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Introduction: Alzheimer’s disease is a progressive neurodegenerative disorder 
challenging early diagnosis and treatment. Recent advancements in deep 
learning algorithms applied to multimodal brain imaging offer promising 
solutions for improving diagnostic accuracy and predicting disease progression.

Method: This narrative review synthesizes current literature on deep learning 
applications in Alzheimer’s disease diagnosis using multimodal neuroimaging. The 
review process involved a comprehensive search of relevant databases (PubMed, 
Embase, Google Scholar and ClinicalTrials.gov), selection of pertinent studies, and 
critical analysis of findings. We employed a best-evidence approach, prioritizing 
high-quality studies and identifying consistent patterns across the literature.

Results: Deep learning architectures, including convolutional neural networks, 
recurrent neural networks, and transformer-based models, have shown 
remarkable potential in analyzing multimodal neuroimaging data. These models 
can effectively process structural and functional imaging modalities, extracting 
relevant features and patterns associated with Alzheimer’s pathology. Integration 
of multiple imaging modalities has demonstrated improved diagnostic accuracy 
compared to single-modality approaches. Deep learning models have also 
shown promise in predictive modeling, identifying potential biomarkers and 
forecasting disease progression.

Discussion: While deep learning approaches show great potential, several 
challenges remain. Data heterogeneity, small sample sizes, and limited 
generalizability across diverse populations are significant hurdles. The clinical 
translation of these models requires careful consideration of interpretability, 
transparency, and ethical implications. The future of AI in neurodiagnostics for 
Alzheimer’s disease looks promising, with potential applications in personalized 
treatment strategies.
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Highlights

 • Integration of MRI, PET, and fMRI with deep learning models 
for early AD detection.

 • Exploration of CNNs, RNNs, and transformers in analyzing brain 
imaging data.

 • Use of AI to predict disease progression, differentiate MCI and 
AD stages, and identify biomarkers.

 • Addressing issues like data heterogeneity, small sample sizes, 
and generalizability.

 • Discussing model interpretability, regulatory considerations, and 
AI’s role in personalized AD treatments.

1 Introduction

1.1 Overview of Alzheimer’s disease and the 
importance of early diagnosis

Alzheimer’s Disease (AD) is defined as a neurodegenerative 
disorder characterized by cognitive decline, memory loss, and 
behavioural changes which cannot be  reversed (Porsteinsson 
et al., 2021). There is no cure for this disease but treatments are 
available which can decline its progression (Raza et al., 2024a; 
Atri, 2019). It is one of the most common causes of dementia, 
affecting 50% of the 85-year-old age group population (Aramadaka 
et al., 2023). AD causes the degeneration of neurons (Raza et al., 
2024b), specifically those that are involved in memory and 
intellectual functions (Atri, 2019).

It’s very important to diagnose AD before its onset. While 
there is no cure for AD, early diagnosis allows health professionals 
to take timely intervention (Raza et al., 2024a) and screening to 

manage the disease so that its progressive nature can be slowed 
down (Porsteinsson et al., 2021). It can also help patients as well 
as care providers in a way that they can plan for the necessary 
lifestyle changes in future to make the patient’s life quality better 
(Porsteinsson et al., 2021). According to researchers, rolling back 
the diagnosis by 5 years could reduce the frequency of AD by 50% 
(Amira et al., 2015). Challenges have often come along with the 
early diagnosis, which includes limitation of time for clinicians, 
proper diagnosis of AD pathology and misdiagnosis of the 
symptoms, which are similar to the normal ageing process 
(Porsteinsson et al., 2021).

Despite facing such challenges, early diagnosis and 
continuous research led to the development of advanced 
diagnostic tools and biological markers. Many diagnostic tests 
have been investigated, such as neuropsychological and 
neuroimaging tests, and their working with machine learning 
(ML) and deep learning (DL) showed promising results in 
diagnosing AD at its early stages (Ding et al., 2019; Feng et al., 
2020). The use of Electroencephalography (EEG) together with 
ML has shown high accuracy in diagnosing AD patients (Pirrone 
et  al., 2022). Neuropsychological testing focuses on dual-task 
performance and active inhibition to catch AD in its early stages 
while differentiating it from the control group (Toepper 
et al., 2008).

Magnetic Resonance Imaging (MRI) and Computer-Aided 
Diagnostic (CAD) systems, which are classified under 
Neuroimaging techniques, were found to achieve good accuracy 
in the early diagnosis of AD. MRI and CAD use Deep Neural 
Networks (DNN) and Convolutional Neural Networks (CNNs), 
which are advanced subfields of ML; by using these approaches, 
MRI and CAD detect AD-related patterns with accuracy higher 
than 90% (Shah et al., 2024; Amira et al., 2015; Rabeh et al., 2023).
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1.2 Role of neuroimaging in Alzheimer’s 
disease diagnosis

Neuroimaging is defined as the process of image production 
of the structure or the activity of the central nervous system, 
primarily the brain, through techniques like MRI or computerized 
tomography (CT). However, neuroimaging plays an important 
role in diagnosing AD. Positron emission tomography (PET) and 
single-photon emission computed tomography (SPECT) are the 
techniques which have been useful in detecting structural and 
functional changes in the brain that are associated with AD. These 
techniques have greatly contributed to AD research and diagnosis 
(Weinstein et al., 1993).

MRI can detect fine structural and functional changes in different 
regions of the brain, including the integrity of the blood–brain barrier, 
through dynamic contrast-enhanced MRI (DCE-MRI) technique 
(Raja et al., 2018). MRI has been widely used in AD diagnosis. Brain 
atrophy patterns, which are the characteristics of the AD process, can 
be  detected through volumetric MRI (Zhou et  al., 2024). 
Neuroimaging data has a multi-dimensional nature; this can present 
analytical issues (Shu, 2016). To address this, researchers have 
developed voxel-level analyses, region of interest (ROI) studies and 
more advanced procedures like seed-voxel and multivariate techniques 
(Albajes-Eizagirre et al., 2019; Habeck et al., 2010). These techniques 
can assist in extracting relevant features and patterns from 
brain images.

The emergence of AI and advances in ML have transformed the 
analysis of neuroimaging in diagnosing AD. These advanced 
computational tools give more precise diagnoses of AD patients and 
disease progression. Deep learning method CNNs extract relevant 
features from brain images while classifying them into different stages 
of cognitive impairment (Parmar et  al., 2020). However, this 
association of AI and ML provides diagnostic accuracy and efficient 
analyses of radiographic data and contributes to the development of 
precision medicine approaches for AD (Mirkin and Albensi, 2023; Jo 
et al., 2019).

Longitudinal data analysis of neuroimaging data is another 
important aspect of AD discussion. It allows for the study of disease 
progression over time (Aberathne et al., 2023). It can also help in 
identifying vulnerable brain regions and determining threshold values 
for biomarkers such as plaques, tangles, and neurodegeneration 
(Aberathne et al., 2023). The diverse effects of AD on the brain have 
been studied by employing normative modelling techniques. These 
techniques analyze specific individual changes across multiple 
imaging biomarkers that reveal the effect of AD on the brain (Verdi 
et al., 2024). While neuroimaging biomarkers have shown promise in 
AD diagnosis, they are often limited in clinical application due to their 
high cost and, in some cases, invasive nature (Khan and Alkon, 2015). 
Research is needed for more accessible and cost-effective biomarkers, 
such as blood-based markers, which can introduce neuroimaging 
techniques in low and middle-income healthcare settings.

