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In large public multi-site fMRI datasets, the sample characteristics, data 
acquisition methods, and MRI scanner models vary across sites and datasets. This 
non-neural variability obscures neural differences between groups and leads to 
poor machine learning based diagnostic classification of neurodevelopmental 
conditions. This could be potentially addressed by domain adaptation, which 
aims to improve classification performance in a given target domain by 
utilizing the knowledge learned from a different source domain by making 
data distributions of the two domains as similar as possible. In order to 
demonstrate the utility of domain adaptation for multi-site fMRI data, this 
research developed a variational autoencoder—maximum mean discrepancy 
(VAE-MMD) deep learning model for three-way diagnostic classification: (i) 
Autism, (ii) Asperger’s syndrome, and (iii) typically developing controls. This 
study chooses ABIDE-II (Autism Brain Imaging Data Exchange) dataset as the 
target domain and ABIDE-I as the source domain. The results show that 
domain adaptation from ABIDE-I to ABIDE-II provides superior test accuracy of 
ABIDE-II compared to just using ABIDE-II for classification. Further, augmenting 
the source domain with additional healthy control subjects from Healthy 
Brain Network (HBN) and Amsterdam Open MRI Collection (AOMIC) datasets 
enables transfer learning and improves ABIDE-II classification performance. 
Finally, a comparison with statistical data harmonization techniques, such as 
ComBat, reveals that domain adaptation using VAE-MMD achieves comparable 
performance, and incorporating transfer learning (TL) with additional healthy 
control data substantially improves classification accuracy beyond that achieved 
by statistical methods (such as ComBat) alone. The dataset and the model used 
in this study are publicly available. The neuroimaging community can explore the 
possibility of further improving the model by utilizing the ever-increasing amount 
of healthy control fMRI data in the public domain. 
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1 Introduction 

Neuroimaging has been widely used to identify structural 
and functional alterations in the cerebral cortex and disrupted 
functional connectivity in ASD (DeRamus et al., 2014; Dichter, 
2012; Holmes et al., 2015; Horwitz et al., 1988; Koshino et al., 
2008; Minshew and Keller, 2010; Pantelis et al., 2015; Raki´ c
et al., 2020; Verly et al., 2014; Washington et al., 2020; Xu 
et al., 2019). More recently, machine learning models have been 
applied to neuroimaging data for diagnostic classification. Deep 
learning models outperform traditional machine learning methods 
in identifying individuals with neurodevelopmental conditions, 
including autism (Li et al., 2018; Di Martino et al., 2017; Cao et al., 
2021; Duc et al., 2020; Eslami et al., 2019; Panta et al., 2016; Plis 
et al., 2014; Subah et al., 2021). However, deep learning models 
require larger sample sizes to avoid overfitting (Karimi et al., 2020). 
Large public databases, such as ABIDE (Autism Brain Imaging 
Data Exchange), have aided deep learning models in this endeavor. 
However, such large public databases have been assembled post-
hoc and contain different sources of non-neural variabilities, such 
as various sites using different scanners and protocols. Typically, 
the samples from different scanners or acquisition protocols do not 
follow the same distribution in most cases (Nielsen et al., 2013). 
Moreover, if the test data and training data are drawn from different 
independent distributions, the performance of deep-learning, as 
well as traditional machine learning models, will be degraded (Li 
et al., 2018; Lanka et al., 2020). This study proposes a domain 
adaptation technique to improve the classification performance in 
a target domain to address this issue. The proposed method utilizes 
the knowledge learned from the source domain and makes the data 
distributions in source and target domains as similar as possible 
(Ben-David et al., 2010; Li et al., 2020; Zhou et al., 2018). 

To understand domain adaptation, as illustrated in Figure 1, 
the data distributions differ in the source and the target domains, 
although the two groups are separable in both domains that 
are taken independently. However, the classifier learned from 
the source domain (the red dotted line in Figure 1a) cannot 
directly be transferred to the target domain (Figure 1b). This 
affects the generalizability of the classifier. Thus, the objective of 
domain adaptation is to learn the differences in data distributions 
and improve the target domain classifier (black dotted line in 
Figure 1c) by jointly optimizing the classification and domain 
fusion (illustrated by approaching and splitting arrows in Figure 1c; 
Tzeng et al., 2017). In neuroimaging research, the transductive 
scenario assumes that the dataset from the source domain has 

Abbreviations: ABIDE, Autism Brain Imaging Data Exchange; ACC, Accuracy; 

ASD, Autism Spectrum Disorder; AOMIC, Amsterdam Open MRI Collection; 

CNN, Convolutional Neural Network; DA, Domain Adaptation; DL, Deep 

Learning; DMN, Default Mode Network; DNN, Deep Neural Network; DPARSF, 

Data Processing Assistant for Resting-State fMRI; FC, Functional Connectivity; 

FDR, False Discovery Rate; HBN, Healthy Brain Network; HCP, Human 

Connectome Project; ML, Machine Learning; MLP, Multilayer Perceptron; 

MMD, Maximum Mean Discrepancy; fMRI, Functional Magnetic Resonance 

Imaging; RSFC, Resting State Functional Connectivity; ROI, Region of 

Interest; SVM, Support Vector Machine; TL, Transfer learning; t-SNE, T-

distributed Stochastic Neighbor Embedding; VAE, Variational Auto-encoder. 

annotated labels from an expert, and the dataset from the target 
domain may not have labels. The domain adaptation approach is 
jointly optimized to minimize the domain-shift effect across source 
domain data and target domain data (Kushibar et al., 2021). 

Multiple studies (Gholami et al., 2020; Hoffman et al., 2018; 
Zhao et al., 2019; Bickel and Brückner, 2007; Rahimi and 
Recht, 2008; Simonyan and Zisserman, 2015) proposed different 
frameworks to exploit commonalities between different data 
domains to achieve domain adaptation in various areas (Csurka, 
2017; Tzeng et al., 2017; Ghafoorian et al., 2017; Ganin et al., 
2016). However, a limited number of end-to-end deep learning 
models incorporating domain adaptation have been developed 
for neuroimaging data (Hangya et al., 2018; Ilse et al., 2020; 
Purushotham et al., 2017; Wachinger et al., 2016). For example, 
Li et al. (2020) proposed a domain adaptation framework for 
federated datasets across different sites of the ABIDE dataset. 
Similarly, another study (Zhou et al., 2018) formulated the 
DawfMRI framework, which revealed additional insights into 
psychological similarity among the OpenfMRI project databases. 
Both studies aligned different data domains into one common 
embedding space followed by biomarker identification. But it was 
achieved by training each local model individually and integrating 
them with an ensemble strategy. Since this is not implemented 
as a single deep learning model; therefore, the complexity of a 
model increases, and the ease of use decreases. Thus, training and 
optimizing a deep learning model becomes more challenging. 

Existing domain adaptation approaches applied in 
neuroimaging-based diagnostic classification primarily employ 
supervised learning techniques. For example, a previous study 
(Cheng et al., 2012) used the labeled Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database to propose a robust 
domain transfer support vector machine (DTSVM) model to 
classify mild cognitive impairment (MCI). Another study (Khan 
et al., 2019) utilized the supervised domain adaptation (SDA) 
method on the pre-trained VGG network and used labeled 
MRI data to fine-tune the Alzheimer’s disease prediction model. 
Nevertheless, developing prediction models on medical data is 
marred by the complex labeling process that is not always accurate 
(Litjens et al., 2017). This is because the diagnosis of psychiatric 
disorders is based on behavior and not objective biomarkers 
that can make the labels less accurate for marginal cases and the 
stratification of individuals in spectrum disorders. Therefore, 
unsupervised domain adaptation (UDA) has recently gained 
importance because label scarcity is a common challenge across 
medical imaging studies (Choudhary et al., 2020). 

