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Introduction: Brain tumors are a leading cause of mortality worldwide, with

early and accurate diagnosis being essential for e�ective treatment. Although

Deep Learning (DL) models o�er strong performance in tumor detection and

segmentation using MRI, their black-box nature hinders clinical adoption due to

a lack of interpretability.

Methods: We present a hybrid AI framework that integrates a 3D U-Net

Convolutional Neural Network forMRI-based tumor segmentationwith radiomic

feature extraction. Dimensionality reduction is performed using machine

learning, and an Adaptive Neuro-Fuzzy Inference System (ANFIS) is employed to

produce interpretable decision rules. Each experiment is constrained to a small

set of high-impact radiomic features to enhance clarity and reduce complexity.

Results: The framework was validated on the BraTS2020 dataset, achieving an

average DICE Score of 82.94% for tumor core segmentation and 76.06% for

edema segmentation. Classification tasks yielded accuracies of 95.43% for binary

(healthy vs. tumor) and 92.14% for multi-class (healthy vs. tumor core vs. edema)

problems. A concise set of 18 fuzzy rules was generated to provide clinically

interpretable outputs.

Discussion: Our approach balances high diagnostic accuracy with enhanced

interpretability, addressing a critical barrier in applying DL models in clinical

settings. Integrating of ANFIS and radiomics supports transparent decision-

making, facilitating greater trust and applicability in real-world medical

diagnostics assistance.

KEYWORDS

radiomics, neuro-fuzzy systems, decision rules, brain tumor segmentation, Explainable

Artificial Intelligence, magnetic resonance imaging, deep learning
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1 Introduction

The incidence rate of primary brain and other central nervous

system (CNS) tumors has increased, likely due to advances in

diagnostic technologies, revisions in classification systems, and

increased access to diagnostic imaging devices worldwide (Louis

et al., 2021; de Robles et al., 2015; Low et al., 2022). These tumors

represent a significant public health concern due to their high

rates of mortality and disability, particularly malignant forms,

which account for 1.4% of all cancers and 2.3% of cancer-related

deaths (McNeill, 2016). Approximately 30,000–35,000 new cases

are expected yearly in the United States alone. In adults, the

most frequently observed sites of non-brain malignancies were

mammary, prostatic, colorectal, and cutaneous melanoma (Neff

et al., 2023; Sancar et al., 2017). Notably, BT constitute the second

most common cancer type in pediatric populations (Zhang et al.,

2017). Treatment strategies vary depending on tumor type and

location, with glioblastomas and meningiomas being the most

common malignant and non-malignant tumors, respectively (Low

et al., 2022; Chabert et al., 2024). A significant challenge in the

management of BT is their infiltrative growth pattern. Unlike many

other cancers, which may exhibit defined margins, glioblastomas

can integrate into surrounding neural tissue, making complete

surgical resection challenging (Ban et al., 2021). As tumors have

different radiological characteristics, edema limits the correct

definition of boundaries to analyze specific affected regions using

medical imaging, making treatment planning difficult (Csaholczi

et al., 2020; Khan and Park, 2024).

Diagnosis of BT traditionally depends on the expertise of

neuro-radiologists, who perform detailed clinical analyses and

thorough evaluations of imaging results. However, the global

shortage of specialized professionals makes this process time-

consuming and resource-intensive (Ali et al., 2022). Medical

imaging techniques are an essential tool for visualization and

diagnosis of anatomical structures and physiological processes.

The most commonly used are MRI, Computed Tomography (CT),

Positron Emission Tomography (PET), and X-rays (Bahkali and

Semwal, 2021; Hussain et al., 2022). In contrast to previous

techniques, MRI is considered the reference method for diagnosing

and characterizing BT due to its superior anatomical resolution

and its ability to differentiate soft tissue structures without using

ionizing radiation (Song et al., 2016; Zhou et al., 2022). It

presents an optimal modality for patients who require repeated

examinations, such as pediatric cases or individuals who require

long-term follow-up (Iradat et al., 2024; Jamieson et al., 2013).

In response, Artificial Intelligence (AI) models have emerged

as powerful tools to assist in tumor detection and classification

using MRI (Dixit and Thakur, 2023; Bouhafra and El Bahi,

2024; Rasheed et al., 2023). Machine Learning (ML) and Deep

Learning (DL) techniques have been widely adopted for BT

detection, harnessing MRI scans to provide fast and accurate

predictions (Tabatabaei et al., 2023; Özkaraca et al., 2023;

Mohanty et al., 2024). These AI-driven approaches are increasingly

helping medical professional improve patient care by improving

diagnostic efficiency and accuracy (Cè et al., 2023; Veloz et al.,

2011). Nevertheless, it is imperative to consider the limitations

associated with implementing DL techniques in healthcare. The

requirement for extensive annotated datasets presents a significant

impediment (Vrochidou et al., 2023). The computational resources

necessary to process and analyze these datasets are substantial,

often necessitating a high-performance computing infrastructure

that may not be easily accessible in healthcare environments

(Zhang et al., 2024; Filippini et al., 2023). This challenge is

exacerbated by the labor intensive nature of data annotation, which

is crucial for training the DL model, but can be prohibitively

resource intensive (Mitchell et al., 2021). The advent of transfer

learning techniques has further accelerated progress, enabling

AI models to achieve high accuracy even with limited datasets,

while significantly reducing training time (Alnemer and Rasheed,

2021). The performance of DL algorithms is heavily dependent

on the availability of large amounts of training data. However,

healthcare data is often limited in volume and quality due to

factors such as patient sparsity, variability in medical practices,

and strict privacy regulations (Chen et al., 2019). Other studies,

such as Chen et al. (2021), discuss the challenge of generalizing DL

models trained on limited datasets, and highlight the importance

of having diverse training sets to achieve robust performance

across different settings or demographics of patients (Chen et al.,

2021). Variations in data acquisition protocols between institutions

can lead to discrepancies in image characteristics, affecting model

performance. DL offers advantages over traditional ML approaches

by automatically extracting high-level features from input data. It

demonstrates efficacy in complex medical imaging tasks such as

disease classification and tumor segmentation (Torres-Velázquez

et al., 2020). However, the implementation of DL inmedical settings

remains challenging due to generalization issues (Yoon et al.,

2023). Despite these advancements, a persistent challenge lies in

the lack of transparency in AI methodologies (Burkart and Huber,

2021). This opacity undermines trust in AI-driven systems and

raises ethical concerns among healthcare professionals, posing a

significant barrier to widespread clinical adoption.

Explainable Artificial Intelligence (XAI) addresses these

problems by designing transparent and interpretable models, i.e.,

models that can provide explanatory information in a form

accessible to humans (Schiavon et al., 2023). The goal of XAI is to

help humans trust AI systems more and thus enable better human-

expert machine interaction (Ugalde et al., 2023). To explain the

machine learning models currently being used for BT classification

and segmentation, some methods have been proposed, such as

class activation maps (CAMs) (Schiavon et al., 2023), attention

maps (Tehsin et al., 2024), model-agnostic methods such as

SHAP (SHapley Additive exPlanations) (Ahmed et al., 2023) or

interpreting key features using radiomics (Afshar et al., 2019;

Ponce et al., 2024). Such approaches demonstrate the potential to

provide quantitative and reproducible metrics of interpretation and

validation for medical imaging data (Zhang X. et al., 2022).

Most of the current explainability methods developed for

BT classification algorithms do not provide deeper insights into

their operational mechanisms and tend to produce heatmaps

that simply determine the relevance of specific input features

or variables. Although these approaches are beneficial, they are

insufficient in providing a complete explanation of the rationale

behind the predictions. Through this method, we intended to

propose an interpretable decision rule based on fuzzy logic which
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further supports the prediction process and provides us insights

based on that prediction. In the leading approach, MRI scans are

preprocessed and tumor regions are segmented using 3D U-Nets

convolutional neural networks (CNN) (Cavieres et al., 2023). From

there, radiomic characteristics about compression, texture, and

pixel values are extracted (Ponce et al., 2024). In order to increase

their efficiency, dimensionality reduction methods are used to keep

only the most discriminative features. Finally, it trains an Adaptive

Network-based Fuzzy Inference System (ANFIS) to classify BT and

obtain a set of decision rules that facilitate clinical interpretability

(Querales et al., 2023; Allende-Cid et al., 2016). This method

ensures the performance of the assisted diagnosis is maintained at

a high level, and along with this, can provide explanations in an

accurate and interpretable way, significantly enhancing the clinical

reliability and applicability of AI therapy solutions.

