corresponding to the physiological temperature for
eukaryotic cells. Intracellular sodium and extracellular potassium
concentrations are in turn modulated by INa, IK and Ipump, as
described by the following equations (Eqs. 12 and 13):

d
[
K+
]
o

dt
= γβIK−2.0βIpump (12)

d
[
Na+

]
i

dt
= −γINa−3.0Ipump (13)

More details on the model are provided in the Supplementary
Text 1 (Eqs. 8–10).

2.1.3 Connectivity model
The neuronal network is generated connecting the single

neurons. In this study, we implemented the neuron-to-neuron
coupling via chemical synapses (Roth and van Rossum, 2009).
Thus, the membrane potential of the i-th neuron is described by
the following equation.

dVi

dt
=

1
Ci

(
Iiext − IiNa − IiK − IiCl + Iisyn

)
(14)

Iisyn in Eq. (14) is the synaptic current input to the post-synaptic
neuron i and it is modeled as:

Iisyn =
N∑

j = 1
j 6= i

gjisyn · aij ·
(
Ejsyn − Vi

)
(15)

in which we assume that the i-th neuron receives inputs from
N pre-synaptic neurons. aij is the coefficient describing the
connection between vertices i and j of the adjacency matrix A,
obtained through the Watts-Strogaz method (more details in the
next Section and in Supplementary Table 2). Ejsyn (mV) is the
reversal potential of the synapse for the j-th pre-synaptic neuron
and can assume the following values according to the nature of the
synaptic connection (Borges et al., 2023; Wei et al., 2014).

Ejsyn =

{
0 mV, excitatory connection
−80 mV, inhibitory connection

(16)

The value of the synaptic conductance gjsyn (µS cm−2) is modified
every time the pre-synaptic neuron fires, i.e., every time Vi exceeds
the threshold value of 0mV with a positive derivative. At each spike,
there is a release of neurotransmitter into the synaptic cleft, thus the
synaptic conductance over time is modeled as an exponential decay:

gjisyn (t) = gjisyn, · e
−

(t−t0)
τsyn (17)

where t0 is the time at which the spike is fired by the pre-synaptic
neuron, gjisyn is the maximal conductance value and τsyn is the
decay time constant, which assumes the following values (Wei et al.,
2014).

τsyn =

{
4 ms, excitatory connection
8 ms, inhibitory connection

(18)

The synaptic dynamics are implemented in the model by updating
the value of the synaptic conductance gjsyn as follows (Borges et al.,
2023; Roth and van Rossum, 2009):

gjisyn → gjisyn + gsyn (19)

dgjisyn
dt
= −

gjisyn
τsyn

(20)

where gsyn = 0.5 µS cm−2 is the intensity of the synaptic update,
the same for both excitatory and inhibitory synapses. In Digitoids,
80% of neurons are excitatory and 20% inhibitory.

2.1.4 Network model
It has been observed that the structure of neuronal networks

in both brain tissues and cellular monolayers can be described
by Small-World (SW) graphs (Antonello et al., 2022; Bettencourt
et al., 2007; de Santos-Sierra et al., 2014). Specifically, a SW
graph shows intermediate characteristics between a random and
a regular graph, with dense clustering of neighboring vertices
and short distances between pair of vertices. Indeed, in vivo
chemical synapses typically facilitate the formation of dense local
connections between neurons, thus giving rise to clusters, as
well as of long-range connections allowing clusters of neurons
to communicate (Bassett and Bullmore, 2006). Given a network
composed of n vertices and m edges, it can be described by
the metrics reported in Supplementary Table 2 (Humphries and
Gurney, 2008; Watts and Strogatz, 1998).

We generated SW neural networks in a purposely developed
Simulink library, which describes the wiring information through
an adjacency matrix A, usually used to represent inter-neuron
connections (de Santos-Sierra et al., 2014; Poli et al., 2015;
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TABLE 2 Values of the parameters simulated in the
single-neuron configuration.

h (mm) c0 (mol m−3)

3 0.2

2 0.16

1 0.12

0.5 0.08

0.1 0.04

Every combination of the two parameters – medium height h and boundary O2

concentration c0−was tested, for a total of 25 configurations in the single-neuron model,
to assess and characterize the influence of these parameters in shaping the resulting
electrophysiological activity.