UDA techniques have been used to address potential 
inaccuracies in labels (Karimi et al., 2020; Haeusser et al., 2017; 
Kamnitsas et al., 2017; Mahmood et al., 2018) and to increase 
the statistical power of analysis by adding more unlabeled data 
(Guan and Liu, 2021). Combining supervised and unsupervised 
learning domain adaptation methods has improved discriminative 
prediction accuracy (Choudhary et al., 2020). This method 
requires limited labeled data or no labeled data from the target 
domain (Madani et al., 2018). Moreover, Semi-supervised domain 
adaptation methods have been proposed and tested on deep 
learning benchmark data (Belhaj et al., 2018; Chen and Chien, 
2015). Variational auto-encoder (VAE; Kingma et al., 2014) 
outperformed all the other semi-supervised domain adaptation 
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FIGURE 1 

(a, b) Are the classifiers before domain adaptation in the source and target domains, respectively. The domain adaptation process aims to reduce the 
domain divergence by maximizing the domain confusion as well as minimizing the classification loss in (c). The  red line in  (a) illustrates the decision 
boundary from training a source domain classifier. When this is transferred to the target domain as is, it is sub-optimal. The blue line in (b) illustrates 
the desired decision boundary from training a target domain classifier. The black line in (c) shows the decision boundary result from training a 
domain adaptation classifier. 

methods. VAE model is robust against high-dimensional input 
data and can learn various distributions flexibly. Another study 
(Louizos et al., 2016) used the learning features of VAE to 
develop a variational fair autoencoder (VFA). Moreover, VFA 
was proposed to learn the features that are invariant to noisy 
nuisance factors but retain useful information as much as possible. 
However, previous literature on the semi-supervised learning 
approach in neurodevelopmental condition classification is scarce. 
Therefore, this study used unlabeled data during training and a 
semi-supervised approach to achieve domain adaptation in the 
target domain. 

This study proposed to use variational and adversarial 
classification frameworks for domain adaptation by training 
labeled data in the source domain and unlabeled data in the 
target domain. A variational inference model was used to learn 
the invariant representations across information from different 
sites of the ABIDE dataset while retaining the discriminative 
information in the classification task. This research applied a 
model based on VAE to separate latent feature representations 
and domain variables. However, some dependencies can remain if 
the labels of data points are correlated with the domain variable, 
which can “leak” some of the domain information into the 
latent feature representation, resulting in dependency. Thus, the 
proposed model uses a “maximum mean discrepancy” (Gretton 
et al., 2012) regularization term to penalize the distances between 
the latent probability distribution across the source and target 
domains. A maximum mean discrepancy is a measurement of 
divergence between two distributions. During the adversarial 
training procedure, the domain “confusion” is maximized to ensure 
that the features are domain invariant, and the classification of 
Autism Spectrum Disorder (ASD) is also optimized. 

Moreover, to augment domain adaptation and improve the 
generalizability of the classifier, we included more data in the 
source domain from two datasets: (i) the Healthy Brain Network 
(HBN1 ; Alexander et al., 2017), and (ii) the Amsterdam Open 

1 http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/ 

MRI Collection (AOMIC2 ; Snoek et al., 2021). HBN provides 
the research community with a large-scale dataset of over 10,000 
healthy children and adolescents (ages 5–21) and shares the dataset 
through an open data-sharing mode. Only a small subset of the 
subjects had an MRI from New York City area. This dataset was 
acquired to detect and characterize pathologic processes in the 
developing human brain (Alexander et al., 2017). HBN data were 
collected from three sites: (i) Citigroup Biomedical Imaging Center 
(CBIC), (ii) Staten Island (SI), and (iii) Rutgers University (RU). 

AOMIC, on the other hand, contains large-scale resting-state 
fMRI data from healthy individuals collected at the University of 
Amsterdam over the past decade. AOMIC publicly provided both 
raw and well-established pre-processed forms of three datasets: (i) 
PIOP1 (Population Imaging of Psychology), (ii) PIOP2, and (iii) 
ID1000. Each of them has specific data acquisition protocols and 
participants. From the demographic information in Table 1, the  
age range of HBN and AOMIC are close to ABIDE I and ABIDE 
II. We included these two databases in the domain adaptation 
model to increase the variety of data distribution and enhance the 
model’s generalizability. 

We compare and contrast the proposed method with ComBat 
harmonization (Johnson et al., 2007), which is a statistical 
technique used to reduce the divergence of data distributions 
from multi-site MRI data. This is considered a current gold 
standard; therefore, we compared and combined the ComBat 
harmonization method with the proposed deep learning approach 
(Johnson et al., 2007). ComBat harmonization has been applied 
to neural imaging data across scanners and focuses on dealing 
with the variability of parameters’ distributions to pool them 
together sites (Fortin et al., 2018). ComBat was also proposed to 
correct for site effects in functional measurements from multi-
site fMRI data (Yu et al., 2018). Therefore, we applied ComBat 
harmonization to the input data as one of the methods to reduce the 
domain shift. 

Moreover, identifying important imaging features or diagnostic 
classification is crucial for ASD biomarker discovery and diagnosis 

2 https://nilab-uva.github.io/AOMIC.github.io/ 

Frontiers in Neuroinformatics 03 frontiersin.org 

https://doi.org/10.3389/fninf.2025.1553035
http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/
https://nilab-uva.github.io/AOMIC.github.io/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Deshpande et al. 10.3389/fninf.2025.1553035 

TABLE 1 ABIDE I data pooled from 15 different sites (and 18 cohorts, since some sites had more than one cohort), and ABIDE II from 11 sites. 