This research is structured as follows. The Section 2 provides

a comprehensive review of related work, highlighting previous

studies and current methodologies used in BT detection and

classification, as well as exploring strategies for the explainability

of the models and the interpretation of their predictions. The

Section 3 details the methodology used, including the main steps

such as database, pre-processing, segmentation, feature extraction

and classification. The results, presented in Section 4, highlight the

performance and explainability capabilities of the proposed model,

underlining its advantages over traditional approaches. Section

5 elaborates on the results’ analysis, highlighting the proposal’s

novelty and its contribution to assisted diagnosis through detailed

tumor characterization. Finally, Section 6 summarizes the main

findings and suggests possible future research lines to improve the

clinical applicability and interpretability of the models.

2 Related works

The integration of Explainable Artificial Intelligence (XAI) into

BT classification and segmentation has become a critical area of

research, addressing the dual challenge of improving the accuracy

of diagnostic assistance while ensuring model interpretability.

For example, studies such as Ullah et al. (2024) and Saeed et al.

(2024) focus on BT segmentation and classification using advanced

architectures like DeepLabV3+. Ullah et al. (2024) introduces

a comprehensive two-component framework that incorpores

Bayesian optimization for hyperparameter tuning. The study

leverages models such as the Inverted Residual Bottleneck to

enhance classification performance and uses Local Interpretable

Model-Agnostic Explanations (LIME) to provide insights

into predictions. Similarly, Saeed et al. (2024) integrates self-

attention modules into the DeepLabV3+ architecture, combining

features extracted from CNN architectures like Darknet53

and MobileNetV2 with a Bayesian optimized Support Vector

Machine (SVM). Grad-CAM techniques are employed to visualize

heatmaps, offering clinicians a clearer understanding of model

predictions. In contrast, other studies, such as Selvapandian and

Manivannan (2018) and Schiavon et al. (2023), explore alternative

methodologies for BT classification. Selvapandian andManivannan

(2018) employ morphological operations for glioma segmentation,

texture analysis, and classification using ANFIS, with good

performance. Meanwhile, Schiavon et al. (2023) highlights the role

of CNN architectures in classification, using XAI techniques like

Grad-CAM and CAMs to interpret predictions. This underscores

the importance of identifying critical features in medical images,

offering valuable insights for clinical decision-making.

Recent studies have explored machine learning (ML)

approaches for brain tumor (BT) classification using MRI. Various

algorithms have been evaluated, including k-Nearest Neighbors (k-

NN), Random Forest (RF), Linear Discriminant Analysis (LDA),

Decision Trees (DT), Logistic Regression (LR), and Multilayer

Perceptron (MLP) (Çınarer and Emiroğlu, 2019; Ferdous et al.,

2021; Kale et al., 2024; Yin and Wang, 2024). For instance, Kale

et al. (2024) analyzed MRI brain scans to classify tumor and

non-tumor tissue using LR, MLP, and RF, achieving accuracy

rates of 96%, 95%, and 96%, respectively. Similarly, Sahoo et al.

(2020) assessed the effectiveness of various ML algorithms for BT

classification, reporting that k-NN achieved an average detection

accuracy of 96.4%. For multi-class classification, Saraswathi and

Gupta (2019) demonstrated that RF achieved 88.7% accuracy in

distinguishing between different tumor types. Additionally, Latif

et al. (2018) proposed an enhanced classification methodology

incorporating hybrid statistical and wavelet features, achieving

96.72% accuracy for high-grade gliomas and 96.04% for low-

grade gliomas using MLP. These studies illustrate the successful

application of ML classification methods for BT detection and

segmentation. Furthermore, they provide a benchmark for

evaluating the proposed framework, validating its comparative

performance against existing classification models.

Additional studies, such as Afshar et al. (2019) and Padmapriya

and Devi (2024), explore the interpretability of alternative

architectures in BT analysis. Afshar et al. (2019) focuses on

Capsule Networks, employing techniques such as maximization of

activation to bridge the gap between automated classification and

human-understandable reasoning, offering a novel perspective on

interpretability. Similarly, Padmapriya and Devi (2024) develops

a computer-aided diagnostic (CAD) system that uses Grad-CAM

to visualize critical regions on MRI scans, improve clinician

confidence by providing intuitive visual explanations. In addition,

Benyamina et al. (2022) advances the explainability of deep

transfer learning models by leveraging SHAP values to clarify

the decision-making process in tumor classification tasks. By

analyzing diverse MRI datasets, this study underscores the

persistent challenges of balancing high classification accuracy with

the need for interpretable AI models, highlighting the importance

of transparent decision-making in clinical applications.

Although several studies have used ANFIS for the classification

of BT and have achieved high accuracy, they often lack

interpretability, limiting their clinical applicability. For example,

Shanmugam and Surampudi (2022) achieved high accuracy in

BT classification using ANFIS but failed to provide mechanisms

to explain how radiomic features influenced the decisions.

Similarly, Anitha et al. (2023) combined the curvelet transform

with ANFIS for the detection and segmentation of meningioma,

achieving high accuracy while partially addressing interpretability

by linking specific tumor features to the classification results.

Kalam et al. (2021) presented an optimized ANFIS classifier with

improved precision, recall and sensitivity to detect meningiomas,

Frontiers inNeuroinformatics 03 frontiersin.org

https://doi.org/10.3389/fninf.2025.1550432
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Mayeta-Revilla et al. 10.3389/fninf.2025.1550432

gliomas, and pituitary tumors, but the contributions of individual

characteristics to the decision-making process were not clarified.

Likewise, Kshirsagar et al. (2022) used Gray Level Co-occurrence

Matrix (GLCM) features with ANFIS to classify BT as normal,

benign, or malignant, achieving high accuracy, yet without

addressing the interpretability of the decision-making process. To

our knowledge, there is still a gap in developing explainability

mechanisms that clarify how Artificial Intelligence (AI) techniques

combine and prioritize the most relevant features for classification.

To address this, this work proposes a methodology for constructing

interpretable rules that elucidate the key elements used to

determine whether tissue is cancerous.

3 Materials and methods

3.1 Database

This study assesses the performance of a model designed for

interpretability in classifying BT, using the BraTS2020 dataset. The

dataset, available at Menze et al. (2015), is a benchmark resource

for BT segmentation and consists of multi-contrast MRI scans.

It includes four imaging sequences: native T1-weighted, post-

contrast T1-weighted (T1ce), T2-weighted and Fluid Attenuated

Inversion Recovery (FLAIR), collected from 366 patients. Each

MRI scan has a resolution of 240 × 240 × 155 voxels and is

accompanied by manually segmented masks and expert-validated

tumor segmentation labels. These labels differentiate between

three key regions: enhancing tumor (ET), tumor core (TC), and

edema (E).

To prepare the images from the BraTS2020 database for

segmentation, several pre-processing steps were applied. First, pixel

values were normalized to a range of 0–1, minimizing intensity

variations caused by differences in imaging equipment. The images

were then resized to a uniform resolution of 128×128×128 voxels

to ensure consistency throughout the data set. Resizing ensures

uniformity in image dimensions, enhancing consistency in model

input for robust training (Zubair Rahman et al., 2024). The process

includes cropping dark areas from the images while preserving the

brain region. This approach not only mitigates class imbalance but

also reduces computational costs, thereby improving the model’s

efficiency (Das et al., 2022). Quadratic interpolation was applied to

adjust the images, while nearest-neighbor interpolation was used

for the segmentation masks to preserve their discrete nature. Non-

informative regions, such as dark areas or white spaces around the

edges, were removed to focus on the regions of interest. For model

training, 80% of the dataset was allocated, with the remaining 20%

reserved for testing.