Shefi et al., 2002). Starting from the number of vertices and edges
and the metrics characterizing the networks, A can be obtained
using the Watts-Strogatz method (Chen et al., 2007). Each
coefficient of the matrix describes the connectivity between vertex i
and j. Specifically, aij = 1 if an edge exists from vertex i to vertex
j, otherwise it is 0. We thus exploited such adjacency matrices to
create connections between neurons, defined by chemical synapses
(Eqs. 14–20). Both the O2 diffusion and the single-neuron models
were integrated in the library, which allows defining: (i) the initial
and boundary O2 concentration c0 at the air-medium interface,
(ii) the height of the medium h, and (iii) the metabolic and firing
parameters of the neuron.

2.2 Impact of oxygen on single-neuron
activity

For assessing the influence of O2 availability on firing, the
single-neuron model coupled with O2 diffusion was first computed
using stepwise variations of both (i) the boundary concentration
of O2 from 0.2 mol m−3 (i.e., the maximum available oxygen
concentration in water) to 0.04 mol m−3 [i.e., the critical oxygen
concentration for cell survival (Berger et al., 2018)] and (ii)
the culture medium height h from 0.1 to 3 mm, based on the
conditions usually used for neuron electrophysiological recordings
(Ballesteros-Esteban et al., 2023; Negri et al., 2020; Scelfo et al.,
2012). All the parameter combinations were simulated for 20 s
(variable step solver “ode15s” by Simulink) and are summarized in
Table 2.

2.3 Analysis of single-neuron membrane
potential

To characterize how the shape of the spike trains and the single-
spike waveforms are influenced by the different combinations of c0
and h–and, thus, by the overall O2 availability within the system—
we defined two new metrics: the Aspect Ratio (AR, expressed
in logarithmically-scaled mV s−1) and the Dissipation Rate (DR,
expressed in s−1), defined as follows:

AR = log10
1Vmax

ttrain
(21)

DR =
α

1Vmax
(22)

where 1Vmax is the peak-to-peak amplitude of the highest spike in
the train, ttrain is the time duration of the train and α (in mV s−1) is
the average value of the first derivative of the envelope of the peaks
in the train. ttrain was expressed as the difference between the end
and start times tend and tstart , identified as the time at which the first
derivative of the signal is equal to 0 and the time at which the signal
amplitude > −60 mV (Di Florio et al., 2022; Wilson and Emerson,
2002), respectively. Figure 2A reports a typical spike train, and a
graphical representation of the quantities used to calculate AR and
DR.

We separately assessed the correlation of each of the three
metrics–ttrain, AR and DR—with the boundary O2 concentration
c0 and the medium height h by computing the non-parametric
Spearman coefficient (significance level of 0.05).

The shape of single spikes was also evaluated, calculating the
peak-to-peak amplitude (vpp = vmax − vmin, expressed in mV),
rise rate (rr = (vmax − vstart)/(tmax − tstart), in mV s−1) and fall
rate (fr = (vmax − vend)/(tmax − tend) in mV s−1), where tmax is
calculated as the time corresponding to the maximum of the spike
(Figure 2B; Ghaderi et al., 2018, Zaitsev et al., 2012).

Finally, to describe the features of the spikes fired by single
neurons as a function of the balance between diffusive O2 supply
and its consumption by the neurons irrespective of the specific
setup of the simulation, we exploited the Thiele Modulus, 82.
Specifically, 82 is defined as the ratio between the characteristic
diffusion (τd) and reaction (τr) times. Since metabolism and firing
occur simultaneously in the neuron domain, the reaction dynamics
is driven by the faster of the two phenomena. Given that the
reaction is described by the sum of two rates (Eq. 2), 82 can be
formulated as follows:

82
=

τd

τr
= τd

(
1

τnf
+

1
τf

)
=

τd
(
τnf + τf

)
τnf · τf

(23)

where τnf and τf indicate the characteristic times of basal
and firing-related O2 consumption, respectively. Refer to
Supplementary Text 2 for further details on the derivation of
Eq. (23). The shape metrics of the spike trains–AR and DR−were
then also evaluated as a function of 82.