Database Acquisition site Subjects Age mean Age std. Male Female 

ABIDE I CALTECH 32 26.79 9.6 25 7 

CMU 27 26.59 5.58 21 6 

KKI 55 10.1 1.31 42 13 

LEUVEN_1 29 22.59 3.49 29 0 

LEUVEN_2 35 14.16 1.4 27 8 

Max 57 26.16 11.98 50 7 

NYU 179 15.39 6.59 142 37 

OLIN 36 16.81 3.44 31 5 

PITT 57 18.9 6.82 49 8 

SBL 24 33 6.7 24 0 

SDSU 32 14.35 1.85 25 7 

TRINITY 42 16.84 3.63 42 0 

UCLA_1 73 13.16 2.38 63 10 

UCLA_2 26 12.49 1.5 24 2 

UM_1 107 13.43 2.87 83 24 

UM_2 35 15.96 3.27 33 2 

USM 100 22.14 7.67 100 0 

YALE 42 12.96 2.8 30 12 

Total 988 18.43 7.82 840 148 

ABIDE II GU 104 10.68 1.62 69 35 

KKI 197 10.34 1.27 128 69 

NYU 27 6.78 1.07 24 3 

OHSU 91 10.88 1.99 56 35 

ONRC 43 23.33 3.85 31 12 

SDSU 23 13.91 3.85 20 3 

TCD 19 14.45 2.67 19 0 

UCD 32 14.78 1.83 24 8 

UCLA 32 10.7 2.36 26 6 

USM 32 21.37 7.74 27 5 

UMIA 23 9.8 2.02 17 6 

Total 623 13.37 2.75 441 182 

AOMIC PIOP1 216 21.96 1.91 29 44 

PIOP2 226 21.96 1.79 96 129 

Total 442 21.96 1.85 125 173 

HBN CBIC 287 10.75 3.73 188 99 

SI 345 11.13 3.82 195 150 

RU 753 9.92 0.42 501 252 

Total 1,385 10.60 2.66 884 501 

The acquisition sites include: CALTECH, California Institute of Technology; CMU, Carnegie Mellon University; KKI, Kennedy Krieger Institute; LEUVEN, University of Leuven; MAX, Ludwig 
Maximilians University Munich; NYU, NYU Langone Medical Center; OLIN, Olin Institute of Living at Hartford Hospital; PITT, University of Pittsburgh School of Medicine; SBL, Social 
Brain Lab BCN NIC UMC Groningen and Netherlands Institute for Neurosciences; SDSU, San Diego State University; TRINITY, Trinity Center for Health Sciences; UCLA, University of 
California, Los Angles; UM, University of Michigan; USM, University of Utah School of Medicine; YALE, Yale Child Study Center; GU, Georgetown University; OHSU, Oregon Health and 
Science University; ONRC, Olin Neuropsychiatry Research Center; TCD, Trinity Center for Health Sciences; UCD, University of California Davis; UM, University of Miami. Across different 
acquired sites, the age and gender distributions change considerably. Both AOMIC and HBN data have had multiple releases. 
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(Zhao et al., 2020; Traut et al., 2022). The interpretation of the 
correlation between domain adaptation and selected features is 
challenging (Gu et al., 2011; Li et al., 2016; Schölkopf et al., 2007; 
Sun et al., 2019). In this study, imaging features in the VAE-based 
model are difficult to trace back from the output layer to the input 
layer because of the continuous Gaussian latent variables in the 
latent space (Li et al., 2009). Thus, we propose a statistical method 
to identify such imaging features. 

Based on the information presented above, we summarize four 
major aspects of the proposed framework: 

1. We use a VAE-MMD model for domain adaptation in multi-
site fMRI data for predicting the diagnostic labels from 
fMRI functional connectivity (FC) data. We demonstrate that 
domain adaptation from the first release of the ABIDE dataset 
(ABIDE I) to the second release (ABIDE II) will improve 
ABIDE II’s classification performance compared to performing 
classification solely on ABIDE II. 

2. We compare and contrast statistical (ComBat) with deep 
learning (VAE-MMD) approaches for domain adaptation. 

3. We test whether additional data in the source domain, 
specifically healthy control data, will augment domain 
adaptation and improve the generalizability of the classifier in 
achieving better accuracy in the target domain of ABIDE II. 
Given a large amount of healthy control data available in the 
public domain, this transfer learning approach could potentially 
be used to substantially improve diagnostic classification in 
relatively smaller public datasets obtained from individuals with 
neurodevelopmental conditions, such as ASD. 

4. We extract and identify imaging features diagnostically 
important for ASD prediction across different fMRI 
data distributions. 

2 Methods 

2.1 The fundamental algorithm of a neural 
network 

2.1.1 Multi-layer perceptron (MLP) 
Deep learning algorithms have complex mathematical 

structures with several processing layers that can extract data 
features into various abstraction layers. The building block of 
a deep neural network (DNN) and a multi-layer perceptron 
(MLP; Gardner and Dorling, 1998) is a typical type of layer in 
feed-forward networks in which each node is connected to all the 
nodes in the next layer. Within each node in MLP, the input values 
are combined with weights and bias and then summed up before 
being passed to an activation function. The widely used activation 
functions include sigmoid, tangent hyperbolic (tanh; Schmidhuber, 
2015), and rectified linear unit (ReLU; Nair and Hinton, 2021). The 
output z of a node in an MLP layer can be calculated as: 

z = σ ( 
m  

i=1 

wixi + b) 

where m refers to the number of nodes in the current layer, w 
corresponds to the weights of all connections between the current 

node and nodes in the previous layer, b corresponds to bias, and σ 
corresponds to a non-linear activation function. 

2.1.2 Training an MLP 
The weights of biases of the MLP are trainable parameters, 

which are optimized during the training process. Usually, those 
parameters are initialized with random variables close to zero. 
After the forward computation of the MLP, the loss function 
can be defined as the mean squared error (MSE) in single-class 
scenarios and cross-entropy in multi-class scenarios. Furthermore, 
the MLP weights can be learned in the training procedure by 
training with a basic error back-propagation technique for the 
loss function. Back-propagation is based upon an optimization 
algorithm using stochastic gradient descent (Bottou, 2012) with a 
pre-defined learning rate. During each round of computation, the 
values of the network parameters can be optimized by computing 
the gradient of the loss function with respect to each of them using 
the chain rule. 

The input data of MLP is always separated into groups, and 
each group of samples is called a batch. The number of samples 
in the input group is referred to as a batch size. After all the 
data are trained, the procedure repeats a certain number of times, 
called an epoch number. Different from batch, an epoch indicates 
one iteration of the entire training dataset the ML model has 
completed. The number of entire iterations is named as epoch 
number. Except for the trainable parameters optimized during 
the training procedure, pre-defined parameters such as batch size, 
epoch number, or learning rate are fixed during training and are 
referred to as hyper-parameters. 

2.1.3 Overfitting and regularization 
Overfitting occurs when a well-trained MLP fits accurately to 

the training data but performs poorly with the unseen test data. 
Especially in neuroimaging, the training sample size is limited 
(Mwangi et al., 2014), which is problematic for generalizing the 
findings to a clinical setting. There are two straightforward ways 
to address the overfitting problem: (i) simplifying the model, and 
(ii) increasing the training sample size. In addition, overfitting 
can also be addressed by adding regularization to the objective 
function. Those modifications, such as the well-known L1/L2 terms 
(Ridge and Lasso Regression), cause the model to be simpler 
during optimization but enhances the generalizability of unseen 
data (Eslami et al., 2021). 

2.2 Baseline techniques for ASD 
classification 

Machine learning techniques, such as SVM and MLP neural 
networks, performed well in the previous ASD classification studies 
(Bi et al., 2018; Chen et al., 2016; Chanel et al., 2016; Heinsfeld 
et al., 2017). To estimate the performance of the proposed domain 
adaptation approach, this study designated traditional SVM and 
MLP as baseline approaches. Specifically, a polynomial kernel was 
used in the SVM classifier, and the hyper-parameter C was set 
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FIGURE 2 

A flowchart representation of the complete processing and analysis of multiple datasets. The fMRI data from ABIDE I, ABIDE II, HBN, and AOMIC were 
subjected to identical data pre-processing and FC feature extraction. Source domain training and testing use ABIDE I data. In contrast, data from 
healthy subjects in AOMIC and HBN are used as additional training samples in the source domain to test the effect of source domain training sample 
size on domain adaptation performance. Target domain training and testing use ABIDE II data. Note that only the target domain ABIDE II data is used 
to identify features important for classification. 

to 100. Likewise, the architecture of the baseline MLP method 
was the same as that of the VAE used in domain adaptation. The 
architecture has two layers, the first layer contains 200 nodes, and 
the second layer contains 500 nodes. 