Neuroimaging when associated with AI and ML can be a great 
tool for the early and more accurate diagnosis of AD as It provides 
valuable insights into brain structure and function that helps in 
monitoring disease progression. Research is needed to deal with the 
challenges in standardizing methods and validating findings across 
different populations.

1.3 Advancements in deep learning for 
brain imaging analysis

Deep learning (DL) is a type of machine learning (ML) that utilize 
artificial neural networks having multiple layers of processing and 
extracting high level features from the data while performing complex 
task like classification, regression and representation of the data. DL 
has made great advancements in brain imaging analysis serving the 
field of neuroscience and medical imaging.

Artificial neural networks such as CNNs, which are the type of DL 
algorithm used to identify patterns in images and perform computer 
vision tasks, showed success in diagnosing and classifying the imaging 
data for the early detection and classification of AD (Wen et al., 2020). 
CNNs can be applied to MRI and PET images for the identification 
and classification of different structures enhancing the accuracy of 
diagnosis of AD (Wen et  al., 2020). It provides great help for the 
radiologist to interpret complex cases more effectively and decrease 
their workload through its automation process. However, the circle of 
DL is not limited to just AD. It extends far beyond it. It works with 
several other brain disorders, such as Parkinson’s disease, autism 
spectrum disorder, and Schizophrenia (Zhang et al., 2020a).

DL methods have bypassed the traditional ML techniques in 
diagnosis through computer-aided techniques, and generative 
adversarial networks (GANs) have been explored to overcome the 
limitations associated with data availability in brain imaging studies 
(Galić et al., 2023; Logan et al., 2021). DL methods, when compared 
to standard ML methods, were found to have a better-scaling potential 
and their ability to make the most of nonlinearities in neuroimaging 
data to make more effective representations of tasks for better 
characterization of the human brain (Abrol et al., 2021). From adult 
to pediatric medical imaging, DL has been instrumental in detecting 
neurological developmental disorders by identifying brain and tissue 
structures while predicting the outcomes (Hu et al., 2023).

However, DL approaches have greatly covered several aspects that 
include brain imaging, early detection of disorder, classification and data 
representation but further research is needed to address the interpretation 
issues and medical images variability to utilize the full potential of DL.

1.4 Objectives of the review

 • To provide an overview of AD and emphasize the significance of 
early diagnosis in improving patient outcomes.

 • To explore the role of neuroimaging techniques, such as MRI and 
PET, in the diagnosis and monitoring of AD.

 • To review advancements in deep learning methodologies applied 
to brain imaging analysis, particularly for the early detection and 
progression of AD.

 • To discuss various deep learning architectures, including CNNs, 
RNNs, transformers, and hybrid models, and their applications 
in structural and functional neuroimaging for AD diagnosis.

 • To evaluate the role of MRI and PET fusion and other structural 
imaging and functional imaging techniques in providing early 
diagnosis of AD.

 • To analyze the use of deep learning methods in predictive 
modelling to track disease progression, find biomarkers and 
distinguish MCI from AD.
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TABLE 1 Comparative analysis of deep learning and traditional models.

Approach Examples Accuracy (%) AUC Key Features Reference

Traditional ML SVM, Random Forest, 

Decision Trees

94.5% 0.96 Requires manual feature 

extraction; interpretable; 

data-efficient

Alshamlan et al. (2024)

Deep Learning (CNNs, 

RNNs, Transformers)

AlexNet, DenseNet, Vision 

Transformer, 3D-CNN

94–99 0.91–0.99 End-to-end learning; 

automatic feature 

extraction; scalable for 

large datasets

Alsubaie et al. (2024); Khan 

and Saddam (2024)

Hybrid DL Models CNN + RNN, 

Transformer-CNN Fusion

91–99 0.937 Multimodal learning; 

enhanced accuracy by 

combining imaging and 

clinical data

Asaduzzaman et al. (2025); 

Vashishtha et al. (2023)

 • To underline the issues in neuroimaging data standardization, 
including variability in imaging protocols, limited data 
availability, and generalizability across diverse populations.

 • To provide suggestions for future research, such as the 
development of explainable deep learning models, multimodal 
data integration, and solutions for overcoming data-
related limitations.

2 Convolutional neural network for 
structural imaging analysis

CNNs are the cornerstone of deep learning models capable of 
handling high-dimensional data such as neuroimages. Its basic 
framework consists of an input layer, some middle layers, and an 
output layer. The hidden layers include the convolutional layers 
(C-layers), the subsampling layers (S-layers), and the fully connected 
layers (FC-layers). All these layers cooperate to identify the valuable 
insight in the data, to decrease the data volume, and to categorize 
the data.

As the CNNs advance, they become refined and incorporate new 
changes in the imaging equipment, such as MRI and PET scans. 
However, when trained on larger data sets, it is boosted to a great 
extent. The fact that CNNs can learn directly from the images means 
that the features can be  learned automatically without having to 
handcraft them. This potential makes them suitable for various 
applications, making them effective in measuring the accurate staging 
of Alzheimer’s disease.

In AD studies, CNNs are trained to recognize morphological and 
metabolic alterations of the brain by concentrating on specific areas, 
including the hippocampus, amygdala, and insula. Their capability to 
learn from these areas of the damaged brain makes them crucial for 
early-stage detection and diagnosis. For instance, CNNs have the 
potential to recognize hippocampal and cortical atrophy from MRI or 
abnormalities in glucose metabolism and amyloid deposition from 
PET. Due to the ability of CNNs to handle massive high-dimensional 
data sets such as the ones from ADNI and OASIS, which contain 
neuroimaging and clinical information, CNNs are employed.

CNNs can enhance the accuracy of detecting Alzheimer’s even 
before the appearance of clinical symptoms by learning from a lot of 
data. They also help in the creation of predictive models as well as 
individualized interventional approaches. These deep-learning models 

are more convenient for medical images since they can learn 
hierarchical features (Saleem et al., 2022). Some of the CNN models 
that have been employed in the diagnosis of AD include AlexNet and 
DenseNet, among others. These models not only distinguish between 
a healthy person and a patient but can also assess the patient’s 
condition as in either the early stage of the disease or the advanced 
stage, incorporating the mild cognitive impairment (MCI) and the 
early stage of AD. For instance, AlexNet has exhibited remarkable 
results in analyzing MRI images and thus set a high standard in this 
field (Dakdareh and Abbasian, 2024).

2.1 Recurrent neural networks (RNNs) for 
longitudinal data and temporal analysis

Recurrent Neural Networks (RNNs) could be considered one of 
the best approaches to processing longitudinal and temporal 
physiological data because of their capability to manage sequential 
inputs and temporal dependencies. DNNs, CNNs, or other machine 
learning models could be used in analyzing dynamic systems, but 
RNNs are best suited for this purpose. The features they consider are 
both the current and previous sequences of features, which is useful 
when faced with input sequences of varying lengths (Mao and 
Sejdic, 2023).

In the case of MCI to AD conversion, annual NP test data are used 
by RNNs to incorporate temporal patterns of the disease. This allows 
RNN models to capture the change from MCI to AD over several 
years and indicates the patient’s future prognosis. It can be concluded 
that the proposed RNN-based models are more effective than 
traditional models (Table 1), including logistic regression, in the case 
of using fewer features and without using expensive data such as MRI 
images. This can make a difference in the quality of the patient and the 
cost of the treatment; in fact, it has the potential to place RNN-based 
predictions as the new generation of Alzheimer’s treatment.