2.4 Assessment of digitoids performance

2.4.1 Digitoids versus experimental data
Digitoids performance was evaluated using the experimental

data presented in Ballesteros-Esteban et al. (2023), following the
pipeline shown in Figure 3. In ref. (Ballesteros-Esteban et al., 2023),
the authors describe the morphology and the electrophysiological
activity of neuron networks in vitro. The network activity was
recorded via a MEA, and the mean Firing Rate (mFR) as well as the
event synchronization were extracted. The topological evolution
of the networks was mapped to a network graph, where neurons
are represented as vertices and their physical connections as edges,
and the SW metrics were defined. Their experimental setup and
SW metrics are detailed in Supplementary Tables 1, 2, and a more
in-depth description of the experimental set-up and procedures is
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FIGURE 2

Visual representation of trains and single spikes, and their metrics. (A) Example of a spike train simulated for a single neuron, in which membrane
voltage V (mV) varies in time (s). The plot reports the parameters used to calculate AR and DR: 1Vmax is the maximal peak-to-peak amplitude, ttrain is
the time duration of the train, and the peak envelope is used to calculate the average value of its first derivative, α. (B) Waveform of a single spike
isolated from the train with indication of reference points for calculating its electrophysiological characteristics (vpp, rr and fr).

FIGURE 3

The pipeline adopted for assessing the performance of Digitoids using experimental data. Experimental topological parameters from neurons
cultured on MEAs were used to build the Digitoids and the HH (i.e., O2-independent models) neuronal networks. The Digitoids and HH models were
simulated, and their membrane potentials were processed in the same way as the experimental electrophysiological data to extract mFR. Finally,
mFRs from the two computational models – Digitoids and HH – and experimental neuronal cultures were statistically compared to assess whether a
similarity exists.

provided in Supplementary Text 4. In our work, measurements
from Day In Vitro (DIV) 11 to DIV 16—i.e., when the network
exhibits a SW layout (Ballesteros-Esteban et al., 2023) —were
exploited, without the intention of mapping the temporal evolution
of the in vitro neuronal cultures. Given the number of vertices
and edges for those DIVs reported in Ballesteros-Esteban and co-
workers and the metrics characterizing the networks, the adjacency

matrix was obtained through the Watts-Strogatz method, setting
the rewiring probability to 0.5 (Watts and Strogatz, 1998). Three
SW graphs were obtained for each DIV considered. The outcoming
connectivity models are sparse (i.e., the number of edges is less
than the possible number of edges in the order of O(q), where q
is the total number of vertices), with a mean edge density (defined
in Supplementary Table 2) of 2.5%, in consistence with previously
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TABLE 3 Values of the parameters used in the model.

Model parameter Value References

Diffusion constant (D) 2.69 · 10−9 m2

s (McMurtrey, 2016)

Oxygen Consumption Rate per cell (sOCR) 5.28 · 10−14 g
s·cell (Huchzermeyer et al., 2013)

Cell density (ρcells) 1.2 · 1013 cell
m3 (Ballesteros-Esteban et al., 2023)

Michaelis-Menten constant (km) 9.79 mg
l (Huchzermeyer et al., 2013)

Conversion factor from pump current to oxygen concentration (α) 0.17 (Wei et al., 2014)

Conversion factor current to concentration (γ) 0.04445
(mM

s
)
/
(

µA
cm2

)
(Wei et al., 2014)

Ratio to intra/extracellular volume (β) 7 (Wei et al., 2014)

Maximal Na-K pump rate (ρmax ) 1.25 mol
m3 ·s (Wei et al., 2014)

Membrane capacitance (C) 1 µF/cm2 (Wei et al., 2014)

Maximal sodium conductance (GNa) 30 mS/cm2 (Wei et al., 2014)

Maximal potassium conductance (GK ) 25 mS/cm2 (Wei et al., 2014)

Reversal potential of synapses, Ejsyn 0 mV , if excitatory (Borges et al., 2023; Wei et al., 2014)

−80 mV , if inhibitory

Time constant of synapses, τsyn 4 ms (Borges et al., 2023; Wei et al., 2014)

8 ms

Synaptic update, gsyn 0.5 µS cm−2 (Borges et al., 2023)

This table reports all the constants adopted in the model described in this work.