2.3 Participants and data 

This study aimed to test the utility of the proposed domain 
adaptation model on the fMRI dataset. Particularly, this study used 
ABIDE resting-state fMRI data (Craddock et al., 2013). We used 
ABIDE I (Di Martino et al., 2014; released in August 2012) as the 
labeled dataset for supervised machine learning while ABIDE II (Di 
Martino et al., 2017; released in June 2016) as the unlabeled dataset 
for the semi-supervised machine learning algorithm. To investigate 
the domain adaptation effect of the proposed VAE-MMD model, 
we set ABIDE I as the source domain and ABIDE II as the target 
domain dataset. There were 998 subjects from 15 sites in the ABIDE 
I dataset and 623 subjects from 11 sites in the ABIDE II dataset. 

ABIDE I fMRI data included 988 subjects from 15 different sites 
(and 18 cohorts since some sites had more than one cohort). The 
number distribution of subjects across multiple sites is shown in 
Table 1. 

Our preprocessing followed widely adopted standard 
procedures in neuroimaging (Kalcher et al., 2012; Nyúl et al., 
2000). The FMRI dataset was pre-processed using DPARSF 
(Chao-Gan and Yu-Feng, 2010). This involved the removal of the 
first five volumes: (i) slice timing correction, (ii) motion correction, 
(iii) co-registration to the standard MNI space, (iv) censoring of 
high motion volumes, and (v) regressing out nuisance variables 

(low-frequency drifts, mean global signal, motion parameters, 
and white matter and cerebrospinal fluid signals). Furthermore, 
voxel time series were temporally filtered with a 0.01–0.1 Hz 
bandpass filter. ABIDE II fMRI data included 623 subjects from 11 
different sites. The pre-processing pipeline for this was identical 
to that used for ABIDE I and was performed in CONN software 
(Whitfield-Gabrieli and Nieto-Castanon, 2012). 

This study used two additional datasets: (i) the AOMIC (Snoek 
et al., 2021), and (ii) HBN datasets (Alexander et al., 2017). These 
datasets were used to test whether the model’s generalizability can 
be further improved by augmenting the size of the source domain 
(adding more healthy control data). This study used AOMIC’s raw 
forms, PIOP1 (N = 216) and PIOP2 (N = 226) datasets, instead of 
the pre-processed datasets. In addition, this study also used good 
quality MRI data from 1,385 subjects in HBN. The pre-processing 
pipeline for all the datasets was identical (see Figure 2). A schematic 
of the extended pipeline including ComBat harmonization is 
provided in the Supplementary Figure S1. The use of additional 
source domains such as AOMIC and HBN datasets were used to test 
whether increasing the size of the source domain or the number of 
source domain subjects improves domain adaptation. Specifically, 
the HBN dataset contains data from children. It may be relevant for 
domain adaptation when the target domain includes children’s data 
(such as ABIDE or ADHD-200). 

2.4. Feature extraction 

We used the whole-brain cc200 atlas (Craddock et al., 2012) 
to reduce the dimensionality of the data. This atlas was generated 
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using spectral clustering of resting state fMRI data of healthy 
subjects. Thus, the regions of interest (ROIs) in the atlas are said 
to be functionally homogeneous. Mean time series were extracted 
from 200 ROIs of the atlas. Subsequently, we estimated FC by 
computing the Pearson’s correlation coefficient between each pair 
of time series. A vector of 19,900 individual features per subject 
was constructed by reshaping the upper triangle of the 200 × 200 
connectivity matrix minus the diagonal. Only the upper triangle 
was considered since FC is a non-directional metric. 

2.5 Domain adaptation VAE-MMD model 
with semi-supervised learning 

This study applies the semi-supervised VAE model that was 
initially proposed by the authors (Kingma et al., 2014) with 
unsupervised learning. The proposed model consists of a generative 
model pθ (x|z, d) and an inference model qφ(z|x, d), where z is 
the latent variable representation, x is the input data, and d 
is the domain variation that is desired to remove. Moreover, θ 
and φ are the trainable parameters of the generative model and 
inference model, respectively. For semi-supervised classification, 
this study aims to construct latent variable z, which has maximum 
information about the observed label y, while excluding the 
information about the nuisance domain variable d. It is achieved 
by adding an additional model in the generative model to correlate 
latent features to the classification task (Louizos et al., 2016). The 
schematic of this model is shown in Figure 3, where the invariant 
feature in the first model, M1, is referred to as z1. M1 generates x 
as x ∼ pθ (x|z1, d), and M2 generates domain invariant variable 
z1 as z1 ∼ pθ (z1|z2, y). y is a categorical variable that denotes the 
label of the data point x and z2 encodes the variation on z1 that is 
independent to y. Thus, for the N labeled data points and M data 
points without labels (i.e., unlabeled data), the objective function of 
VAE becomes: 

FVAE 
 
φ, θ; xn, xm, dn, dm, yn 

 = 
N  

n=1 
Ls 

 
φ, θ; xn, dn, yn 

 

+ 
M  

m=1 
LT 

 
φ, θ; xm, dm 

 

+ α 
N  

n=1 
E q(z1n|xn , dn)[−logqφ(yn|z1n)] 

where the first and second terms denote the lost functions from 
the labeled and unlabeled data. In addition, the label predictive 
distribution qφ(y|z1n) only contributes to the unlabeled data in 
the second term. Therefore, we compensate for this by adding 
a regularization term with a weight coefficient α to ensure that 
qφ(y|z1n) is learned from both labeled and unlabeled data. Finally, 
increasing α results in more purely discriminative learning in the 
generative model. 

In the VAE inference model, we assume that variables z1 and 
d are statistically independent of each other so that the marginal 
posterior distribution q(z1|d) is equal to zero. However, the 
independence relationship may fail because of the correlation 
between y and d. We apply an additional MMD regularization term 
to penalize this situation. 

FIGURE 3 

A flowchart representation of the semi-supervised learning model. 
White variables refer to the variables without input information, and 
blue variables refer to those with the input information. Only some 
of the labels of y are known, and hence y is half white and half blue. 
We assume the variables z2 and y are independent, while z1 and d 
are independent. Among them, z2 , y, and  d are independent 
variables, and z1 is dependent on z2 and y. 

In the MMD definition, the divergence between two 
distributions is calculated as the distances between mean 
embeddings of features (Tzeng et al., 2014). Let k be a continuous, 
bounded, positive semi-definite kernel and H be the corresponding 
reproducing kernel Hilbert space (Gretton et al., 2012), which 
are reduced by the feature mapping from X to H. The MMD of 
distributions px(x) and py(y) is defined as follows: 

MMD 
 
px, py 

 = 
   Ex∼px [ϕ (x)] − Ey∼py 

 
ϕ 

 
y 
   

2 

H 

In the VAE model, an additional MMD regularization term was 
applied to enforce the model to match the source and target domain 
marginal posterior distributions of latent variables q(z1|d = 0) and 
(z1|d = 1). So, the MMD term is determined as: 

MMD 
 
Z1,d=0, Z1,d=1 

 = 
   Ep̃(x|d=0)[E q(z1|x,d=0) [ϕ (z1)]] 

− Ep̃(x|d=1)[E q(z1|x,d=1) [ϕ (z1)]] 
  
2 

H 

Where d is the domain nuisance variable. Finally, adding the 
MMD penalty term into the lower bound of the aforementioned 
VAE, the proposed model becomes: 

FMMD−VAE 
 
φ, θ; xn, xm, sn, sm, yn 

 = 

FVAE 
 
φ, θ; xn, xm, sn, sm, yn 

 − β MMD 
 
Z1,s=0, Z1,s=1 

 

where β denotes the regularization coefficient in domain 
adaptation, increasing β results in more domain confusion 
regularization compared to the classification loss. Both α and β are 
hyper-parameters that control the trade-off between classification 
loss and domain confusion loss, which are optimized through 
training and validation. 