3.1.1 Class imbalance adjustments
Class imbalance is a significant challenge in data classification,

as it directly impacts model performance and parameter

optimization (Luque et al., 2019). Imbalanced datasets impede the

learning process, particularly for minority classes, often resulting

in their misclassification (Rezvani and Wang, 2023). Although

random undersampling and oversampling are commonly used

baseline methods, our approach prioritizes undersampling to

achieve a more effective balance between majority and minority

classes. This strategy is especially useful for our dataset, where one

class is disproportionately over-represented (Rezvani and Wang,

2023). Although oversampling can be advantageous in certain

scenarios, it carries the risk of overfitting by duplicating examples

from minority classes, which can reduce the generalizability of the

model (Fernández et al., 2018; Estabrooks et al., 2004).

The label adjustment was applied exclusively to the training set.

This adjustment was performed on the basis of two experimental

criteria. In Experiment 1, the focus was on distinguishing between

healthy tissue and whole tumor tissue, while in Experiment 2,

the differentiation extended to three categories: healthy tissue,

tumor core, and edema. For both experiments, the minority class

served as the reference, and adjustments were made independently

for each class to address imbalances. To emphasize the different

outcomes of these adjustments, Table 1 presents the results for both

experimental setups, highlighting the impact of the adjustments on

class distribution.

3.2 Proposed framework

The proposed framework consists of four key stages:

segmentation to identify regions of interest (ROI), feature

extraction, feature selection, and classification using a fuzzy

system to improve explainability (Figure 1). The following sections

provide a detailed description of the methodology, highlighting

each step in the process.

3.2.1 Phase 1: tumor segmentation using deep
learning

A U-Net-like Convolutional Neural Network (CNN), initially

introduced by Basnet et al. (2021), was utilized for the segmentation

phase. Although the network was originally designed to segment

gray matter, white matter, and cerebrospinal fluid (CSF), it

was later adapted to segment BT on multimodal MRI. The

3D U-Net architecture employed in this framework enables

the precise delineation of tumor boundaries by accounting for

variations in tumor geometry and adjacent cerebral structures.

The model integrates T1-weighted, T1ce, T2-weighted, and FLAIR

sequences, each providing complementary imaging characteristics

of tumor regions. For instance, T1-weighted images are crucial for

identifying pathological changes and delineating tumor contours.

Areas of abnormal vascularity and blood-brain barrier (BBB)

breakdown, commonly observed in malignant tumors, appear

highlighted in T1-weighted images (Shiroishi et al., 2015; Paek

et al., 2013). The T1ce sequence, enhanced with a gadolinium-

based contrast agent, improves tumor visibility by emphasizing

regions where the BBB is compromised, making it particularly

valuable for tumor characterization. This distinction between

tumor tissue and healthy brain parenchyma is essential for

surgical planning and treatment decisions (Paek et al., 2014). In

glioblastoma, for example, the degree of contrast enhancement

correlates with tumor aggressiveness and BBB disruption, making

T1ce a critical modality for assessing tumor burden and guiding

surgical interventions (Hattingen et al., 2017). T2-weighted
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TABLE 1 Adjustments to handle the imbalance in the database.

Experiment Labels Training process samples Validation samples

Initial number Undersampled

Experiment 1 Healthy tissue 1,077,737 159,558 213,835

Whole tumor 159,558 159,558 34,689

Experiment 2 Healthy tissue 1,077,737 75,236 213,835

Tumor core 84,322 75,236 18,958

Edema 75,236 75,236 15,731

FIGURE 1

Proposed framework for BT detection. (a) Phase 1: segmentation stage for accurate delineation of tumor regions. (b) Phase 2: feature extraction and

selection using radiomics. Phase 3: classification using machine learning and ANFIS techniques. Phase 4: fuzzy rules generation and optimization.

and FLAIR images play a key role in evaluating edema and

necrosis, both critical for tumor characterization. T2-weighted

images highlight hyperintense regions of vasogenic edema, often

associated with BBB disruption (Champ et al., 2012; Hung

et al., 2023). FLAIR sequences suppress cerebrospinal fluid

signals, improving the visualization of cortical and periventricular

lesions, thus aiding in the detection of infiltrative tumor

components that may not be visible with contrast-enhanced

imaging (Zúñiga et al., 2023). This is particularly important in

gliomas, where neoplastic cells often extend beyond the regions

of enhancement (Huse et al., 2013; Zeineldin et al., 2020). The

3D U-Net architecture processes volumetric data through 3D

convolutions, max-pooling, and upsampling operations, capturing

spatial dependencies and contextual information across adjacent

MRI slices. This approach is fundamental for accurately segmenting

tumor regions and distinguishing between various tumor subtypes

with high precision. The modified architecture used patch-wise

learning, where 128× 128× 128 patches were extracted from input

images at each training step [similar to the proposal ofMellado et al.

(2023)].

The loss function, which combines cross-entropy and DICE

loss (Equation 1), was used to quantify performance at the end of

each epoch. The Adaptive Moment Estimation (ADAM) optimizer

was then applied to update the model parameters accordingly.

LC = LCE + LDICE

= −
1

N

N
∑

b=1

(

1

2

M
∑

c=1

Yb,c · log
(

Ŷb,c

)

+

M
∑

c=1

2 · Yb,c · Ŷb,c

Yb,c + Ŷb,c

)

(1)

The loss function evaluates the probability that a prediction

for the input image b belongs to label c for both the ground truth

segmentation Y and the network-predicted segmentation Ŷ . Here,

N represents the batch size, b is the image input sample, and c

denotes the segmentation label. The network was trained for 300

epochs using a batch size of 8 and an initial learning rate of 2×10−4,

which was halved every 30 epochs to improve convergence.

3.2.2 Phase 2: feature extraction and selection
using radiomics

Radiomics involves the extraction of a large number of

quantitative features from medical images, generating variables

that can be analyzed to support clinical decision-making and
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FIGURE 2

Representation of radiomic features using various statistical approaches. A 45× 45 kernel is applied to extract features within a defined window of

the region of interest (ROI).

enhance diagnostic accuracy (Saini et al., 2023). By transforming

medical images into high-dimensional data, radiomics enables the

identification of complex patterns and correlations that provide

a deeper understanding of the lesion or region of interest. The

extracted features are typically classified into several types as shown

in Figure 2.

• Morphological features: describe the shape and volume of

anatomical structures or lesions, providing information on

their geometric properties.

• Histogram-based (first-order) features: quantify the

distribution of pixel or voxel intensities, reflecting overall

intensity patterns within the region of interest (ROI).

• Texture-based (second-order) features: such as those

derived from the Gray Level Co-occurrence Matrix (GLCM)

and Gray Level Dependence Matrix (GLDM), capture

spatial relationships and variability in gray levels, offering

information about the complexity and heterogeneity of

tissues.

• Transformation-based features: including wavelet or log-

sigma transformations highlight details at multiple scales or

frequencies, revealing finer structural details.

In this phase, radiomic features are extracted using sliding

window analysis with a 45 × 45 kernel to capture fine details

between different ROI about healthy tissue, whole tumor, tumor

core, and edema according to the experiments carried out on

the study image. Each window is processed using the SimpleITK

interface to generate images and masks compatible with feature

extraction. PyRadiomics toolbox is used to perform a quantitative

analysis of radiomic features for each region while preserving its

association with the original image and its corresponding label. The

resulting feature matrix is constructed by organizing the computed

characteristics into columns, while the objects associated with each

label are arranged in rows, as illustrated in Figure 3. This method

increases the data dimensionality because of the large number of

calculated parameters.