Contrary to other methods that depend on costly and detailed 
imaging studies, RNNs use easily accessible NP tests to make relevant 
and timely predictions based on patients’ records. In this manner, 
RNNs can predict the stages of MCI to AD over the next few years, 
which will also be more inexpensive and less invasive than the current 
diagnosis and management of the disease (Park et al., 2024) In their 
present form, RNNs could be more effective than traditional models 
like logistic regression, even with few input data. This advancement 
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can also improve the lives of the patients and the healthcare system, 
which results in a decline in costs for the treatment of AD (Al Olaimat 
and Bozdag, 2024).

2.2 Transformer and attention mechanisms 
for multimodal data integration

Transformers have played a crucial role in the development of AI, 
especially in dealing with sequential data using innovative approaches 
to the self-attention mechanism. This mechanism allows the 
transformers to work on the parts of a sequence that are relevant to 
the task at hand, irrespective of their location Table 2. Therefore, the 
models are capable of learning long-range dependencies (Madan et al., 
2024). The transformers were initially designed for natural language 
processing and have been adopted in healthcare, especially in such 
areas as the diagnosis. AD is complex and therefore has multiple 
etiologies, and the progression of this disease needs several data sets 
for better prediction.

In the framework of Alzheimer’s diagnosis, transformers 
exhibit tremendous potential in aggregating various types of data 
such as EHRs, genetics, and imaging. Transformers are especially 
effective in dealing with multimodal data since Alzheimer’s 
presents differently in every patient. This includes data, in the form 
of brain scans and genetic markers, which offer a more complete 
and specific view of the patient. For instance, some models like 
Med-PLM and BRLTM have incorporated diagnosis codes, medical 
histories, and even unstructured clinical notes to enhance the 
diagnostic abilities of the model, which shows the future of 
transformers in this domain.

Additionally, transformers are getting more recognition in 
medical imaging, especially Vision Transformers (ViTs), as they have 
the potential to handle larger effective receptive fields. This makes 
them capable of capturing more contextual information in medical 
images than the conventional CNNs; this is very important as it 
determines the overall diagnosis of the tissue and organs. Although 
they face difficulties in terms of computational intensity and the 
requirement of big data sets, transformers are being considered a great 
perspective in medical imaging as a potential way to improve the 
quality of healthcare, especially in the context of Alzheimer’s diagnosis 
(Tang et al., 2023).

2.3 Hybrid deep learning model combining 
multiple techniques

The hybrid deep learning models have enhanced the performance 
of diagnosing AD to the state where it has not been before through a 
combination of different architectures that increase the accuracy and 
reliability of the model. These models incorporate various models 
such as CNNs, Auto-Encoders (AEs), and RNNs to process multi-
modal data, including MRI and PET images as well as speech samples 
(Saleem et al., 2022).

For instance, the 3D Explainable Residual Self-Attention 
Convolutional Neural Network (3D ResAttNet) uses a self-attention 
mechanism along with residual connections to improve attention 
towards important features while at the same time improving the 
training efficiency. Such models as sparse autoencoders (AEs) and 
capsule networks are applied for the refinement of feature extraction 
with the purpose of enhancement of detection. Further, the high-level 
layer concatenation autoencoder (HiLCAE) along with 3D-VGG16 
has been used to improve diagnostic performance by using both MR 
and PET images. To examine the feasibility of AD, CNNs and RNNs 
are used to analyze speech information (Saleem et al., 2022).

Further, Bidirectional Gated Recurrent Units (BGRUs) combined 
with Dense Convolutional Networks (DenseNets) enable us to learn 
spatial and temporal patterns from the brain data. Other complicated 
structures like SBi-RNNs combined with 3D-CNNs, as well as Dense 
Connection CNNs with attention, have, however, been indicated to 
perform better than the traditional methods. These models can therefore 
be used to improve and expedite the diagnosis of AD, making the models 
relevant in any clinical setting. Nationally, models such as Bidirectional 
Gated Recurrent Units (BGRU) along with Dense Convolutional 
Networks (DenseNets) are capable of learning both spatial and temporal 
features from brain data. Other complex architectures, including Stacked 
Bidirectional Recurrent Neural Networks (SBi-RNNs) incorporated with 
3D-CNNs and Densely Connected Convolutional Neural Networks 
(DCCNNs) with attention mechanisms, have been shown to outperform 
the conventional approaches (Saleem et al., 2022). These models provide 
a platform for enhanced and timely AD diagnosis, thus making them 
applicable in any given clinical setting.

One such model is the 3D Hybrid Compact Convolutional 
Transformer (3D HCCT), which is an advanced model for the AD 
classification from 3D MRI scans. These networks are convenient in 

TABLE 2 Quantitative performance metrics for deep learning models in Alzheimer’s diagnosis.

Model Modality Accuracy (%) Sensitivity (%) Specificity (%) AUC Reference

CNN (AlexNet, 

DenseNet, ResNet)

MRI 89.4–98.9 86.7–98.9 84–98.8 — Feng et al. (2020)

3D ResAttNet MRI 84–93.44 — — 81.8–96.7 Wang Y. et al. (2024)

RNN (LSTM, GRU-

based)

Longitudinal Data 75.57 — — — Airlangga (2024)

Transformer (Vision 

Transformer, Med-

PLM, BRLTM)

Multimodal Data 92.14% 93.27% 89.95% — Zhao et al. (2024)

Hybrid Models 

(CNN + RNN, 

HiLCAE +3D-VGG16, 

BGRU + DenseNet)

MRI + PET 98.8% 100% 76% — Khatun et al. (2023)
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learning the local features, while these are optimal when our focus is 
on the global forms and the long-term relations. The entity acquires 
the local features while ViTs are effective at capturing the global 
patterns and long-range dependencies. This architecture combines the 
two models to produce richer feature representations that are more 
discriminative and therefore achieve better accuracy, and sensitivity, 
in contrast to the traditional CNN-based models, specifically when 
tested on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
data sets (Majee et al., 2024).

Also, the 3D HCCT’s ability to perform well on various data sets 
and its efficient architecture that reduces the consumption of resources 
makes it suitable for use in the clinical setting. Its ability to aid in the 
diagnosis of AD at an early stage and with a high level of accuracy 
shows how AI in healthcare can transform the healthcare industry and 
improve patient care.

3 Integration of structural and 
functional imaging

The fusion of resting-state functional MRI (rs-MRI) with 
Structural MRI has shown better outcomes in the early detection as 
well as staging of AD (Hojjati et al., 2018) the multimodal approaches 
demonstrates great promise in accuracy as compared to single 
modality approaches. For instance, combined sMRI and rs-fMRI 
modality outperformed sMRI (89%) and rs-fMRI (93%) alone and 
demonstrated 97% accuracy in diagnosing MCI converters against 
non-converters (Hojjati et al., 2018).

Likewise, combining MRI, fMRI, and cognitive test scores 
produced 95.65% accuracy in distinguishing AD patients from healthy 
controls (Dachena et al., 2020). Though, the advantages of combining 
functional and structural imaging can vary across patient categories. 
For example, integration improves differentiation between AD and 
behavioral variant frontotemporal dementia (bvFTD) but does not 
always significantly outperform structural measures alone when 
distinguishing AD from healthy controls (Bouts et al., 2018) Therefore, 
multimodal imaging approaches effectively capture complementary 
information about brain structure and function, enhancing diagnostic 
accuracy and strength. Additional research is required to optimize 
feature selection, integration methods, as well as clarification of the 
role of each modality across different patient populations.