The datasets input to the semi-supervised learning model are 
illustrated in a flowchart, described in Figure 2, and the entire 
framework is shown in Figure 4. In the training model (#1 in 
Figure 4), we input both ABIDE I with labels and ABIDE II 
without labels as training datasets into the VAE-MMD model. After 
domain adaptation, the original t-distributed Stochastic Neighbor 
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FIGURE 4 

Three major steps in the VAE-MMD model. (1) For training, we input both ABIDE I with labels and ABIDE II (without labels) training datasets into the 
VAE-MMD model. The original t-SNE figure and domain adapted t-SNE figure were generated at the beginning and last iteration of this process. The 
total loss was constructed by semi-supervised learning loss, reconstruction loss, and MMD loss. (2) For validation, ABIDE I and ABIDE II validation 
datasets were used for fine-tuning the hyperparameters α and β. (3) For testing, ABIDE I and ABIDE II test datasets were used in testing the model to 
evaluate the model’s performance. Subjects in orange represent healthy controls in ABIDE I and ABIDE II data, subjects in blue represent ASD subjects 
in ABIDE I, and subjects in green represent ASD subjects in ABIDE II. 

Embedding (t-SNE) figure and the corresponding t-SNE figures 
(Figure 5) were generated at the beginning and last iteration of 
this process. Moreover, t-SNE (van der Maaten and Hinton, 2008) 
is a dimension reduction technique to visualize the group-wise 
separation of features in latent space and visually assess domain 
adaptation’s efficacy. 

In the validation model (#2 in Figure 4), ABIDE I and ABIDE 
II validation datasets were used to fine-tune the hyperparameters 
α and β , and ABIDE I and ABIDE II test datasets were used 
to measure the model’s performance (#3 in Figure 4). We used 
accuracy measure to evaluate the training, validation, and testing 
models to better understand the model performance. 

2.6 Model setup 

MLPs (Nozais et al., 2021) work well on vector inputs, 
while CNN’s perform better on natural images. Since functional 
connectivity inputs can be vectors and are not natural images, this 
is why this study used MLPs. The first layer is constructed as the 
latent-feature discriminative model (M1) in the encoder, and the 
second layer is built as a generative semi-supervised model (M2) 
in a stacked architecture. M1 refers to the first layer and M2 to 
the second layer in the encoder of #1 in Figure 4. The dimension 
of latent features in the first and the second encoding layers was 
equal to 2,000 and 1,000, respectively. The learning rate was set to 

0.0001, and each neural network layer used ReLU as an activation 
function (Pedamonti, 2018). The epoch number was equal to 50, 
and the number of batches was 20. The code was constructed in 
Python programming languages and the Theano library. 

We set ABIDE I as the source domain dataset and ABDIE II 
as the target domain dataset. We aimed to reduce the non-neural 
differences in data characteristics between the two domains. The 
ABIDE I dataset was split into 673/157/158 subjects as training, 
validation, and test datasets, respectively. The labeled data was used 
in the training and validation datasets, and these datasets were used 
in a cross-validation framework for fine-tuning hyperparameters. 
The ABIDE II dataset was split into 371/126/126 subjects as 
training, validation, and test datasets, respectively. 

To avoid data leakage, we strictly separated the datasets 
for training, validation, and testing. Specifically, the VAE and 
VAE-MMD models were pretrained using ABIDE-I (source 
domain) and the training set of ABIDE-II (target domain), and 
additional healthy control data from the HBN and AOMIC 
datasets as part of transfer learning. The ABIDE-II test set (126 
subjects) was completely held out during model development 
and hyperparameter tuning. The validation set (126 subjects from 
ABIDE-II) was used solely for tuning model parameters, and no 
information from the test set was used at any point during training 
or model selection. To further prevent overfitting, model training 
was conducted using five-fold cross-validation on the combined 
training data. 
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FIGURE 5 

t-SNE visualization of latent feature spaces for VAE-MMD domain adaptation model. High-dimensional data is reduced to two dimensions for 
visualization through t-SNE. Left panel: clustering before training; right panel: clustering after training; top panel: source domain; bottom panel: 
target domain. Red color corresponds to controls, whereas blue and green colors correspond to Asperger’s and autism patients, respectively. Circle 
marks correspond to the source domain, and triangle marks correspond to the target domain. 

2.7 Transfer learning 

Transfer learning (TL; Ghafoorian et al., 2017) is a technique 
that applies knowledge learned from one domain and one task 
to another related domain and/or another task (Heinsfeld et al., 
2017). HBN and AOMIC data were included as additional source 
domain data to improve generalizability, address overfitting, and 
increase sample size in the source domain. The labels of these two 
datasets are all healthy controls that were used during training. The 
number of batches of HBN and AOMIC was equal to that of the 

ABIDE dataset to be trained simultaneously. The divergences of 
these two datasets to the target domain data were also optimized 
during training, the same as ABIDE I data in the source domain. 

2.8 ComBat harmonization 

We used the publicly available MATLAB toolbox (Fortin and 
Foran, 2021) to achieve ComBat harmonization and used default 
options. Finally, we separated harmonized data into training and 

Frontiers in Neuroinformatics 09 frontiersin.org 

https://doi.org/10.3389/fninf.2025.1553035
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Deshpande et al. 10.3389/fninf.2025.1553035 

FIGURE 6 

t-SNE visualization of latent feature spaces for VAE-MMD domain adaptation model, with transfer learning from additional healthy control data in the 
source domain drawn from HBN and AOMIC datasets. Left panel: clustering before training; right panel: clustering after training; top panel: source 
domain; bottom panel: target domain. Red color corresponds to controls, whereas blue and green colors correspond to Asperger’s and autism 
patients, respectively. Circle marks correspond to ABIDE-I subjects in the original source domain; cross marks correspond to additional HBN and 
AOMIC healthy control subjects in the source domain, and triangle marks correspond to the target domain. 

testing datasets and input it into the deep learning model to 
evaluate classification performance. This metric was compared with 
that obtained from the VAE-MMD model. 

2.9 Model estimation 

The performance of the models was estimated at three levels. 
First, visualization of the separation of features in latent space 
of the VAE-MMD model was realized using t-SNE plots (van 

der Maaten and Hinton, 2008). Second. Kullback–Leibler (KL) 
divergence was used to characterize the separation of features 
analytically. In other words, KL divergence was used to quantify 
the difference between the target and source domains analytically. 
Third, the models’ performance was characterized by accuracy 
and F1 score. We compared the classification accuracy among 
multiple machine learning models with the same datasets. The 
models included SVM, MLP, VAE, VAE, and MMD combination 
(VAE+MMD), VAE and ComBat harmonization combination 
(VAE+ComBat) and domain adaptation combined with transfer 
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learning (VAE+MMD+TL). The benchmark for harmonization is 
VAE+ComBat, while VAE+MMD and VAE+MMD+TL show the 
improvements obtained by MMD and TL over ComBat. Additional 
combinations involving both ComBat and domain adaptation 
(VAE+MMD+ComBat and VAE+MMD+ComBat+TL) are 
presented in the Supplementary material for the interested reader. 