Feature selection is a critical step in radiomics analysis,

particularly in medical imaging, where extracted features often

include irrelevant or redundant information, which can negatively

impact model performance. Various techniques, including

Sequential Forward Selection (SFS), Sequential Backward Selection

(SBS), Recursive Feature Elimination (RFE), and Least Absolute

Shrinkage and Selection Operator (LASSO), are widely employed

to identify themost relevant features (Naveed et al., 2021; Johnpeter

and Ponnuchamy, 2019; Bhattacharjee et al., 2022; Zhang J. et al.,

2022). Among feature selection approaches, Decision Trees (DT)

effectively assess feature importance, reduce dimensionality, and

enhance classification accuracy (Kutikuppala et al., 2023; Paja,

2016). Similarly, Random Forest (RF) is well-suited for handling

high-dimensional data and provides robust feature importance

rankings (Lefkovits et al., 2017; Kumar et al., 2023).

3.2.3 Phase 3: classification using machine
learning and ANFIS models

In this phase, several conventional machine learning models

were implemented to assess their performance in BT classification

tasks using the radiomic features extracted during the previous

phase. These models include:

Frontiers inNeuroinformatics 06 frontiersin.org

https://doi.org/10.3389/fninf.2025.1550432
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Mayeta-Revilla et al. 10.3389/fninf.2025.1550432

FIGURE 3

The radiomics-based feature extraction methodology employs sliding window analysis to construct a feature matrix, with columns representing

extracted features and rows corresponding to labeled objects in the images. A 45× 45 kernel is used to enhance detail in each image segment,

improving the accuracy of clinically relevant diagnoses.

• Linear Discriminant Analysis (LDA): a statistical method that

projects data onto a lower-dimensional space to maximize

class separability by modeling the relationship between input

features and class labels through linear decision boundaries.

• Decision Trees (DT): a rule-based model that partitions

the dataset into subsets based on feature values, creating a

hierarchical tree structure where each internal node represents

a decision rule and the leaf nodes correspond to predicted

outcomes.

• Random Forest (RF): an ensemble learning technique that

combines multiple decision trees to improve accuracy and

robustness. Reduce overfitting by averaging predictions from

various trees, making it particularly effective for complex

datasets.

• Logistic Regression (LR): a probabilistic model used for binary

or multi-class classification that estimates the likelihood of

class membership based on a logistic function applied to

weighted input features.

• Multilayer Perceptron (MLP): a type of artificial neural

network consisting of multiple layers of interconnected

neurons. It learns complex, non-linear relationships in the

data through backpropagation and is well-suited for high-

dimensional feature spaces.

• k-Nearest Neighbors (k-NN): a non-parametric, instance-

based learning algorithm that classifies data points by

comparing them to their nearest neighbors in the feature

space, relying on majority voting to determine class

membership.

The Adaptive Neuro-Fuzzy Inference System (ANFIS) model,

introduced by Jang (1993), combines neural networks with fuzzy

logic systems to form a neuro-fuzzy framework. Built on the

Takagi-Sugeno (TS) fuzzy inference system, ANFIS utilizes fuzzy

logic for rule-based decision-making while adapting its parameters

based on input data (Anggara and Munandar, 2023; Allende-Cid

et al., 2016; Querales et al., 2023).

The architecture of ANFIS, illustrated in Figure 4, consists

of multiple layers dedicated to processing fuzzy rules. The input

layer applies Gaussian membership functions to perform the

fuzzification of the input data. These membership functions are

mathematically defined as follows:

µkj(xj) = exp

[

−

(

(xj −mkj)
2

σ
2
kj

)]

, (2)

where mkj denotes the mean and σkj the standard deviation,

determining the center and width of each Gaussian function. After

the inputs are fuzzified, the model calculates the firing strength

of each fuzzy rule. This is done by computing the product of
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FIGURE 4

The ANFIS model architecture highlights the key parameters involved in decision rule development. The second layer performs fuzzification, defining

membership functions for each input variable and extracting antecedent parameters. In the fifth layer, defuzzification computes the consequent

parameters. The classification process culminates in the generation of decision rules and the interpretation of the model’s outputs.

the membership values for all input variables associated with the

corresponding rule:

wk(Ex) =
n
∏

j=1

µkj(xj), (3)

where the product aggregates the degrees of membership,

indicating the extent to which the inputs satisfy each rule’s

antecedents. The firing strengths are then normalized by dividing

each rule’s strength by the sum of all rule strengths. This ensures

that the relative contribution of each rule is proportionate:

wi =
wi

∑R
j=1 wj

. (4)

This normalization step ensures that the combined influence

of the rules remains balanced and consistent across the system.

The normalized firing strengths are then applied to the linear

functions representing the fuzzified inputs. The output of each

rule is weighted according to its firing strength, contributing

proportionally to the final prediction. The overall output of the

model is computed by summing the weighted contributions from

all rules:

ŷ =

K
∑

i=1

wifi =

K
∑

i=1

wi





K
∑

j=1

pijxj + qi



 , (5)

Here, pij and qi represent the consequent parameters. This

final equation computes the system’s output by integrating the

contributions of all the rules applied to the input data, yielding the

final prediction or classification.

3.2.4 Phase 4: fuzzy rule generation and
optimization

The main functionality of the ANFIS model is the fuzzy IF-

THEN rules, which provide a transparent and interpretable way

of mapping input variables to output decisions. In ANFIS, the

antecedents of these rules are represented by fuzzy sets that describe

the degree to which input variables satisfy certain conditions,

while the consequents are typically expressed as linear functions or

singletons representing the system’s output classes.

These rules follow the Takagi-Sugeno formulation, where the

premise of each rule maps the input vectors to the corresponding

output functions yk = fk(x). Each rule evaluates a specific condition

and contributes proportionally to the final output. Mathematically,

this can be expressed as:

Rule k: IF x1 is µk1 AND x2 is µk2 AND ... AND xn is µkd

THEN yk = fk(x), for k = 1, 2, . . . ,K (6)

Here, µkd represents a fuzzy set associated with the input

variable xd for the k-th rule, K denotes the total number of fuzzy

rules and Y is a fuzzy aggregation operator used to combine the

outputs of all rules. It employs fuzzy IF-THEN rules, where the

antecedents are fuzzy sets associated with input variables, and the

consequents are fuzzy singletons representing output classes.

On the other hand, the Particle Swarm Optimization (PSO)

algorithm was utilized to optimize the rules within the ANFIS

model (Shihabudheen et al., 2018). Inspired by the collective

behavior of animals such as fish or birds, the PSO adjusts both

the antecedents and the consequences of the decision rules by

treating the data as a swarm of particles (Shami et al., 2022).

In the PSO-ANFIS framework, ANFIS serves as a particle, while

PSO complements it by fine-tuning its parameters to identify

the most optimal solution (Moayedi et al., 2020). Each particle
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is characterized by two key attributes: velocity estimation and

position update, which are iteratively optimized during the learning

process.

In an n-dimensional space, the position of a particle, xi(t), is

updated by adding its velocity, vi(t), to the current position:

xi(t + 1) = xi(t)+ vi(t) (7)

The velocity is calculated as:

vi(t) = c1r1(pbest(t)− xi(t))+ c2r2(gbest(t)− ri(t)) (8)

where c1 and c2 are acceleration coefficients, r1 and r2
are random vectors, and pbest and gbest represent the

best local position of the particle and the best global

position, respectively.

For classification tasks, the PSO-ANFIS model relies on

initial parameter settings derived from the literature review

(Mercangöz, 2021; Gad, 2022; Shami et al., 2022). The process

begins with the preparation of the data set, including collection,

normalization, and preprocessing. Parameters such as particle

population size, acceleration coefficients, number of iterations, and

linguistic fuzzy sets are then configured. The initial adjustment

of the model is crucial to obtain a good performance. For

this reason, the bibliographies consulted (Adewuyi et al., 2022;

Shami et al., 2022; Mercangöz, 2021), help to choose the

group of informants equal to 15, the confidence coefficient

corresponding to 2.05, the velocity factor of 0.9, the number of

agents equal to 40, the number of iterations equal to 200, the

variation in the mean of the premise functions corresponding

to 0.2, the center premise functions and standard deviation

corresponding to 0.5 and 0.2 respectively, the exponent range

of the premise function between 1.0 and 3.0 and finally the

range of values for the consequent functions between -10.0

and 10.0.