3.1 MRI and PET fusion for early detection 
of Alzheimer’s disease

The combination of MRI and PET methods demonstrates better 
outcomes in the early detection of AD by synchronizing the structural 
revelations of MRI to the metabolic status captured by PET. This 
integration results in a more comprehensive view of brain changes. 
Studies have revealed that multimodal fusion approaches outperform 
individual modality methods in diagnostic accuracy (Castellano 
et al., 2024; Du et al., 2024a; Shukla et al., 2023). Noteworthy methods 
embrace the integration of gray matter (GM) areas from MRI with 
FDG-PET (Fluorodeoxyglucose-positron emission tomography) to 
create a “GM-PET” modality and a wavelet transform-based fusion 
process combined with deep learning for categorization. These 
techniques have attained up to 99% accuracy in binary classifications 

(Alzheimer’s disease AD vs. Cognitively Normal and Mild Cognitive 
Impairment vs. Cognitive Normal) and 96% in multi-class 
classifications (AD vs. MCI vs. CN), highlighting their potential for 
strong and early AD diagnosis (Parihar and Swami, 2024; Song et al., 
2021) By combining structural and functional imaging data, these 
advancements support former interventions and better patient 
outcomes (Shukla et al., 2023) Table 3 depicts the comparison of 
single modalities with fusion modalities.

The following Table  4 enlightens different multimodal fusion 
approaches combining MRI and PET imaging for the early 
diagnosis of AD.

3.2 Functional connectivity and 
resting-state fMRI in AD diagnosis

Resting-state functional magnetic resonance imaging (rs-fMRI) 
has emerged as a promising tool for studying Alzheimer’s disease 
(AD) and its preclinical stages. Various studies have evidences that 
rs-fMRI can differentiate functional connectivity changes in the brain’s 
default mode network (DMN) across the spectrum of AD, from 
healthy aging to MCI and clinical AD (Binnewijzend et al., 2012; 
Damoiseaux, 2012). These variations are often characterized by 
diminished connectivity within the DMN, predominantly in the 
precuneus and posterior cingulate cortex, and are not dependent on 
cortical atrophy (Agosta et al., 2012; Binnewijzend et al., 2012) In the 
course of decreasing DMN connectivity in AD, some studies have 
detected enhanced connectivity in frontal networks, probably as a 
compensatory mechanism to preserve cognitive efficiency (Agosta 
et al., 2012).

Furthermore, AD patients have shown altered connectivity 
patterns between different brain areas, such as diminished positive 
correlations between prefrontal and parietal lobes and increased 
positive correlations within lobes (Ibrahim et al., 2021). These findings 
support the concept of an anterior–posterior disconnection 
phenomenon in AD. Thus rs-fMRI holds potential as a biomarker for 
monitoring of early detection and progression of disease. However, 
standardization of methodologies and analysis techniques is required 
for clinical implementation. Integrating rs-fMRI with other imaging 
modalities and cognitive measures may further improve diagnostic 
accuracy and provide deeper insights into AD pathophysiology 
(Damoiseaux, 2012).

3.3 Multimodal data preprocessing and 
alignment techniques

Multimodal data preprocessing and alignment techniques play 
a key role in the diagnosis of AD using neuroimaging data. Various 
studies have emphasized the importance of these modalities in 
refining diagnostic accuracy and elucidating meaningful features 
from different imaging modalities. Techniques like age correction, 
feature selection, and feature reduction enable meaningful analysis, 
with these methods enhance diagnostic accuracy by normalizing 
and reducing the dimensionality of data from various modalities, 
such as MRI, PET (positron emission tomography), CSF 
(cerebrospinal fluid) biomarkers, and genetic features (Lin et al., 
2021). Some studies also focus on specific brain regions like the 
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hippocampus for extracting discriminative features (Ahmed 
et al., 2019).

Though integration of multimodal data offers significant 
advantages, integrating high-dimensional imaging and genetic data 
poses challenges (Peng et al., 2019). To address these challenges, 
new approaches like structured sparsity and multiple kernel 
learning methods have been introduced to facilitate structured 
feature selection and fusion from mixed modalities. In conclusion, 
advanced preprocessing and alignment techniques, such as graph 
diffusion methods for enhancing similarity measures among 
subjects (Wang et al., 2023) and image fusion methods combining 
gray matter tissue areas of brain MRI and FDG-PET images (Song 
et  al., 2021) have demonstrated improved performance in AD 
diagnosis. These advanced techniques improve data quality and 

integration, resulting in more precise and explainable diagnostic 
models for AD.

3.4 Challenges in integrating 
heterogeneous imaging data

The diverse range of imaging techniques, including CT, MRI, and 
PET, each offer unique understandings into AD pathophysiology but 
also poses complications in data integration (Johnson et al., 2012). 
These modalities provide varying types of information, from structural 
alterations to functional changes and molecular pathology, making it 
problematic to create a unified understanding of the disease process 
and progression. One significant challenge is the apparent paradox 

TABLE 3 Comparison of single modality (MRI, PET) and fusion approach (MRI-PET Fusion) for the early diagnosis of Alzheimer’s Disease.

Modality Study Findings Evidence

MRI MRI is effective in detecting brain atrophy and volumetric changes, specifically in the hippocampus and 

medial temporal lobe.

Rao et al. (2023)

Demonstrates high sensitivity in detecting early structural changes in gray matter but limited specificity 

in differential diagnosis.

Chouliaras and O’Brien (2023)

PET FDG-PET detects early metabolic changes in the posterior cingulate and precuneus regions, preceding 

structural atrophy.

Mosconi et al. (2004)

PET using amyloid tracers (e.g., PiB) improves the detection of amyloid-beta plaques in preclinical 

stages of Alzheimer’s.

Suppiah et al. (2019)

MRI-PET Fusion Combining PET and MRI enhances the detection of early biomarkers by integrating structural and 

metabolic changes.

Lee et al. (2024).

Integration of PET and MRI data improves diagnostic accuracy through automated machine learning 

techniques.

Castellano et al. (2024)

Demonstrates improved sensitivity and specificity in early detection by combining anatomical and 

functional data.

Song et al. (2021)

Fusion models using deep learning enhance early detection with improved performance compared to 

single modalities.

Venugopalan et al. (2021)

Advanced neural networks combining MRI and PET achieve higher diagnostic accuracy in 

distinguishing Alzheimer’s from other dementias.

Huang et al. (2019)

TABLE 4 Multimodal fusion of MRI and PET imaging for detection of Alzheimer’s Disease (AD).

Fusion Technique Description Key Findings Reference

Image-level Fusion Combines MRI and PET images to create a single 

composite image. Example: “GM-PET” modality fuses 

gray matter tissue area of MRI with FDG-PET images.

Retains both structural and metabolic information; 

outperformed unimodal and feature fusion methods.

Song et al. (2021)

Feature-level Fusion Extracts features from MRI and PET separately, then 

combines them. Example 1: Wavelet transform-based 

fusion with deep learning using ResNet-50.

Incorporates structural and metabolic data effectively 

for improved diagnosis.