Accuracy represents how close the prediction comes to the 
true values. It is determined by the number of correct predictions 
divided by the total number of predictions. Due to the class 
imbalance in the test dataset, we used F1-score to combine both 
precision and recall of each class, and the F1-score (Pedregosa et al., 
2011) can be calculated as follows: 

F1 = 2× 
Precision × Recall 
Precision + Recall 

2.10 Feature identification 

The first encoding layer is the most interpretable because the 
weights between each node of the encoding layer to the next hidden 
layer are considered as learned features (Montavon et al., 2018; Kim 
et al., 2016). This study also analyzed the weights from the encoding 
layer to the next hidden layer to explain the importance of features 
in the classification as reported in the previous studies (Guo et al., 
2017; Vakli et al., 2018). Furthermore, we applied permutation 
testing to identify the statistically significant features. Once the 
model was trained, the weights assumed values accordingly during 
the training process. At the end of the training process, each weight 
had a mean value calculated over all iterations of training. This 
mean weight represented the “importance” of the corresponding 
feature in the input weight vector of size 1 × 19,900. During 
permutation, the order of the input vector was randomly shuffled, 
and the training process was repeated after each shuffle. The mean 
weight obtained during each permutation corresponded to the 
importance of different features in different permutations. The 
distribution of mean weights obtained across permutations (1,000 
of them) represented a null distribution of the hypothesis that all 
features were significantly important. The p-value of node A was 
calculated by the number of mean weight values greater than the 
true value, divided by the total number of mean weight values. 
Moreover, the p-value was corrected for multiple comparisons 
using the false discovery rate (FDR) method at 5%. The p-value can 
be calculated as follows: 

PA = 
NumgreatTrue 

Numpermutation 
× 100% 

the NumgreatTrue refers to the number of permutations where 
the mean value of weights was greater than the true value, and 
Numpermutation refers to the total number of permutation tests 
(=1,000). The permutation testing procedure was identical for all 
of the proposed models. 

3 Results 

3.1 Domain adaptation 

Figure 5 shows t-SNE visualizations of the latent feature space 
in both the source (top panel) and target domains (bottom 

panel), prior to (left panel) and after (right panel) training. Before 
training, there was little separation between the diagnostic groups 
in both the source and target domains. However, after the training 
process, a clear separation of the diagnostic groups in latent space 
emerged in the source domain. This is transferred to the target 
domain as a visible separation between diagnostic groups [with 
some exceptions, especially between autism and Asperger’s (Note: 
Although the term “Asperger’s syndrome” is no longer used in 
the DSM-5 (2013) and is now categorized under Autism Spectrum 
Disorder (Level 1), we retain the original label in this manuscript to 
reflect the diagnostic terminology used in the ABIDE dataset at the 
time of data collection.)] can be observed. Thus, the results revealed 
that even with high dimensional input data, the VAE-MMD model 
reduced the distance between the data points from the same class 
but different domains in latent space. 

Healthy control subjects from HBN and AOMIC datasets were 
given additional source domain data as input. Since learning about 
healthy control subjects in one domain (HBN and AOMIC) is 
“transferred” to another domain (ABIDE), this specific case of 
domain adaptation is referred to as “transfer learning.” The t-SNE 
embedding (Figure 6) shows the latent feature distributions for 
the VAE-MMD domain adaptation model, with transfer learning 
from additional healthy control data in the source domain drawn 
from HBN and AOMIC datasets. As with the earlier case, there 
was a little separation between groups before training, partly 
because the non-neural inter-site differences drown out the inter-
group neural differences. After training, it can be observed that 
separation between groups is near perfect in the source domain and 
visible in the target domain (with some missed assignments to the 
wrong cluster). 

Comparing Figures 5, 6, it is noteworthy that including 
additional healthy control data in the source domain from HBN 
and AOMIC datasets expanded the reach of the healthy control 
cluster in both the source and target domains. This implies that 
the model captured a larger variance in the healthy population and 
became more generalizable in the target domain, as evidenced by 
improved target domain accuracies presented in the next section. 
As elaborated in the discussion, we hope that with more publicly 
available healthy control data input into the proposed model in 
the future, the model’s generalizability can be further improved, 
leading to more realistic separation boundaries between groups. 
Finally, this can improve performance on unseen test data in the 
target domain. 

3.2 Classification accuracy 

Table 2 shows the accuracy and F1-score from the VAE-
MMD model (i.e., domain adaptation) when combined with other 
strategies, such as transfer learning (TL) from HBN and AOMIC 
datasets, as well as statistical harmonization (ComBat). Moreover, 
the results from the baseline methods SVM and MLP are included. 
It is worth mentioning that the baseline methods did not perform 
well because of the domain shift between source domain data and 
target domain data. Compared to the baseline methods, all other 
techniques containing VAE obtained better results. All models have 
almost 100% training accuracy in the source domain, which is not 
surprising since training accuracy tends to be saturated. However, 
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TABLE 2 Classification results were obtained by combining domain adaptation (VAE-MMD) with other strategies such as transfer learning (TL) and 
statistical harmonization (ComBat). 

Classification accuracy Source training (%) Source test (%) Target training (%) Target test (F1-score) 

SVM – – – 49.32% (0.32) 

MLP – – – 62.66% (0.30) 

VAE 99.97 64.56 52.67 65.08% (0.27) 

VAE+COMBAT 100 60.76 51.56 70.63% (0.29) 

VAE+MMD 99.67 50.94 63.29 69.05% (0.35) 

VAE+MMD+TL 100 60.76 77.61 73.81% (0.38) 

For each of the training and testing datasets (test sample size equal to 126), we compared the classification accuracies from source and target domains. In addition, we used SVM, MLP, and VAE 
trained on source domain data and tested on target domain data. The last column shows the F1 score of each approach. Domain adaptation was not applied with SVM and MLP, so there was 
no source training, source test, and target training classification accuracies. 

FIGURE 7 

The classification accuracy using different approaches combined with domain adaptation. Blue bars refer to the training accuracy in the target 
domain, and red bars refer to the testing accuracy in the target domain. 

the testing accuracy of the source domain is poor, given the inability 
to generalize based just on the source data. This agrees with prior 
results of standard machine learning methods for neuroimaging 
data (Lanka et al., 2020). In addition, MMD-based domain 
adaptation enhances the accuracy during target domain training, 
but the final F1-score on the target test dataset remains comparable 
to that achieved by the ComBat harmonization technique (69.05% 
vs. 70.63%). For the three classes in the target domain dataset 
(controls, autism, and Asperger’s), MMD domain adaptation can 
increase accuracy by 4%−10% without using target domain labels. 
Incorporating transfer learning using additional healthy control 
datasets further boosts accuracy (73.81%), outperforming ComBat 
and demonstrating the benefits of combining domain adaptation 
with transfer learning (see Table 2 and Figure 7). Combining 
transfer learning with ComBat harmonization further improves 
performance, increasing accuracy from 73.81% to 75.4% (see 
Supplementary Table S1 and Supplementary Figure S2). 

However, given the smaller number of samples from Asperger’s 
and its similarities with autism, three-way classification in ABIDE 
is challenging. Although cross-validation accuracies above chance 

(which is 33%) have been reported before, accuracy in independent 
test datasets rarely exceeded 70% (Abraham et al., 2017; Li et al., 
2018; Lanka et al., 2020). If we included AOMIC and HBN datasets 
into the source domain, accuracy further increased to 73.81% 
due to transfer learning, demonstrating that there is scope within 
the domain adaptation framework to improve the accuracy by 
adding more data. Considering differences in data distribution 
between AOMIC and HBN datasets (Table 1), this study also 
investigated how much performance improvement was caused by 
HBN and AOMIC separately. Supplementary Table S2 shows the 
accuracy results separately from HBN and AOMIC datasets in the 
VAE+ComBat+MMD+TL framework. 