To better understand the proposed approach, the pseudocode

in Algorithm 1 outlines how PSO-ANFIS is employed to solve

classification problems for regions of interest (ROIs). The process

begins by setting the PSO parameters, including the number of

particles (nPop), the number of iterations (epochs), the confidence

coefficient (phi), and the velocity factor (vel_fact). The positions

and velocities of the particles are initialized to represent the ANFIS

parameters. During each iteration, the velocities and positions of

the particles are updated based on cognitive components (each

particle’s best position) and social components (best global position

swarm’s). The performance of each configuration is evaluated

using a cost function and the best positions and associated

costs are recorded to guide the global search of the swarm.

At the end of the process, the algorithm outputs the optimal

configuration of the ANFIS parameter and the corresponding

minimized classification error. Additionally, Algorithm 2 details

the velocity update mechanism for each particle, which combines

cognitive and social components to refine parameter adjustments.

This iterative approach efficiently tunes the antecedent and

consequent parameters of the ANFIS, significantly enhancing its

classification performance.

Result: Best position (ANFIS parameters) and cost

(classification error) of the swarm

Initialization of PSO parameters, particle

positions, velocities, and costs;

for epoch from 1 to epochs do

for i from 1 to nPop do

Update velocity of particle i using the

update_velocity;

Update position (ANFIS parameters) of

particle i;

Evaluate cost of particle i;

if cost of particle i is better than its

previous best cost then

Update best position and cost of particle

i;

end

if cost of particle i is better than the best

swarm cost then

Update best position and cost of the

swarm;

end

end

if K > 0 then

Update informants and best group positions;

end

end

Return the best position (ANFIS parameters) and

cost (classification error) of the swarm;

Algorithm 1. PSO_ANFIS_Classification.

Result: New particle velocity

Initialize r1, r2 as random numbers between 0 and

1 ;

Calculate cognitive component: comp_cognitiva =

cmax× r1× (agent_best_pos− agent_pos);

Calculate social component:

comp_social = cmax×r2×(swarm_best_pos−agent_pos);

Calculate new velocity: new_velocity =

w × agent_vel+ comp_cognitiva+ comp_social;

Return new velocity;

Algorithm 2. Update_velocity.

3.3 Performance metrics

The predicted labels from the test results were compared with

the actual labels to construct a confusion matrix. Performance

metrics such as accuracy, precision and F1-Score were calculated

using the components of the confusion matrix: true positives (TP),

false positives (FP), true negatives (TN) and false negatives (FN).

Here, TP represents the number of ROIs correctly classified as

tumor, FN denotes the number of tumor ROIs incorrectly predicted

as normal, and TN indicates the number of ROIs correctly classified

as normal.
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Performance metrics considered in this study were defined as

follows:

• Accuracy: The proportion of correctly classified ROIs to the

total number of ROIs:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

• Precision: The proportion of correctly predicted tumor ROIs

to all predicted tumor ROIs:

Precision =
TP

TP + FP
(10)

• Recall (Sensitivity): The proportion of correctly predicted

tumor ROIs to all actual tumor ROIs:

Recall =
TP

TP + FN
(11)

• F1 Score: The harmonic mean of Precision and Recall,

providing a balanced evaluation:

F1 Score =
2 · Precision · Recall

Precision+ Recall
(12)

The DICE Score is a widely used metric for evaluating

the overlap between two regions of interest (ROIs)

in an image, particularly for segmentation tasks. It is

defined as:

DICE Score =
2 · |A ∩ B|

|A| + |B|
(13)

where A represents the predicted ROI, B represents the

ground truth ROI, |A ∩ B| is the number of pixels (or voxels)

common to both A and B (the intersection), |A| is the total

number of pixels in the predicted ROI, and |B| is the total

number of pixels in the ground truth ROI. A DICE Score close

to 1 signifies a near-perfect overlap between the predicted and

ground truth ROIs, whereas a score of 0 indicates no overlap

at all.

4 Results

4.1 Segmentation results

The neural network was trained over 300 epochs, achieving

an average DICE Score of 86.07% during the segmentation

process. Convergence occurred around epoch 50, with

minimal fluctuations in validation accuracy and the loss

function approaching its minimum values. The test results

showed as average and standard deviation of the DICE

Score for segmentation of 82.94% ± 16.92 for tumor core

(TC), 76.06% ± 17.27 for edema (E), and 99.90% ± 0.06 for

healthy tissue.

Further evaluation in three test subjects, visualized in Figure 5,

illustrates the performance of the model in the axial, coronal,

and sagittal planes, highlighting the predicted regions of interest

(tumor core (TC), edema (E) and healthy tissue). For subject

Figure 5a, the model achieved precisions of 90.47% for tumor

core, 62.29% for edema, and 99.91% for healthy tissue. Subject

Figure 5b exhibited precisions of 85.83% for the tumor core,

10.43% for edema, and 99.93% for healthy tissue. Lastly,

for the subject Figure 5c, the model achieved a precision of

96.10% for the tumor core, 93.12% for edema, and 99.89% for

healthy tissue.

These results highlight the model’s ability to accurately

segment healthy tissue and tumor core, with consistent

performance across these classes. However, edema segmentation

exhibited greater variability, highlighting it as a challenging

aspect and underscoring the need for further refinement in

this area.

4.2 Radiomic features selected by
importance

After extensively evaluating various feature selection methods,

a combination of the top-ranked features from Decision Trees

(DT) and Random Forest (RF) yielded the best performance

in our study. Features were ranked based on their importance

scores, and the most relevant ones from both models were

selected to identify the most discriminative attributes for label

identification (Renugadevi et al., 2023; Srinivasan et al., 2019).

To ensure consistency and prevent numerical scale differences

from impacting model performance, all features were normalized

to a range of 0 to 1. Among the 218 extracted features, the top

20 were selected for further analysis based on their importance

scores, ensuring that the most informative attributes were retained

for classification.

An exploratory analysis was conducted to assess the

performance of various machine learning (ML) models for BT

classification, varying the performance according to the number

of features used. As illustrated in Figure 6, model performance

improved with increasing features in both experiments. Among the

models, theMultilayer Perceptron (MLP) demonstrated the highest

performance in distinguishing between healthy and affected tissue.

The Random Forest (RF) model performed closely, showing

strong accuracy in classifying healthy tissue, tumor core (TC), and

edema (E). In contrast, a minimal set of three features was also

tested, but yielded the lowest performance compared to larger

feature sets.

Table 2 lists the top 10 most influential features of both

experiments, ranked by relevance according to DT-RF methods.

These findings suggest that performance comparable to existing

proposals can be achieved using a subset of up to three

features. For rule-based models such as ANFIS, this approach

facilitates interpretability by using a smaller number of selected

features, providing more precise explanations without sacrificing

classification performance.

Several studies have identified key radiomic features that

enhance the predictive accuracy of models in BT classification.

Zhang et al. (2020) reported that specific textural characteristics,

such as cellularity and peritumoral edema, vary between tumor

types and play a significant role in classification. Çinarer et al.