FIGURE 4

O2-dependent electrophysiological activity of single neurons predicted by Digitoids. Membrane potential (V, left column) and O2 concentration at
the neuron level (c(0,t), right column) over the first 20 s of the simulation of the single-neuron model with h = 0.1 mm for different values of
boundary O2 concentration c0 (reported in Table 2). In the upper panel, the output of the configuration with highest O2 availability is depicted. The
neuron is able to fire a long train of action potentials. In correspondence of the firing, c(0,t) decreases because O2 is consumed by the cell to sustain
metabolism and electrical activity.
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reported experimental values (Antonello et al., 2022; Downes et al.,
2012).

The SW layouts and the adjacency matrices were used to
generate the corresponding Digitoids. The layouts, along with their
number of vertices and edges, are reported in Supplementary
Table 3, while the model parameters are listed in Table 3. The
same SW layouts were used to build in silico neuronal networks
where the traditional HH model was implemented instead of the
O2-dependent one, described in Section 2.1.2. The single-neuron
description was obtained by imposing the membrane pump to work
optimally, i.e., with fixed pump rate ρmax (Table 3). The current
components of the model are the same of the single-neuron model
(Section 2.1.2)—i.e, INa, IK and ICl −−consistently with the model
developed by Wei and co-workers (Wei et al., 2014). The neurons
in the computational network models are spontaneously active due
to potassium concentration in the bath. All the network models
were simulated for 20 s with the variable-step solver “ode15s” of
Simulink, with maximal step size of 0.4.

2.4.2 Impact of oxygen on network-level activity
Six Digitoids (with SW layout size described in Supplementary

Table 3) were developed and simulated to explore the effects of
O2 deprivation on the network activity. For this purpose, the six
Digitoids were first simulated in normal oxygenation conditions
for cell culture, i.e., considering a boundary concentration
c0 = 0.2 mM. Then, the same networks were simulated lowering
c0 to 0.04 mM, i.e., the threshold O2 concentration ensuring
physiological cell functioning and survival (Berger et al., 2018).

2.5 Statistical analysis

Statistical analyses were performed using GraphPad Prism
8 (GraphPad Software, Boston, Massachusetts United States) to
identify any significant differences between the mFR of the
computational models and the experimental data. Thus, firstly, the
distributions of mFR of the O2-dependent firing in Digitoids, the
mFR experimentally measured in cultured neurons and the mFR
values from the traditional HH model were tested for normality, by
adopting the Shapiro-Wilk test (α = 0.05). Since the distributions
were not Gaussian, the non-parametric Kruskal-Wallis test was
used (α = 0.05). To compare mFR and event synchronization
between the Digitoids simulated in normal (i.e., c0 = 0.2 mM)
and O2 deprivation (i.e., c0 = 0.04 mM) conditions, the Mann-
Whitney test was instead adopted (α = 0.05).