Choudhury et al. (2024)

Example 2: Pre-trained neural networks for 2D feature 

fusion of MRI and PET.

Enhanced feature extraction and fusion capabilities. Suma et al. (2022)

Decision-level Fusion Classifiers are trained on individual modalities (MRI, 

PET, EEG), and outputs are combined.

Ensemble classifier approach improved diagnostic 

accuracy by 10–20% compared to individual 

modalities.

Polikar et al. (2010)

3D Fusion Techniques Operations include skull-stripping, image segmentation, 

and co-registration. Example: Comparison of 2D and 3D 

CNN architectures for MRI-PET fusion.

3D fusion achieved good accuracy (86.90%) for AD 

classification; 3D methods showed effectiveness.

Suma et al. (2022)
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between the clinically diverse presentations of AD and the common 
underlying histopathological substrate.

One significant challenge is the apparent paradox between the 
clinically diverse presentations of AD and the common underlying 
histopathological substrate. Variant syndromes of AD, such as 
posterior cortical atrophy and logopedic variant primary progressive 
aphasia, exhibit different clinical phenotypes despite sharing similar 
pathological pictures (Warren et  al., 2012). This heterogeneity 
complicates the interpretation of imaging data and highlights the need 
for a more refined understanding of how different brain networks are 
affected in AD (Loreto et  al., 2024). To address these challenges, 
researchers are developing comprehensive knowledge bases like the 
Alzheimer’s Knowledge Base (AlzKB), which combines diverse data 
sources to provide a complete depiction of AD etiology and potential 
therapeutics (Romano et al., 2024).

Such approaches aim to capture the complex relationships 
between biological and pharmaceutical entities at various levels of 
organization. However, the successful integration of heterogeneous 
imaging data will require continued efforts to standardize data 
collection, develop advanced analytical techniques, and create 
frameworks that can accommodate the multifaceted nature of AD 
pathology and its clinical manifestations. Table 5 highlights the 
challenges in integration of heterogenous data.

In order to minimize the complexity of heterogenous data 
integration, additional researches are required to be directed for 
standardization of data collection methods across institutions and 
studies (Mueller et al., 2005). This will facilitate comparability and 
reproducibility of data. Furthermore, development of sophisticated 
analytical methods capable of combining data from multiple 
modalities (e.g., MRI-PET fusion) needs to be  developed 
(Castellano et al., 2024). It is also required to create frameworks for 
data interpretation that can accommodate AD’s complexity and 
variability, incorporating clinical, imaging, genetic, and biomarker 
information (Li et al., 2015). Therefore, the integration of diverse 
imaging data in AD research holds the promise of providing a 
more holistic understanding of the disease. However, achieving 
this goal requires continued innovation in data standardization, 
analytical techniques, and interdisciplinary collaboration to 
address the multifaceted nature of AD pathology and its 
clinical presentations.

4 Predictive modeling of disease 
progression

Disease progression modelling is currently a key asset in most 
medical practices given that it assists clinicians and researchers to 
predict the course of a disease and respond adequately on preventive 
measures, diagnosis and treatment (Alowais et al., 2023). In particular, 
these models employ statistical and machine learning approaches to 
gather an enormous amount of data, describe its distribution, and 
forecast potential further events for specific patient or multiple 
patients at once (Raza and Abbas, 2024; Babb de Villiers et al., 2020). 
Of all the chronic and progressive diseases, they are highly essential 
for several diseases like cancer, cardiovascular diseases, diabetes and 
neurodegenerative diseases where timely intervention can greatly 
determine the state of the patients (Raza and Abbas, 2024; Wang 
J. et al., 2024).

It is a machine learning model, for instance, random forests, 
support vector machines (SVMs), and deep neural networks which 
deal with the data sourced from Electronic Medical Records, Imaging 
scans, Genomic data, wearable devices with a high degree of certainty 
(Raza et  al., 2024b; Raza and Abbas, 2024; Du et  al., 2020). For 
instance, in neurodegenerative diseases such as Alzheimer’s predictive 
models evaluates clinical and imaging biomarkers, longitudinal data 
on cognition and brain imaging to determine risk of further 
deterioration or progression from probable MCI to dementia (Du 
et al., 2024b). Temporal modelling is a type of predictive modelling 
that focuses on time series, disease trajectory (Bilgel et al., 2017).

Functions like RNNs and long short-term memory networks 
(LSTMs) are highly adept at identifying variations, and therefore are 
suitable for conditions that have over time varying biomarkers or 
symptoms (Othman et al., 2024). For instance, temporal models are 
used to forecast the growth rate of the tumor in cancer or blood sugar 
levels in diabetes to allow the clinician to prevent emergent 
complications on the basis of treatment (Sharma et al., 2017). Risk 
assessment is another of the most important applications of predictive 
modeling, which sorts patients by their risk level or the degree of risk 
that they experience adverse outcomes (Vadapalli et al., 2022). There 
is always some stratification to help identify patients for closer 
observation or immediate action. In addition, predictive models can 
accommodate patient-specific characteristics, including genetic 

TABLE 5 Challenges in integrating heterogeneous imaging data.

Challenges Description

Diverse Insights from Multiple 

Imaging Modalities

CT (Computed Tomography): Detects structural abnormalities and excludes other causes of cognitive decline, such as tumors or 

significant brain atrophy.

MRI (Magnetic Resonance Imaging): High-resolution imaging to detect hippocampal atrophy, a hallmark of AD.

PET (Positron Emission Tomography): depicts molecular /functional data, e.g., glucose metabolism or amyloid and tau deposits.

Each modality, i.e., CT, MRI and PET provides unique understandings but poses challenges for integration because of different 

spatial/temporal resolutions and biological targets (Zhang Y.-D. et al., 2020)

Challenges in Data Integration Heterogeneity of data: Structural changes (e.g., atrophy) occur late, while functional/molecular changes manifest earlier but are 

harder to contextualize (Hofmann-Apitius et al., 2015)

Variability in protocols and biomarkers: Differences in acquisition methods complicate the merging of diverse datasets (Nazir et al., 

2024)

Clinical and Pathological Paradox AD’s clinical diversity (e.g., posterior cortical atrophy, logopenic variant primary progressive aphasia) contrasts with its uniform 

pathology (amyloid plaques, tau tangles), creating challenges in linking imaging findings to varied clinical presentations (Jellinger, 

2022)
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attributes or lifestyle, and determine specific interventions possible for 
the patient with the disease (Tong et al., 2024).

Nonetheless, predictive modeling has some limitations such as 
data quality problems, a shift in dataset distribution, or high 
dimensionality, and requirements for sample size and variability 
(Lombardo et al., 2024). However, the interpretability of the learned 
model needs to be guaranteed for it to be useful in the clinical settings. 
Due to the growing complexity of these models, to make them more 
understandable and to build trust in such models, Explainable AI, or 
XAI, methodologies are being researched (Wyatt et  al., 2024). 
Subsequently, as the field of predictive modelling progresses, the 
capability of incorporating online data from wearable devices and 
digital health applications will expand the usability of the model to 
become a more proactive field of healthcare.