(2020) highlighted the importance of wavelet-based radiomic

features in predicting glioma grades, demonstrating a strong
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FIGURE 5

The visualization displays the ground truth and predicted tumor segmentation across axial, coronal, and sagittal planes for three representative

subjects (a–c). Each row presents the ground truth (top) and the model’s prediction (bottom) for the same subject, highlighting the high similarity

between the predicted and actual labeled tumor regions. The blue regions represent the tumor core, while the green regions indicate the edema

surrounding the tumor core. Case (a) shows a small, localized tumor core with minimal edema; case (b) shows a moderately sized tumor core with

more noticeable surrounding edema; and case (c) presents a large tumor with an extensive tumor core and widespread edema a�ecting multiple

brain areas of the brain.
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FIGURE 6

Performance results of the classifiers. For (a) distinguishing between healthy and a�ected tissue. For (b) distinguishing between healthy tissue, tumor

core, and edema. LDA, Linear Discriminant Analysis; RF, Random Forest; DT, Decision Trees; k-NN, k-Nearest Neighbors; LR, Logistic Regression;

MLP, Multilayer Perceptron.

association between certain wavelet features and tumor grade

as well as patient survival outcomes. Similarly, Choi et al.

(2020) emphasized the role of Gray Level Co-occurrence Matrix

(GLCM) features in quantifying glioblastoma texture patterns,

noting that contrast, correlation, energy, and homogeneity

serve as strong prognostic factors. Chen et al. (2018) used

a diverse set of radiomic features–including 18 first-order

features, 13 shape features, and 74 texture features–to effectively

identify gliomas. The findings from these studies align with the

current work, which highlights radiomic features that capture

variability in gray level, texture, complexity, and contrast through

advanced transformation techniques. Key feature categories

include first-order statistics, GLCM, Gray Level Dependence

Matrix (GLDM), and shape features. Additionally, intensity

analysis, energy, and clustering metrics are extracted frommultiple

image domains, including original, log-sigma, and wavelet-

transformed images, providing a comprehensive representation of

tumor characteristics.

4.3 Evaluation of the classifier
performances

The use of fewer features improves the interpretability of

the classification results, facilitating clearer insights into the

decision-making process. The performance results for two

experiments are summarized in Tables 3, 4. The study used

5-fold cross-validation to evaluate various methodologies

for tissue classification. The dataset was systematically

partitioned into 80% training and 20% validation data for
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TABLE 2 Top 10 features for classification problems with their respective importances.

Feature ID Feature name DT importance RF importance

Binary-class problem: healthy tissue vs. whole tumor

10 log-sigma_glcm_ClusterShape 0.6234 0.1261

41 wavelet-L_gldm_GrayLevelNonUniformity 0.1358 0.1094

0 original_firstorder_Energy 0.0384 0.0577

32 log-sigma_glcm_JointEnergy 0.0302 0.0361

2 original_firstorder_Kurtosis 0.0184 0.0294

3 original_firstorder_Maximum 0.1044 0.1354

7 original_firstorder_Skewness 0.0122 0.0140

42 wavelet-L_gldm_HighGrayLevelEmphasis 0.0114 0.0061

35 wavelet-H_gldm_GrayLevelNonUniformity 0.0108 0.0662

8 original_firstorder_Variance 0.0103 0.0148

Multi-class problem: healthy tissue vs. tumor core vs. edema

85 log-sigma_glcm_ClusterShape 0.2920 0.0329

1 original_shape_MaximumDiameter 0.2862 0.0444

91 log-sigma_glcm_JointEnergy 0.0384 0.0577

0 original_shape_Perimeter 0.0510 0.0301

2 original_shape_Elongation 0.0412 0.0094

70 log-sigma_gldm_HighGrayLevelEmphasis 0.0392 0.0255

128 original_firstorder_Skewness 0.0122 0.0140

42 log-sigma_firstorder_Maximum 0.0126 0.0128

134 log-sigma_glrlm_HighGrayLevelRunEmphasis 0.0125 0.0107

97 log-sigma_glrlm_LowGrayLevelRunEmphasis 0.0119 0.0116

each of the 5 folds, subsequently quantifying the mean

and standard deviation of the classification accuracies in

the 5 folds within the validation samples. Afterwards, the

test set comprising fully independent data demonstrates the

generalization performance.

In Experiment 1 (Table 3), which focused on distinguishing

healthy tissue from tumor tissue, the Random Forest (RF) and

ANFIS classifiers outperformed other models, achieving greater

accuracy than 95% in the test data. This high accuracy underscores

their strong detection capabilities. ANFIS demonstrated superior

performance, with higher accuracy and lower variability during

cross-validation, exhibiting a standard deviation of ±0.25%.

This stability highlights its robustness and consistency across

different data splits, reinforcing its reliability. Furthermore, both

RF and ANFIS recorded the highest F1-score for individual

labels, surpassing 97% for healthy tissue and 84% for tumor

tissue.

In Experiment 2, which involved multiclass classification,

several methods, including LDA, RF, k-NN, MLP, and ANFIS,

achieved excellent results, with test accuracies exceeding

92%, demonstrating their efficacy in handling more complex

medical image classification tasks. ANFIS obtained the lowest

variability among all models (standard deviation = ±0.31),

further strengthening its reliability. LDA excelled in classifying

tissue of edema, achieving an F1-score of 85.81%, while ANFIS

showed strength in identifying the tumor core, with an F1-score

exceeding 68%. This highlights the ability of ANFIS to combine

interpretability while preserving good performance using its

rule-based approach.

4.4 Interpretability analysis

The three most relevant radiomics features, selected according

to their importance, as shown in Table 2, were used as input

for the ANFIS model. Each feature was assigned linguistic

variables according to its value ranges, following a structure

of eight variables (3,3,2), where the first two features had

three linguistic terms and the third had two. The membership

functions for the three selected radiomic features are shown

in Figure 7a for the analysis of healthy tissue and whole

tumor, Figure 7b for the analysis of healthy tissue, tumor core

and edema.

The selected radiomic features are modeled using linguistic

variables in the second experiment. Similarly to experiment 1, the

first two features are divided into three terms: “low,” “medium,”
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TABLE 3 Validation and test results for the binary classification: healthy tissue vs.whole tumor.

Machine learning model Validation Test Accuracy

Accuracy std Precision Recall F1-score

Healthy Tumor Healthy Tumor Healthy Tumor

LDA 88.62± 7.83 95.92 74.44 95.83 74.86 95.87 74.65 92.90

RF 92.76± 4.75 97.99 81.08 96.68 87.76 97.33 84.29 95.43

DT 91.06± 4.42 97.54 73.12 94.92 85.23 96.21 78.71 93.57

k-NN 92.51± 4.55 97.94 77.84 95.96 87.53 96.94 82.40 94.78

LR 90.81± 6.05 97.72 69.35 93.80 86.51 95.72 76.99 92.78

MLP 93.65± 3.81 98.32 77.67 95.81 89.88 97.05 83.33 94.98

ANFIS 94.06± 0.25 98.38 78.12 96.35 90.24 97.32 84.20 95.20

TABLE 4 Validation and test results for the multi-class problem: healthy tissue (HT) vs. tumor core (TC) vs. edema (E).

Machine learning model Validation Test Accuracy

Accuracy std Precision Recall F1-score

HT TC E HT TC E HT TC E

LDA 85.55± 3.49 97.71 58.52 88.76 96.07 72.73 88.76 96.89 64.85 85.81 92.47

RF 85.62± 3.96 98.12 60.09 74.19 95.30 70.19 74.19 96.69 64.75 80.58 92.93

DT 82.38± 3.82 97.90 51.28 62.88 93.32 61.17 62.88 95.55 55.79 73.43 90.55

k-NN 85.28± 3.76 98.03 55.57 72.72 94.43 69.55 72.72 96.20 61.78 79.19 92.06

LR 86.27± 3.03 98.03 50.52 78.09 93.46 74.05 78.09 95.69 60.06 80.79 91.36

MLP 87.26± 2.63 98.51 55.17 80.00 94.26 80.76 80.00 96.34 65.56 81.11 92.47

ANFIS 89.11± 0.31 99.10 59.24 65.52 93.44 80.82 87.67 96.18 68.36 74.99 92.14

and “high,” while the third feature is divided into two terms:

“low” and “high.” However, in this case, the analysis focuses on

three tissue classes: healthy tissue, tumor core, and edema. The

selection of these features, based on their quantitative importance,

underscores the need for expert knowledge to ensure that the

variables selected representmeaningful patterns in the classification

of tissue types. These linguistic variables enable the creation

of fuzzy rules that capture the nonlinear relationships between

input features and tissue classes, providing accurate classification

and interpretability.