3 Results

3.1 Dependence of firing on oxygen
availability

Figure 4 shows examples of the outcome of the Digitoids, i.e.,
the neuron membrane potential and the O2 concentration at the
cell level (z = 0) taken over a time window of 20 s for different
values of the boundary O2 concentration. As expected, the plots
indicate that single neurons exhibit an O2-dependent firing, with
reduced activity when the local concentration decreases. Indeed,

FIGURE 5

(A) Slope of the peak-to-peak amplitude of single spikes (dVpp)
calculated for the last four points of vpp in the spike train and
plotted as a function of medium height h. For the three lowest
values of h− 0.5, 1 and 2 mm−, the value of dVpp is more negative
when c0 is lower. This means that the train of action potentials fired
by the single-neuron model is terminated with a steeper slope, i.e.,
faster with respect to conditions of higher c0. (B) Duration of the
spike train, ttrain, as a function of 82, whose values are reported in
log-scale. Datapoints correspond to the considered combinations
of c0 and h, reported in Table 2: different symbols correspond to
different values of c0, while colors to h.

when the neuron fires, the Na+-K+-ATP pump is activated, thus O2
is consumed (Eqs. 2–4), and its concentration at z = 0 decreases.
Longer spike trains are generated if O2 availability is high.

For what concerns the sensitivity of the shape metrics to
the parameters c0 and h, plots are reported in Supplementary
Figures 5, 6. Specifically, Supplementary Figure 5 graphically
depicts the dependence of ttrain, AR and DR (Eqs. 21 and 22) on
c0 for each of the tested medium heights, while Supplementary
Figure 6 reports their dependence on h parametrized with respect
to c0. From the visual analysis of the plots, a monotonic relation
can be identified between the parameters c0 and h–which set
the availability of O2 over time to the neuron—and the train
metrics. This suggests that the neuron is able to fire longer
trains of action potentials when the O2 availability in the system
is not a limiting factor, i.e., with highest c0 and lowest h.
Furthermore, the Spearman correlation coefficient r was computed
to provide a quantitative means of such dependencies. Numerical
values of r are reported in Supplementary Tables 4–9 together
with corresponding p-values. All the metrics display significant
correlation with c0, while they significantly correlate with the
medium height only when boundary O2 is maximal. Indeed, the
single-neuron output is more sensitive to growing medium heights
when O2 availability is not limited yet by reduced air saturation,
that is c0 < 0.2 mM. Otherwise, supply constraints due to the
increased diffusive path do not significantly affect the duration
of spike trains.

Moreover, single spikes were identified for each combination
of h and c0; for each spike, vpp, rr and fr were calculated, and
their trend over time are shown in Supplementary Figures 1–3. At
the beginning of the simulation (i.e., when O2 availability is high),
vpp values appear independent of h and c0 (see Supplementary
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FIGURE 6

Statistical comparison between mFR (spikes s−1) values obtained from experimental measurements, the Digitoids and the HH model for the six
different Day In Vitro (DIV) considered for analyses: (A) DIV 11, (B) DIV 12, (C) DIV 13, (D) DIV 14, (E) DIV 15, (F) DIV 16. At each DIV, mFR calculated
from Digitoids and Experimental data exhibits no tatistically significant differences, while Experimental and Digitoids are always different. *p < 0.05,
**p < 0.005.

Figure 1). Then, vpp decreases over time with a rate depending on
c0. In particular, we observed that the rate at which vpp decreases
at the end of the spike train is higher for the lower values of
c0. This is reported in Figure 5A, where the slope of vpp (dVpp)

over the last four time points considered in the simulation is
shown to better highlight the dependence on the different values
of h and c0.

Figure 5B depicts ttrain as a function of 82. Notably, ttrain is
sensitive to the level of O2 available to the neuron, as reported in
Bean (2007), since it decreases with higher 82 (that is with lower
c0 and higher h). This implies that firing is a diffusion-limited
phenomenon, which is suppressed when it cannot be energetically
sustained due to O2 depletion (Nieber, 1999; Pires Monteiro et al.,
2021; Santiago et al., 2023). Moreover, the dispersion of ttrain
values becomes narrower with increasing 82, indicating that the
firing threshold is governed by O2 availability, which is in turn
increasingly limited by diffusion as h increases.

The same trends with respect to 82 are observable for
DR and AR−see Supplementary Text 3 and Supplementary
Figure 4 for details.