4.1 Deep learning for predicting disease 
trajectory and biomarker identification

Therefore, among the most revolutionary instruments of early 
disease trajectory prediction and prognostic biomarker discovery is 
made possible by deep learning (DL), which falls within the field of 
artificial intelligence (Miller et al., 2024). AI will play a vital role in 
deciphering the mechanisms of disease, forecasting disease 
progression, and developing targeted therapies, thanks to its ability to 
analyse extensive and complex datasets rapidly and autonomously 
(Abbas et al., 2019; Zhang and Shen, 2012).

Deep learning extracts informative patterns from multimodal 
data such as medical imaging, genomics, and electronic health records 
(EHR) by leveraging more advanced architectures such as CNN, 
RNN, and Transformers (Li et al., 2020). Deep learning models use 
longitudinal data to analyze patterns and make predictions about 
future health trajectories (Du et al., 2020). As for neurodegenerative 
diseases such as Alzheimer’s, linear convolutional networks (LCNs) 
can manage brain imaging data to uncover early structural changes, 
while RNNs, for analysis of temporal data (for instance, cognitive 
scores and levels of biomarkers) can be  used to predict disease 
progression by capturing the temporal dynamics (Alsubaie et  al., 
2024). They are also being applied to diabetes treatment, where deep 
learning models analyze continuous glucose monitoring data to 
predict changes in blood sugar levels, allowing for early medical 
interventions (Faruqui et  al., 2019). Biomarkers have become 
increasingly essential to diagnostics and targeted treatments, and for 
the successful identification, deep learning has also emerged as a key 
parameter (Echle et al., 2021).

Deep learning models can derive potential biomarkers from 
genomic, proteomic, or metabolomic data that indicate the onset or 
progression of a disease event (Mann et  al., 2021). For example, 
autoencoders and deep generative models may capture genomic 
variations present but often overlooked by DNA sequencing (e.g., 
somatic mutations in cancer) or less frequently examined patient 
specimens (e.g., rare syndromes), CNNs apply deep learning to 
histopathological images of solid tumors to examine cancer-specific 
markers (Guleria et al., 2023).

The fusion of multimodal data also demonstrates the deep 
learning ability across single/multiple factors (Li et al., 2022). Models 
trained on imaging plus genetics plus whatever clinical records can 
discover complex relationships and interactions, delivering a holistic 

view of disease dynamics (Kuznetsov et al., 2013). This is particularly 
useful for complex diseases such as cancer and autoimmune diseases, 
where altered pathways contribute to disease progression (Guleria 
et al., 2023). Medical deep learning brings the advantages but also 
challenges. This requirement of large labeled datasets can often be a 
bottleneck in training a model, and bias in the data can impact 
generalizability (Paproki et al., 2024).

Another issue is interpretability since most of deep learning 
models are “black boxes” and it is not easy to understand how the 
predictions are made (Paproki et  al., 2024). To overcome these 
challenges there is required a joint effort of data scientist, clinicians, 
and regulatory bodies to ensure that models are indeed accurate, 
reliable, and ethical (Guan, 2019). The progress has been sustained in 
understanding the disease prognosis and biomarker discovery by deep 
learning enabled through computing capabilities and availability of 
data. When applied to health care, its uses promise early diagnoses, 
right treatment, and better results offering directions to 
precision medicine.

4.2 Temporal modeling for tracking 
cognitive decline

Temporal modeling is a particularly effective approach for 
tracking the specific cognitive changes that define AD, Parkinson’s 
disease, and other forms of dementia (Kunst et al., 2019). Temporal 
models come in handy in analyzing longitudinal data in that, they can 
identify change in cognitive function, biomarkers, or many other 
clinical assessments with time. They are also useful when it comes to 
diagnosing conditions at their early stage, as well as tracking the 
progression of a disease, and delivering personalized treatment 
(Zuidersma et al., 2019).

The modeling in this context involves adoption of various 
machine learning techniques especially the RNNs and its improved 
variants including, Long Short-Term Memory Networks (LSTMs) and 
Gated Recurrent Units (GRUs) (Monner and Reggia, 2012). Due to 
their suitability for processing sequential data, these models are rather 
useful for analyzing time series data, such as repeated strategic 
thinking test results, neuroimages, biomaterial values, etc. (Othman 
et al., 2024). For instance, LSTMs in modelling the decline in memory 
and executive function by incorporating across time-dependent data 
for better forecasts on future cognitive status (Zuidersma et al., 2019).

A major advantage of temporal modeling is that a large and 
diverse number of data sources can be incorporated: structural and 
functional neuroimaging, genomic and other molecular profiles, CSF 
biomarkers, and HER (Behrad and Saniee Abadeh, 2022). The holistic 
approach also allows for understanding cognitive changes and making 
prognosis concerning transitions from MCI to AD or other further 
stages of neurodegenerative disorder (Lombardo et al., 2024). For 
instance, integrating MRI with tau and amyloid beta biomarkers, 
makes it easier for the model to identify more sensitive changes in the 
brain’s structure and function (Behrad and Saniee Abadeh, 2022). 
Personalized temporal modelling extends the prediction mechanism 
by incorporating subject specific differences. Depression, age, type 2 
diabetes, hypertension, smoking, obesity, APOE genotype, education, 
income, and occupation, are some of the predictors of progressive 
decline and capturing this data is necessary for accurate prognosis at 
the individual level (McFall et al., 2019).
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Temporal constructors within the clustering techniques can also 
generate groups of patients sharing similar disease progress for better 
categorization of patient populations for clinical trials or for targeted 
treatment (Cui et  al., 2023). The temporal modeling remains a 
problem in the following ways: dealing with gaps in available data, 
requiring vast amounts of data collected over time, and interpretability 
of prediction (Liu et al., 2023). Data imputation prevents data loss, 
while transfer learning applies existing algorithms to a new dataset, 
improving model effectiveness for clinical uses. This can be achieved 
while temporal modeling advances and becomes connected with other 
new constantly monitoring techniques such as wearables that can alert 
for Cognitive decline at even earlier stages than the current status 
(Arevalo-Rodriguez et al., 2021). They all have potential for helping 
decrease the load of the neurodegenerative ailments and enhance 
individual experiences of patients.

4.3 Using deep learning for MCI vs. AD 
stage differentiation

Deep learning has been shown to be  a helpful method for 
distinguishing between AD and mild MCI, two critical stages in the 
continuum of cognitive decline and an area where the differential 
diagnosis of neurodegenerative diseases has been chronically 
understudied (Grueso and Viejo-Sobera, 2021). While MCI is a mild 
cognitive disability that makes people develop dementia over time, 
AD is a severe cognitive disability that entails severe memory 
impairment, disability, and general neuronal loss. It is very important 
to be  able to differentiate between these stages correctly so that 
interventions may be addressed appropriately (López et al., 2020).

CNNs are considered best suited for deep learning models when 
addressing neuroimaging data including MRI and PET scans (Tufail 
et al., 2022). These models also exclude hierarchical features from 
imaging data that reflect the structural and functional brain changes 
related to MCI and AD. CNNs can spot early atrophy in areas like 
hippocampus and entorhinal cortex in which moderate AD 
development occurs (Woźniak et al., 2021). This automated feature 
extraction helps bypass the preprocessing step required for each scan 
and greatly upgrade diagnostic thoroughness (Jin and Shi, 1998). The 
temporal modeling part helps analyze eventual transitions from MCI 
to AD, which proves the dynamic nature of neurodegeneration (Bilgel 
et  al., 2017). A more advanced differentiation is achieved by 
multimodal deep learning that combines different data feeder. Thus, 
adding neuroimaging with other structural and functional data, 
including genetic profiles (for example, APOE status), cerebrospinal 
fluid biomarkers (for instance, amyloid beta and tau), and clinical 
evaluation enhances the coverage of knowledge about the disease 
(Venugopalan et al., 2021). These multimodal models are typically 
better than single-modality ones because they combine different type 
of data.