3.3 Feature identification 

Figure 8 shows the importance of features for the classification 
using the VAE+MMD+TL model. These paths also happen to 
be significantly weaker (p < 0.05, FDR corrected; Benjamini 
and Hochberg, 1995) in ASD and Asperger’s than in healthy 
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FIGURE 8 

FC features found to be important for classification using our VAE+MMD+TL model with the highest target testing accuracy. The figure shows 
coronal, sagittal, and axial views of connections with colormap. The colors represent different lobes: dark blue: frontal lobe; light blue: insular lobe; 
cyan: occipital lobe; yellow: parietal lobe; orange: subcortical; red: temporal lobe. 

controls. Except for the local connection of supramarginal gyrus to 
postcentral gyrus in the parietal lobe, most of the paths were cross-
network and cross-lobe connections, including middle frontal 
gyrus to inferior temporal gyrus, and BA6 to middle temporal gyrus 
in the fronto-temporal network, orbito-frontal gyrus to rolandic 
operculum in the fronto-insular network, and right precentral to 
right temporal pole in the temporo-parietal network. Most of the 
affected regions in the frontal lobe were left-lateralized. 

The significant connectivity patterns we identified have been 
previously reported in several studies related to deficits in social, 
behavioral, and communicative functioning in individuals with 
ASD. For example, Noonan et al. (2009) reported hyperconnectivity 
between the fusiform gyrus, an area associated with decoding 
social cues such as facial expressions (Delbruck et al., 2019), and 
the superior parietal lobule (BA7) in individuals with ASD. This 
altered connectivity may reflect difficulties in integrating visual 
information with attentional processes, which could contribute 
to impairments in social perception and interaction observed in 

ASD. We identified this connection as well (shown in Figure 8). 
Yoon et al. (2022) reported decreased functional connectivity 
between the middle frontal gyrus (MFG) and the inferior temporal 
lobule (ITG) in children with ASD. We also report this as an 
important connection in Figure 8. Connectivity disruption between 
MFG and ITG was significantly correlated with clinical measures 
such as social communication and awareness scores from the 
Social Responsiveness Scale (SRS). Additionally, Yoon et al. found 
reduced local efficiency in these regions, suggesting impaired 
information integration within the social brain network in ASD. 
Connections between the frontal cortex and insular networks were 
also observed (e.g., R OFC and RolOper; R MFG and R Ins, as 
shown in Figure 8). Altered connectivity among insular subregions 
has been implicated in the degradation of emotion regulation 
abilities in individuals with ASD (Ong and Fan, 2023; Taylor 
et al., 2009; Zhao et al., 2022), while frontal regions such as the 
OFC and MFG have been associated with social impairments in 
ASD (Ong and Fan, 2023). Disruptions in these fronto-insular 
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pathways may therefore contribute to the emotional and behavioral 
deficits characteristic of the disorder (Ong and Fan, 2023). Altered 
connectivity between BA6 and the middle temporal gyrus (MTG) 
within the fronto-temporal network has been implicated in ASD. 
Xu et al. (2020) identified distinct subregions within the MTG 
and found that individuals with ASD exhibited hypoconnectivity 
between these MTG subregions and various frontal areas associated 
with motor planning and social cognition. Similarly, Cheng et al. 
(2015) reported reduced connectivity between the MTG and 
regions involved in emotion processing and theory of mind, such as 
the ventromedial prefrontal cortex, further supporting the role of 
disrupted fronto-temporal interactions in the social and cognitive 
impairments observed in ASD. 

4 Discussion 

Large public databases, such as ABIDE (Autism Brain Imaging 
Data Exchange), have aided deep learning models for diagnostic 
classification with potential applications in AI-assisted clinical 
decision systems. However, such large public databases have been 
assembled post-hoc and contain different non-neural variabilities 
sources, such as different sites using different scanners and 
protocols, which degrade the performance of deep learning as well 
as traditional machine learning models (Li et al., 2018; Lanka et al., 
2020). To address this, this study proposed and implemented a 
domain adaptation framework by employing a VAE-MMD deep 
learning model using ABIDE I as the source domain and ABIDE 
II as the target domain. We demonstrated improved classification 
performance in the target domain by utilizing the source domain’s 
knowledge and making data distributions in the source and target 
domains as similar as possible (Li et al., 2020; Zhou et al., 2018). 
When used in combination with domain adaptation and transfer 
learning, the ComBat statistical harmonization (Fortin et al., 2018, 
2017, 2016) further improved the classifier’s performance (see 
Supplementary material). Finally, we also showed that additional 
transfer learning from HBN and AOMIC datasets improved the 
classification accuracy. 

To analyze the effect of domain shift and adaptation, we 
compared the performance of several models. The baseline VAE 
model, trained and evaluated solely on ABIDE-II, achieved an F1-
score of ∼68.06%. In contrast, training the same VAE model on 
ABIDE-I and testing it directly on ABIDE-II resulted in a lower 
F1-score of 65.08%, likely due to domain shift caused by differing 
data distributions across sites. This highlights the challenges of 
generalizing across datasets without adaptation. Incorporating a 
Maximum Mean Discrepancy (MMD) loss into the VAE framework 
led to improved performance (F1-score: 69.05%) by explicitly 
aligning latent feature distributions between the source and 
target domains. This result demonstrates that domain-invariant 
representations learned via MMD can enhance generalization to 
unseen data. 

Even with high dimensional input features, the VAE-MMD 
model was able to project data points from different domains 
from the same class into a closed latent space. This study 
demonstrates that the proposed approaches can improve target 
domain classification when used independently. When these 

models were combined, the accuracy was better than the models’ 
individual performance. Specifically, Figure 7 and Table 2 showed 
that learning from labeled training data in the source domain 
improved dramatically with domain adaptation and ComBat-
harmonization, with the same trends seen in the target domain 
with unlabeled data, but to a lesser extent (Kouw and Loog, 2021). 
Compared to these two methods (ComBat harmonization and 
domain adaptation approach), ComBat required minimal hardware 
and time to complete the harmonization. In contrast, the deep 
learning model required more time due to the fine-tuning of 
hyper-parameters. It remains to be seen whether the improvement 
in performance expected by including larger datasets in the 
deep learning framework will justify the additional computational 
complexity compared to statistical ComBat harmonization. 

This study used a three-class classification approach (Autism, 
Asperger’s syndrome, and Controls). The Asperger’s population 
is more similar to autism than healthy controls (Duffy et al., 
2013). However, it is still distinctly separate from typical autism 
across behavioral, cognitive, and neural domains (Faridi and 
Khosrowabadi, 2017). However, several studies prefer to perform 
two-way classification between controls and ASD; some studies 
perform three-way classification (Wang J. et al., 2020). This 
study reported the performance of three-way classification in 
the relatively larger ABIDE dataset and obtained a modest 
performance. However, the relatively good three-way classification 
accuracy of deep learning vs. traditional machine learning models 
in the case of ASD (over 70% accuracy) has been reported in smaller 
datasets (N = 114; Isam et al., 2021). This study found that the 
VAE+MMD+TL approach outperformed SVM and MLP methods 
by enhancing the classification of the Asperger’s class from <10% to 
about 60%. One of the three-way ASD classification studies (Wang 
J. et al., 2020) also applied a domain adaptation approach and 
used functional connectivity as an input feature. Still, the authors 
reported <60% accuracy in ASD classification. Thus, compared to 
other three-way ASD classification studies, the proposed approach 
obtained a high accuracy of over 75% on the test dataset (see 
Table 2). For comparison, the two-way classification results for our 
model are included in the Supplementary material. 