3.2 Performance of the digitoids

Figure 6 shows the mFR obtained from: (i) the experimental
in vitro recordings reported in Ballesteros-Esteban et al. (2023); (ii)
the output from the corresponding Digitoids; (iii) the firing activity
of the network with the same topological layout but the traditional
formulation of electrophysiology according to the HH model.
For all the DIV considered, no statistically significant differences
were found between the mFR of Digitoids and the corresponding
experimental data. On the other hand, the values of mFR of the
traditional O2-independent HH model were significantly different
if compared to both the in vitro observations and Digitoids
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FIGURE 7

Effects of O2 deprivation on network activity. Six Digitoids were
simulated with normal O2 and with deprived O2 in culture medium
to compare their mFR. (A) mFR is significantly reduced when the
networks are simulated in O2 deprivation conditions. mFR values
are reported in a.u. since they were normalized for the average
value calculated in normoxic conditions (i.e., c0 = 0.20 mM).
***p < 0.001. (B) O2 deprivation also reduces the event
synchronization of the networks, with statistically significant
differences with respect to the normoxic condition. *p < 0.05.

predictions. The associated p-values are reported in Supplementary
Table 10.

Further, the whole-network effect of O2 deprivation on
mFR predicted by Digitoids is shown in Figure 7A. When
accounting for reduced O2 availability (c0 = 0.04 mM), Digitoids
coherently predicted significantly lower mFR than that obtained
for c0 = 0.2 mM. The event synchronization was also evaluated
in such conditions. Also in this case, O2 deprivation lowers
the predicted synchronization values, with significant differences
with respect to values predicted by the Digitoids with normoxic
conditions (Figure 7B).

Supplementary Figure 7 depicts an example of the event
synchronization calculated from one of the simulated Digitoids.

4 Discussion

O2 levels are crucial to neuronal function in vitro: they
significantly affect viability, oxidative stress and mitochondrial
function (Zhu et al., 2012). However, the influence of O2 on
in vitro electrophysiological behavior is often neglected. In this
work, we developed a computational platform—Digitoids—able to
replicate a neuronal network in vitro. Digitoids embeds a model
of neuron firing in which the O2 dynamics of diffusion and
consumption are introduced and coupled with ionic transport
across the cell membrane. The novelty of the proposed model
resides in the coupling of O2 diffusion and consumption dynamics
with neuronal electrical activity. Thanks to this approach, different
culture conditions and layouts can be replicated obtaining
descriptions of O2-dependent activity tailored on the specific
system under study.

To demonstrate the importance of O2 in neuron firing, we
computed different metrics of the spike train as well as of single

spikes and assessed their dependency on O2 availability. Overall,
the observed trends confirm that the electrophysiological behavior
of single neurons is modulated by O2 supply. These results
are supported by the significant correlation between the train
metrics and the boundary O2 concentration, c0. Interestingly,
neuron firing was found to be less sensitive to O2 fluctuations
in conditions of limited resource availability (i.e., for high 8
2 values). Indeed, reduced—or even non-significant—correlation
coefficients of spike train characteristics with medium height are
found when boundary O2 does not correspond to air saturation
(i.e., c = 0.2 mM).

This behavior can be explained considering that reduced
O2 hinders the homeostatic maintenance of ion concentrations
between the intra and extracellular environments, which is
responsible for sustaining the electrical activity of the neuron, as
reported for both brain slices and in vitro cultures exposed to
hypoxia (Brisson et al., 2013; Fiskum et al., 2021; Pires Monteiro
et al., 2021; Spong et al., 2016; Zanelli et al., 2015). Under these
conditions, the Na+-K+-ATP pump lacks sufficient resources to
fuel ion transport, and thus firing decreases or even ceases (Nieber,
1999). The preliminary results obtained simulating O2 deprivation
at the network level corroborate this evidence, suggesting that cells
reduce their electrical activity and synchronization than in standard
oxygenation at both the single-neuron and whole-network scale.
These results are consistent with studies which reported reduced
firing rate of cultured neurons when exposed to hypoxia (Fiskum
et al., 2021; Hofmeijer et al., 2014).