However, there are challenges when employing deep learning 
for the differentiation between MCI and AD. A major challenge is 
the requirement for large annotated data sets to be able to ‘teach’ 
the models well (Li et  al., 2015). Additionally, the “black box” 
nature of deep learning models can limit their clinical acceptance. 
In response to this, it is possible to design explainable artificial 
intelligence (XAI) methods that will enhance the understandability 
of the model’s prediction to the clinicians (Chaddad et al., 2023). 

There has also been recent progress in fine-tuning such models to 
work with small datasets in order to build models that work well 
with limited resources (Agarwal et al., 2021). With the help of deep 
learning, the study of MCI and AD can be  differentiated at an 
earlier stage and the focus can be  shifted to accurate early 
diagnosis, as well as identifying more individual approaches to 
prologue patients with neurodegenerative diseases (Raza and 
Abbas, 2024).

4.4 Risk stratification and personalized 
treatment approaches

Risk stratification and targeted management on the other hand 
have become part of precision medicine as it brings out who among 
the people has different level of risk for something and how treatment 
option should be administered to the patient (Reddy et al., 2020). It 
enables the identification of who among the population is at different 
extents of disease danger and how treatment should be implemented 
to the patient.

These treatments are particularly important in chronic diseases 
including cardiovascular diseases, cancer, diabetes and 
neurodegenerative diseases (Xu et al., 2021). Risk stratification means 
placing patients into categories that are expected to develop disease or 
other adverse outcomes along a specific continuum (Jin et al., 2020). 
It relies on data obtained from clinical practice, genomic and 
biomolecular, and patient’s individual parameters and behaviors to 
produce customer-specific risk models (Jin et al., 2020). This means 
“risk stratification” that may require blood levels of cholesterol, blood 
pressure, family history, and in some cases also genetic risks to 
calculate for example the probability of myocardial infarction or 
stroke as for cardiovascular disease (Paquette and Baass, 2018).

Machine learning models go further and analyze big data to 
identify nonlinear patterns in the data that improve the accuracy of 
risk predictions and allow for the early identification of high-risk 
individuals (Mariani et al., 2021). Personalized treatment strategies go 
beyond risk stratification by creating tailored interventions based on 
a person’s individual characteristics. In oncology, for instance, genetic 
profiling of tumors enables the use of targeted therapies aimed at 
certain mutations, including HER2 inhibitors for breast cancer 
patients with HER2 overexpression (Oh and Bang, 2019).

In psychiatry, for example, we can select antidepressants based on 
genetic variants that change drug metabolism, a process that should 
reduce side effects and improve effectiveness (Tansey et al., 2012). The 
strategies could be  potentiated by the integration of wearable 
technologies and digital health platforms permitting continuous 
monitoring of physiological parameters towards real-time risk 
stratification and progressive updating of therapy (Lu et al., 2020). 
Continuous glucose monitoring systems, for example, offer real-time 
feedback that can inform personalized dials for insulin dosing for 
patients with diabetes, reducing the risk for complications such as 
hypoglycemia (Breton et al., 2018).

Despite the fact that the leverage of risk stratification, and tailored 
treatments open up large avenues, its business is framed by several 
major hurdles for ‘big data’-driven research, including data protection, 
inequality in access to advanced technologies, and the necessity of 
solid clinical backing for the adoption of predictive models and 
personal drugs (Parikh et al., 2019). Moreover, for machine learning 
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algorithms to be widely adopted they must be interpretable and create 
confidence in their outputs (Rudin et al., 2021).

AI and genomics advances are about to take the burden off of 
personalized medicine delivery challenges (Zahra et  al., 2024). 
Focusing on targeted care in such approaches transforms healthcare 
from a reactive paradigm that limits disease prevention, therapeutic 
improvements, and resource allocation, to an anticipative approach 
that envisages all of these parameters in a managed and systematic 
manner. So, risk stratification and personalized treatments will be the 
future of clinical practice, which should ultimately result in improved 
outcomes both at the patient and the population levels.

4.5 Deep radiomics in PET and MRI imaging 
for Alzheimer’s disease diagnosis

Deep radiomics is an AI-driven approach that in PET and MRI 
is revolutionizing AD diagnosis by extracting quantitative biomarkers 
that provide deeper insights into disease progression. By leveraging 
deep learning techniques, such as CNNs, radiomics can automatically 
extract high-dimensional features from imaging data, revealing 
subtle metabolic and structural abnormalities that may not be visually 
detectable (Stefano, 2024). The major advantages of deep radiomics 
in AD diagnosis include early detection of neurodegenerative 
changes, objective biomarker quantification, and the ability to assess 
disease progression longitudinally (Ding et al., 2021) Additionally, 
integrating radiomics with multimodal AI models that incorporate 
genetics, clinical data, and cognitive assessments can enhance 
diagnostic accuracy and patient stratification for clinical trials (Seo 
et al., 2022) However, challenges such as standardizing radiomics 
pipelines, ensuring data generalizability across diverse populations, 
and obtaining regulatory approval (e.g., FDA, CE Marking, GDPR 

compliance) must be  addressed for widespread clinical adoption 
(Obuchowicz et al., 2025). Additionally, deep radiomics combined 
with explainable AI (xAI) techniques will refine AI-assisted 
diagnostic pipelines, making them more trustworthy, transparent, 
and clinically actionable for improving Alzheimer’s disease detection, 
prognosis, and patient care (Alharthi et al., 2024).

Tables 6 and 7 summarize the comparison of deep radiomics with 
traditional radiomics and benefits of deep radiomics in neuroimaging, 
respectively, for AD diagnosis. These AI-driven approaches improve 
the differentiation between normal aging, MCI, and AD, enhancing 
the ability to predict cognitive decline and personalize 
treatment strategies.

4.6 Explainable AI (xAI) in Alzheimer’s 
disease diagnosis

With the increasing reliance on deep learning models for medical 
diagnostics, ensuring trust, transparency, and interpretability is 
crucial, especially in critical conditions like Alzheimer’s disease (Nazir 
et al., 2024). Traditional AI models, particularly convolutional neural 
networks (CNNs) and transformer-based models, often operate as 
black boxes, making it difficult for clinicians to understand, validate, 
and trust the decisions made by these models (Lai, 2024). xAI 
addresses this challenge by providing interpretability techniques that 
make AI decisions more transparent and reliable for clinical 
applications (Adeniran et al., 2024).

4.6.1 Key xAI techniques for Alzheimer’s disease 
diagnosis

Several interpretability methods are applied to deep learning 
models used in Alzheimer’s disease detection from brain imaging 

TABLE 6 Comparison of radiomics and deep learning in neuroimaging.

Aspect Traditional radiomics Deep radiomics

Feature Extraction Predefined features (texture, intensity, shape) Learned hierarchical features via CNNs (Zhou et al., 2021)

Data Interpretation Limited to manual analysis Integrates imaging with clinical/genetic/cognitive data (Shu et al., 2021)

Predictive Modeling Relies on classical statistical models AI-driven prediction of disease progression (Peng et al., 2025)

TABLE 7 Comprehensive overview of deep radiomics in neuroimaging for AD diagnosis.