In both experiments, the selected features

help interpret the tissue portions (healthy tissue,

tumor core, edema, and whole tumor) listed below

in Table 5.

Expert knowledge was essential in defining the appropriate

ranges for linguistic variables to analyze the selected radiomic

features. The membership functions corresponding to these

features are illustrated in Figure 7a for experiment 1 and Figure 7b

for experiment 2. Furthermore, the structure of the linguistic

variables and the number of fuzzy rules remained consistent

between both experiments, ensuring comparable conditions for

the classification tasks. The Cartesian product of these variables

generated 18 fuzzy rules that combine antecedents (based on

the features) with consequences (the system outputs). These

rules capture the non-linear relationships between inputs and

tissue labels, allowing the interpretation of the results, as shown

in Tables 6, 7.

The use of decision rules, as shown in Figure 8, illustrates the

interpretability of the classification process for the experiments

using the ANFIS model with only 18 fuzzy rules to classify brain

tissue. The current study shows the use of automatic feature

selection, but the proposal is open to feature selection with

expert knowledge. Tables 6, 7 show the learned parameters, where

each input variable is assigned linguistic labels based on expert

knowledge. Fuzzy rules evaluate the classification by processing

the input features through a weighted combination of rules to

determine the final output.

The output of the ANFIS model generates the antecedent

and consequent parameters. These parameters correspond to the

inference process of decision rules that weights the classified label

(e.g., healthy tissue, tumor core, edema). The model applies the

IF-THEN rules for each input case, where each rule is associated

with a degree of activation based on how well the input features

match the linguistic conditions. For example, the first fuzzy rule in

Experiment 1 evaluates whether the input corresponds to healthy

tissue (output 0) or a whole tumor (output 1). Each rule assigns a
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FIGURE 7

Representation of the membership functions generated by the ANFIS model. For (a) labels healthy tissue vs. whole tumor, and (b) for labels healthy

tissue vs. tumor core vs. edema, divided into fuzzy subsets for both experiments.

TABLE 5 Feature selection for Experiment 1 and Experiment 2.

Order Feature category Feature names Image type

Experiment 1: binary classification, Healthy tissue vs. whole tumor

1 firstorder Energy original

2 glcm ClusterShape log-sigma

3 gldm GrayLevelNonUniformity wavelet

Experiment 2: multiclass classification, Healthy tissue vs. tumor core vs. edema

1 glcm ClusterShape log-sigma

2 shape Elongation original

3 shape MaximumDiameter original

weight or degree of confidence to potential outputs depending on

how well the input characteristics (e.g., feature values) satisfy the

conditions of the rule.

The system then aggregates these weighted outputs across all

18 rules using a weighted average. This process is known as rule

aggregation, where the contributions of each rule are combined to

generate the final decision. The output with the highest cumulative

weight is selected as the final classification label. In this case, the

model decides whether to classify the tissue as healthy (label_0)

or tumor (label_3) based on the overall strength of the activated

fuzzy rules.

5 Discussion

This study introduces a novel framework for tumor

characterization in MRI, utilizing the combination of ANFIS

and a feature selection approach. Integrating these methods

aims to enhance the precision and efficiency of tumor analysis,

addressing current challenges in medical imaging. The proposed

model demonstrated good segmentation performance using the

BraTS2020 dataset, achieving DICE Scores of 99.90% for healthy

tissue, 82.94% for tumor core (TC) and 76.06% for edema. These

results are consistent with those reported by Baid et al. (2020),
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TABLE 6 ANFIS rules: antecedents and consequents for labels healthy tissue vs.whole tumor.

Rules Antecedent Consequent output

x1 x2 x3 Healthy tissue Whole tumor

1 l l l 1.40− 3.79x1 − 0.30x2 − 3.52x3 −5.56− 4.73x1 − 0.64x2 + 0.88x3

2 l m l 7.32+ 1.22x1 − 2.68x2 − 0.68x3 0.64+ 3.62x1 − 2.65x2 + 2.88x3

3 l h l −6.39+ 1.0x1 − 2.68x2 − 3.15x3 −1.19+ 0.49x1 + 4.67x2 + 0.72x3

4 l l h −4.35− 4.56x1 − 7.97x2 − 1.81x3 4.32− 0.04x1 + 7.13x2 − 1.54x3

5 l m h 6.60− 5.05x1 − 3.02x2 + 4.53x3 2.98+ 3.14x1 + 3.25x2 + 4.10x3

6 l h h −0.59− 3.99x1 − 4.70x2 + 0.49x3 6.61− 2.40x1 + 3.33x2 + 5.55x3

7 m l l 5.41+ 0.81x1 + 3.50x2 − 9.63x3 3.60+ 2.34x1 − 5.49x2 + 1.98x3

8 m m l 8.68− 2.02x1 + 4.81x2 + 4.94x3 0.81+ 0.50x1 − 0.52x2 + 0.61x3

9 m h l −5.59− 8.59x1 − 1.69x2 + 8.38x3 1.27+ 0.38x1 + 0.78x2 − 8.35x3

10 m l h 0.53+ 6.72x1 − 4.77x2 + 1.40x3 3.54− 2.55x1 + 6.37x2 − 4.58x3

11 m m h 1.61− 0.48x1 − 4.62x2 − 3.94x3 −7.33− 4.48x1 + 7.48x2 − 1.62x3

12 m h h −5.35+ 2.42x1 + 1.45x2 − 0.86x3 2.06+ 1.69x1 − 1.81x2 + 0.27x3

13 h l l 1.01+ 1.08x1 + 0.84x2 − 1.97x3 2.44+ 1.38x1 − 0.03x2 − 5.30x3

14 h m l 0.65− 0.05x1 + 6.56x2 + 1.32x3 −1.62+ 6.66x1 − 4.24x2 + 5.29x3

15 h h l 5.49− 2.56x1 + 8.23x2 + 0.61x3 0.19− 8.55x1 − 1.48x2 − 3.43x3

16 h l h −1.12+ 6.32x1 − 5.46x2 + 2.12x3 1.59− 6.60x1 + 1.61x2 + 1.59x3

17 h m h −0.77− 5.47x1 + 1.52x2 − 3.11x3 3.18+ 1.63x1 − 6.29x2 + 0.76x3

18 h h h 6.54− 2.07x1 + 3.08x2 + 0.26x3 8.48− 0.42x1 − 7.38x2 − 0.01x3

l, low; m, medium; h, high.

who achieved DICE Scores of 92% for the whole tumor, 90%

for tumor core and 81% for the enhancement tumor. Similarly,

Akbar et al. (2021) reported DICE Scores of 78.02%, 80.73% and

89.07% for the enhancing tumor, tumor core, and whole tumor,

respectively, using a 3D U-net architecture. Although the DICE

Score for edema (76.06%) is lower than other lesions, primarily due

to its diffuse nature, structural complexity, and inherent difficulty

in distinguishing edema from tumor infiltration, our model

demonstrates the ability to identify these challenging structures.

Several studies utilizing ANFIS classification mechanisms for

BT are showing promising results in the identification of brain

tissue. For example,the proposal by Shankar et al. (2020) presents

an ANFIS method to classify brain MRI into benign and malignant

tumors with an accuracy of 96.23%. Mathiyalagan and Devaraj

(2021) and Nagarathinam and Ponnuchamy (2019), propose an

ANFIS-based method to classify tumors. It achieves a rate of

recognition of gliomas greater than 98% accuracy. However,

while these developments demonstrate high performance in their

outcomes, they do not elucidate how the results can be interpreted.