As a first preliminary assessment of the goodness of Digitoids
predictions, we compared the simulated firing rate to that measured
in neuronal networks seeded on commercial MEAs. No statistically
significant differences were found between the experimentally
measured mFRs and those predicted by Digitoids. Additionally,
we compared the mFRs observed in vitro to predictions by the
classic HH model applied to the same network layouts. The results
are significantly different, highlighting that the mutual influence
between local O2 concentration and the ion pump activity affects
electrophysiological dynamics, as also captured by the analyses
performed on the single-neuron output. It is worth highlighting
that for Digitoids and experimental data the mFR is much lower
than in the traditional HH model. In the latter, the initial values
of simulation parameters (described in Section 2.4) indeed induce
neurons to fire longer trains of APs, which are not limited by
reduced O2 availability. Including O2 dynamics instead allows
Digitoids to mimic its potential deprivation due to neuronal uptake,
hindering the cross-membrane transport of ions as the energetic
demand of membrane pumps cannot be satisfied.

The platform is designed to be modular and adaptable to
different culture conditions by tuning the cell metabolic and
electrophysiological parameters. More complex models of neuronal
cultures, (e.g., co-cultures) can be developed by adding different
single-cell blocks to the Simulink library to mimic other neural
phenotypes. Following the approach described in Callegari et al.
(2023), three-dimensional (3D) neuronal constructs can also be
built by overlaying monolayers on each other. Thus, Digitoids
can be extended to the simulation of neurospheres and cerebral
organoids (Poli et al., 2019), supporting the investigation of
their biophysical mechanisms. These constructs are particularly
susceptible to O2 availability, as its depletion can lead to the
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formation of non-viable cores, hindering the development of
mature traits and of a 3D neural network (Poli et al., 2019).

It is important to note that the experimental data used for
comparison were derived from insect neurons, while the model
parameters are typical of mammalian neurons. Nevertheless, the
fundamental mechanisms underlying spike generation are similar
across different species (Spong et al., 2016), and invertebrates
are widely used to advance our understanding of more complex
organisms (Newcomb et al., 2023; Sattelle and Buckingham, 2006).
A more in-depth validation of our platform would require parallel
recordings of electrophysiological and O2 dynamics in in vitro
neurons. Specifically, perturbations will be added in the model
and the predicted output will be compared to an experimental
setting where the same perturbation is introduced (e.g., incubator
O2 level drop). Furthermore, future effort will be carried out
to integrate in the model also the O2 demand of synaptic
activity (Faria-Pereira and Morais, 2022). For what concerns the
parameters specific of the electrophysiological model, they will
be tuned to better fit the recorded electrophysiology of in vitro
neurons.

To proof the feasibility of using Digitoids, we exploited
topological and electrophysiological data acquired on low density
cultured networks. Thus, the simulated networks involve a
relatively limited number of neurons and connections. To
further expand the relevance of this work, larger networks
can be developed and simulated. Larger-sized Digitoids can
be developed with the same approach described in this work
(Section 2.4.1) by defining a bioinspired (i.e., based on biologically
observed features) adjacency matrix to layout the spatial
distribution of single neurons and their connections within the
Simulink framework.

In conclusion, this work represents a promising first step
towards creating “digital twins” of in vitro neuronal networks. The
approach implemented in Digitoids can be exploited for gaining
important insights into brain pathophysiology. As an example,
stroke and ischemia are characterized by low O2 levels, which
lead to cognitive decline, neuronal damage and cell death (Klein
Gunnewiek et al., 2020; Radenkovic et al., 2024; Voogd et al.,
2023). In addition, neurodegeneration is known to be intimately
linked to mitochondrial—and thus bioenergetic—dysfunctions
(Bustamante-Barrientos et al., 2023). Hence, Digitoids hold the
potential to support, or even replace, primary neuronal cultures,
as they are cost-effective, have a longer lifespan and allow high-
throughput experiments that would be unfeasible in vitro (Velasco
et al., 2020). Ongoing efforts include further model validation
through detailed O2 and electrophysiological measurements, as
well as expanding the model to include additional modules for
different neuron types and 3D networks.
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