This study also utilized a semi-supervised domain adaptation 
approach that combined the advantages of UDA and SDA. 
Moreover, the proposed approach is the first method to utilize such 
a UDA framework in a classification task of a neurodevelopmental 
condition without the annotated labels in the target domain 
(Choudhary et al., 2020). According to the best of our knowledge, 
this research is also the first study that used t-SNE as a visualization 
method in the prediction of neurodevelopmental conditions. The 
proposed approach provided higher accuracy in ASD classification 
than other SDA studies, such as the research by Shi et al. (2021). 
The authors (Shi et al., 2021) trained the three-way decision 
domain adaptation classifier with the MMD mod, then applied it 
to FC from the ABIDE dataset and obtained around 71% accuracy. 
The researchers used propagated pseudo labels to target domain 
data trained by an SVM classifier, which did not benefit from 
a deep learning classifier to handle high-dimensional data as in 
our model. Another study (Wang M. et al., 2020) treated one 
individual site as a target domain and all other sites as source 
domains. Then, a common low-rank latent representation was 
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constructed across the source and target domains, obtaining 60% 
to 70% accuracy. Thus, the proposed approach (at 75.4% accuracy) 
yields superior performance over these state-of-the-art domain 
adaptation methods applied to ASD prediction. 

Since domain adaptation improved target domain test 
accuracy, it raises the possibility that additional data in the 
source domain may further improve classification performance. 
Therefore, we augmented the source domain with additional 
healthy control data from HBN and AOMIC datasets. From 
Table 1, it is clear that AOMIC has a higher proportion of 
females and is older in mean age than the other three datasets. 
Despite this, we chose AOMIC, intending to improve the 
generalizability of the classifier (by exposing the classifier to 
different age/gender mixes). The results from separate datasets 
are shown in Supplementary Table S2; HBN provided slightly 
better performance than AOMIC because it has similar age and 
gender to ABIDE. Combining both AOMIC and HBN datasets, 
transfer learning from these datasets to discrimination in the 
target domain showed improved performance. Furthermore, If 
additional data can improve performance further, it opens up the 
possibility of building truly generalizable classifiers at scale. This 
is an essential step in making machine learning models based 
on neuroimaging data relevant for AI-based diagnostic support 
in the clinic, rather than being a purely academic tool (which it 
is currently) for understanding discriminative features of brain 
function in mental disorders. 

To further evaluate the contribution of each component, we 
conducted a series of ablation comparisons. The baseline VAE 
model trained on ABIDE-I and tested on ABIDE-II achieved a test 
accuracy of 65.08%, indicating a strong domain shift. Incorporating 
MMD (VAE+MMD) improved accuracy to 69.05%, while adding 
ComBat alone (VAE+ComBat) raised performance to 70.63%, 
suggesting its effectiveness in reducing site-related variance. When 
both MMD and ComBat were combined (VAE+MMD+ComBat), 
accuracy reached 74.6%. Adding transfer learning from HBN and 
AOMIC (VAE+MMD+TL) led to 73.81%, highlighting the benefit 
of additional healthy control data. The full model combining all 
three elements—MMD, ComBat, and transfer learning—achieved 
the highest accuracy of 75.4%. These results support the additive 
benefit of each module. We did not include a VAE+TL condition 
in this study, as it addresses a distinct research question beyond the 
scope of this manuscript. 

5 Limitations and future work 

This study contains important limitations. First, this study 
analyzed the weights from the encoding layer to the next hidden 
layer to explain the importance of features in the classification. 
While this is based on prior research (Guo et al., 2017; Vakli 
et al., 2018), one could optimize this choice further by exploring 
best interpretability algorithms for the proposed machine learning 
model and representations of domain invariant features. Second, 
we acknowledge that our study does not explore the limits of 
performance improvements from domain adaptation and transfer 
learning. Determining the point at which additional data ceases 
to yield further benefits would likely require access to significantly 
larger datasets comprising thousands of subjects. Currently, among 
publicly available datasets, only large-scale initiatives such as 

the UK Biobank would be suitable for such an analysis. Other 
neurodevelopmental cohorts, such as the NKI-Rockland Sample 
(Nooner et al., 2012) and the Philadelphia Neurodevelopmental 
Cohort (Satterthwaite et al., 2016), may also be considered for 
extending training and improving generalizability. We plan to 
incorporate data from the UK Biobank (Miller et al., 2016) in  
future research to address this limitation. Third, how dependent is 
the performance of the framework on the inherent heterogeneity 
of the (i) sample, (ii) disorder, and (iii) data acquisition and 
pre-processing strategies need to be investigated further. Fourth, 
the class imbalance issue was not examined to enhance the 
performance of the multi-class approach. For example, we observed 
that classification performance for the Asperger’s class in the 
target domain was lower compared to the control and autism 
classes, consistent with the limited separation observed in the t-
SNE visualizations (Figures 5, 6). This suggests that distinguishing 
Asperger’s syndrome from autism remains challenging and 
represents a limitation of the current model, which may be driven 
by the lower sample size for this group. Techniques such as 
synthetic oversampling (Chawla et al., 2002) have been proposed 
to mitigate class imbalance and could be explored in future work. 
Fifth, our paper does not report statistical comparisons between 
model accuracies, such as p-values or confidence intervals. Since 
the model was trained with five-fold cross-validation, the effective 
sample size for statistical testing is very small (N = 5). In such 
settings, p-values can be unstable or misleading, and confidence 
intervals may appear artificially narrow or overconfident due to the 
limited number of folds. We also note that many prior works in 
neuroimaging and deep learning (Alzakari et al., 2025; Farooq et al., 
2023; Parisot et al., 2018; Shao et al., 2021; Yang et al., 2021) evaluate 
model performance based on the mean and standard deviation 
across folds or repetitions without reporting p-values. We believe 
this approach offers a fair assessment of the model’s effectiveness 
given the statistical limitations of five-fold cross-validation. Finally, 
this study presents t-SNE plots as a qualitative visualization of 
how the latent features separate diagnostic groups and align 
domains before and after training. We did not include quantitative 
clustering metrics such as the Silhouette Score or Davies–Bouldin 
Index because our primary objective was classification rather than 
unsupervised clustering, and these metrics do not directly measure 
class label separability or domain alignment in supervised settings. 
In addition, clustering metrics may be unreliable when applied 
to t-SNE-reduced spaces, which are optimized for visualization 
rather than preserving global data structure. Instead, we relied on 
downstream classification performance (accuracy and F1-score) on 
a held-out test set as a more direct evaluation of the model’s ability 
to learn discriminative and domain-invariant representations. 

6 Conclusion  

In conclusion, the results of this study demonstrate that domain 
adaptation and transfer learning, when used in combination, 
outperforms ASD classification in test data as compared to 
baseline statistical harmonization methods of multi-site data such 
as ComBat. The domain adaptation VAE-MMD model is robust 
against sources of data distribution divergence, such as inter-site 
differences in data acquisition parameters and scanner models. By 
demonstrating that augmenting the source domain with additional 
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data leads to improved target domain accuracy due to transfer 
learning, this work opens the possibility of further improving the 
proposed model by utilizing the ever-increasing amount of healthy 
control neuroimaging data in the public domain. 
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