Such proposals utilizing these ANFIS models fail to explain in their

methodology how to derive output decisions based on their input

data. This approach, based on ANFIS and radiomics, integrates

fuzzy decision rules that offer valuable insights into the diagnostic

process. The ANFIS-based model achieved an accuracy of 95.20%

in the healthy tissue versus whole tumor experiment, and 92.14%

in the classification of healthy tissue, tumor core and edema,

closely aligned with the performance of other machine learning

classifiers. However, this methodology addresses a critical gap: It

emphasizes a comprehensive mechanism to explain how radiomic

features contribute to the decision-making process, improving

interpretability.

The challenge of balancing performance and interpretability

is particularly evident in ANFIS models. Increasing the number

of radiomics features has been shown to improve performance,

but this often leads to an exponential increase in rule complexity,

making models less interpretable and difficult to validate clinically.

Previous studies have attempted to reduce the number of rules, but

have often resulted in impractical rule sets that do not meet clinical

needs. For example, Hien et al. (2022) reduced the number of

rules in the ANFIS models without achieving low rules to facilitate

interpretability. This feature selection approach is consistent with

studies that emphasize the role of radiomic features in improving

classification accuracy while balancing model complexity (Tahosin

et al., 2023; Lefkovits et al., 2017; Khanna et al., 2024). This

study overcomes these challenges by minimizing the complexity

of the rule without sacrificing the accuracy of the classification.

A streamlined feature selection process ensures that only the

most informative features are used, resulting in a concise set of

interpretable rules capturing the essence of diagnostic patterns.

This approach reduces computational overhead and increases

transparency, allowing clinicians to understand and validate the

model’s reasoning. Furthermore, by linking radiomics features to

diagnostic assistance outcomes, the generated fuzzy rules provide a

framework for interpreting the classification process.
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TABLE 7 ANFIS rules: antecedents and consequents for labels healthy tissue vs. tumor core vs. edema.

Rules Antecedent Consequent output

x1 x2 x3 Healthy tissue Tumor core Edema

1 l l l 1.81− 7.65x1 + 0.95x2 + 6.77x3 −9.08− 3.70x1 − 1.74x2 − 0.8x3 2.78− 2.27x1 − 6.57x2 − 2.14x3

2 l m l −9.03+ 9.78x1 − 1.39x2 − 5.42x3 4.68+ 5.49x1 + 9.52x2 − 0.96x3 −7.5+ 3.32x1 − 0.45x2 − 7.67x3

3 l h l −5.52+ 8.16x1 − 2.07x2 + 9.28x3 −7.54− 1.21x1 − 1.21x2 + 1.05x3 6.42+ 4.75x1 + 7.47x2 + 1.18x3

4 l l h 0.27+ 4.71x1 + 3.29x2 − 7.62x3 −7.47− 7.21x1 − 5.22x2 + 1.1x3 −0.75− 3.98x1 − 1.03x2 − 2.55x3

5 l m h 8.84− 3.03x1 − 0.36x2 + 3.16x3 −4.36+ 9.16x1 + 0.86x2 + 7.07x3 6.17− 4.14x1 + 8.58x2 + 6.71x3

6 l h h −5.52− 3.86x1 + 6.22x2 + 1.08x3 7.01+ 5.56x1 − 4.70x2 + 0.92x3 −6.58+ 2.2x1 + 7.31x2 − 0.32x3

7 m l l −9.95+ 0.98x1 + 4.61x2 − 8.78x3 0.84+ 5.96x1 + 9.68x2 − 6.96x3 −7.16− 3.37x1 + 0.77x2 − 3.26x3

8 m m l −0.31+ 4.71x1 − 4.95x2 + 0.76x3 −0.77+ 2.49x1 + 0.75x2 + 1.16x3 5.27+ 0.17x1 − 3.84x2 + 7.98x3

9 m h l −0.27+ 4.92x1 + 5.51x2 + 3.29x3 3.20+ 8.67x1 + 6.86x2 − 2.53x3 −3.46+ 2.37x1 + 1.61x2 + 1.17x3

10 m l h −4.55− 7.51x1 − 4.14x2 + 3.74x3 2.03− 2.30x1 + 3.43x2 − 4.29x3 −3.17+ 2.31x1 − 3.9x2 + 0.27x3

11 m m h −2.05− 1.97x1 + 2.14x2 + 5.06x3 −3.83− 6.64x1 + 4.45x2 + 0.43x3 −7.17+ 1.79x1 − 4.93x2 + 3.9x3

12 m h h 2.39+ 2.98x1 − 6.54x2 + 9.83x3 1.78+ 5.30x1 − 2.68x2 − 6.23x3 −1.96+ 2.18x1 − 2.01x2 − 1.64x3

13 h l l −1.26+ 5.83x1 + 4.58x2 − 9.45x3 4.95+ 3.64x1 − 8.38x2 − 3.74x3 −1.77+ 4.02x1 + 7.35x2 + 8.32x3

14 h m l −3.86+ 3.64x1 + 0.19x2 + 3.45x3 −7.61− 6.79x1 − 0.89x2 + 1.39x3 0.95− 0.52x1 − 1.58x2 + 0.32x3

15 h h l −7.14+ 2.25x1 − 0.26x2 + 3.68x3 4.15− 4.34x1 + 1.55x2 − 2.73x3 −1.38+ 2.67x1 + 0.74x2 + 2.74x3

16 h l h −5.40+ 4.37x1 + 5.72x2 − 1.24x3 1.76− 4.62x1 + 0.85x2 − 1.36x3 2.77+ 2.73x1 − 3.3x2 − 0.33x3

17 h m h 1.88+ 2.67x1 − 0.90x2 − 2.46x3 2.77− 2.6x1 − 1.57x2 − 0.98x3 2.72+ 2.87x1 − 8.58x2 + 6.05x3

18 h h h −6.65− 7.27x1 − 1.03x2 + 6.36x3 −3.96− 6.99x1 + 3.7x2 − 4.89x3 −0.89+ 3.67x1 + 8.98x2 + 2.29x3

l, low; m, medium; h, high.

FIGURE 8

Pipeline of the extraction of the radiomic features for the kernel size and the classification of the radiomic features by ANFIS for the tumor

characterization.

6 Conclusion

This study presents an integrated system that combines a CNN-

based segmentation model with an interpretability framework for a

clinically relevant and accurate characterization of tumor diagnosis

assistance using MRI data. The model achieved high precision

in the segmentation stage, with average DICE Scores of 99.90%

for healthy tissue, 82.94% for tumor core (TC), and 76.06% for

edema. These results demonstrate the effectiveness of the model in

accurately identifying relevant tissue regions, particularly healthy

tissue and the tumor core. However, edema segmentation exhibited

more variability due to its diffuse nature, structural complexity, and

challenges posed by differential diagnoses.

Following segmentation, an interpretability framework was

introduced, integrating radiomics-based feature extraction with

an ANFIS model to interpret classification results through fuzzy

rules. Initially, 218 radiomic features were extracted and a feature

selection process was applied using Decision Tree and Random

Forest to identify the most relevant features. These selected features

were evaluated in two experiments: the first distinguishing between
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healthy tissue and whole tumor, and the second differentiating

among healthy tissue, tumor core, and edema. The results

demonstrated high accuracy, achieving over 95% in the two-

class experiment and 92% in the three-class experiment. The

combination of radiomics and ANFIS proved effective in delivering

interpretability through 18 decision rules generated from the three

most relevant radiomic features.

However, some limitations were observed. As the number of

input features increases, the number of rules in ANFIS grows,

which can reduce the system interpretability. The proposed

framework was also tested exclusively on FLAIR images,

highlighting the need to extend the analysis to other MRI

modalities. Future research should address these limitations

by exploring techniques to manage the growing number

of fuzzy rules, such as rule reduction strategies or hybrid

methods that balance interpretability and accuracy. Efforts

should also include integrating additional MRI modalities and

extending to 3D imaging to provide a more comprehensive

and clinically relevant framework. In doing so, radiomics

for feature extraction and ANFIS for classification can

be further validated as promising approaches to improve

both the accuracy and interpretability of BT diagnosis

and characterization.
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