Modality Biomarker/Feature Purpose/Application in AD Deep Radiomics Benefit

FDG-PET Glucose metabolism Detects hypometabolism in AD-prone 

regions

Identifies subtle imaging patterns via automated feature 

extraction (Zhou et al., 2021)

Amyloid PET Amyloid-beta Identifies amyloid plaque accumulation Enhances early diagnosis by detecting AD before clinical 

symptoms appear (Rasi et al., 2024)

Tau PET Tau protein Correlates with neurodegeneration and 

cognitive decline

Assists in predicting MCI to AD conversion (Feng et al., 2024)

Structural MRI (sMRI) Brain atrophy Measures hippocampal and medial 

temporal lobe atrophy

Detects minute volumetric changes using voxel-based analysis 

(Shih et al., 2024)

Functional MRI (fMRI) Neuronal connectivity Assesses activity and connectivity changes 

in AD

Identifies microstructural abnormalities via texture analysis 

(Leandrou, 2021)

Diffusion Tensor Imaging 

(DTI)

White matter integrity Evaluates microstructural changes in 

neuronal pathways

Combines MRI with PET for enhanced diagnostic accuracy 

(Afrazeh, 2024)
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(e.g., MRI, PET scans) and clinical data. Some of the most widely used 
techniques include:

 1 Grad-CAM (Gradient-weighted Class Activation Mapping), 
generates heatmaps by identifying the most important regions 
in an image that influenced the model’s prediction (Song et al., 
2024). It calculates the gradient of the predicted class with 
respect to the last convolutional layer and highlights relevant 
features in the input image (Asokan and Seshadri, 2023) this 
technique is used in CNN-based Alzheimer’s classifiers to 
highlight key regions in MRI or PET scans that contribute to 
the prediction (e.g., hippocampal atrophy). It also helps 
radiologists to validate AI predictions and ensures that the 
model focuses on medically relevant areas rather than noise 
(Toumaj et al., 2024).

 2 SHAP (Shapley Additive Explanations): SHAP values are 
derived from game theory to assign an importance score to 
each feature in a model’s prediction. It explains how each input 
feature (e.g., age, brain volume, cognitive test scores) 
contributes to the final decision (Braithwaite et al., 2020). In 
AD these techniques are used in tabular models (e.g., decision 
trees, deep learning) to analyze biomarker data, clinical 
assessments, and genetic risk factors. It facilitates clinicians to 
understand which features (e.g., APOE4 genotype, CSF 
biomarkers) are most influential in predicting disease 
progression (Sarica et al., 2024).

 3 LIME (Local Interpretable Model-agnostic Explanations) 
perturbs the input data and observes how predictions change, 
fitting a simpler, interpretable model (e.g., linear regression) to 
explain the prediction locally (Zafar and Khan, 2021). In AD, 
it is applied to black-box classifiers to assess why an AI system 
labeled a brain scan as AD, MCI (Mild Cognitive Impairment), 
or normal aging. It helps in validating model predictions by 
ensuring consistency with known clinical insights. In AD, it is 
applied to black-box classifiers to assess why an AI system 
labeled a brain scan as AD, MCI or normal aging (Hasan Saif 
et al., 2024).

Clinical usability is strengthened by leveraging xAI techniques. 
This is done by improving trust as physicians are more likely to adopt 
AI-driven diagnostic tools when they can see and verify why a model 
makes specific predictions. As far as Regulatory compliance is 
concerned, Explainable models align with healthcare AI regulations 
(e.g., FDA, GDPR in AI/ML) by making AI decisions auditable and 
interpretable. Additionally, xAI enhance patient outcomes by making 
personalized treatment possible as clinicians can understand AI 
predictions and make informed interventions based on transparent 
reasoning (Vimbi et al., 2024).

5 Challenges in data standardization 
and generalization in imaging

Variability in imaging protocols and data quality presents 
significant challenges in applying imaging technology across different 
fields, including medical imaging, remote sensing, and scientific 
imaging. Typically, radiological results are assessed qualitatively by the 
human eye and expert interpretation (Gao et al., 2019). However, 

quantitative assessment can provide more valuable insights that are 
often missed by subjective human evaluation. For personalized 
treatment, objective assessment becomes crucial for accurate 
quantification. A major issue is the variability in results, which 
complicates generalization. This variability arises from several factors 
(Zeng et al., 2023).

The main challenges of deep learning models in detecting early 
AD are their interpretability and limitations in clinical adoption due 
to lack of explainability (Vimbi et al., 2024). Another important thing 
is that, unlike traditional machine learning models that produce clear 
decision boundaries, deep neural networks act as complex “black 
boxes” making it hard to understand the logic behind their predictions 
(Vimbi et al., 2024). This lack of transparency unsettles clinicians and 
regulators, because the decision process is opaque, so it is not possible 
to validate whether models are finding biomarkers related to the 
disease, or whether they are being influenced by irrelevant 
correlations, such as scanner artifacts or demographic biases.

Recent advancements in explainable AI (XAI) techniques have 
been proposed to improve model interpretability to overcome these 
challenges (Machlev et al., 2022). Techniques like Gradient-weighted 
Class Activation Mapping (Grad-CAM), SHAP, and LIME provide 
visualizations of the most salient brain segments that inform model 
predictions, leading clinicians to better evaluate the reasonableness of 
AI outputs (S Band et  al., 2023). The introduction of 
attention mechanisms in transformer-based models also show the 
potential of such an approach to enhance the interpretability of 
predictions mapping MRI and PET scans directly to disease-relevant 
biomarkers (Sibilano et al., 2024). Furthermore, hybrid models that 
combine deep learning with manually crafted radiomic features like 
hippocampal atrophy serve to unify AI-based findings and known 
clinical relevance, as both diagnostics can be used together to explain 
the outputs of deep learning-derived models (Adadi and Berrada, 
2018; Xu et  al., 2024). These approaches can alleviate resistance 
towards black-box models, by providing visual or quantitative 
explanations regarding decision-making processes.

In addition to explainability, uncertainty estimation techniques 
(e.g., Bayesian deep learning) can help quantify the confidence 
level for various AI predictions (Nor et al., 2022). This is especially 
useful for clinical applications, as healthcare professionals can 
balance AI-generated diagnoses in light of the model’s confidence 
level (Sai et al., 2024). In addition, interactive AI systems in which 
clinicians query and refine outputs from the model may be  an 
intuitive way to increase trust and usability (Nasarian et al., 2024). 
Empirical investigations further support dataset curation and 
improvement with annotated lesion maps, further directing deep 
learning models to relevant, biological features and lessening 
potential dependencies on unrelated features or patterns (Rai et al., 
2024). Importantly, benchmark drives within the research 
community for interpretability will be critical for real-world clinical 
deployment of future models with the levels of 
transparency required.

5.1 Diversity in imaging protocols and data 
quality

The diversity of imaging protocols and data quality can lead 
to inconsistencies that affect the accuracy, dependability, and 
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precision of the results. Imaging protocols encompass the steps, 
methods, and settings used to acquire imaging data. Key factors 
contributing to variability in imaging protocols include (Keenan 
et al., 2021).

 • Imaging Type: Different types of imaging techniques can 
be employed, such as MRI, CT scans, X-rays, ultrasounds, or 
satellite imagery (Hussain et al., 2022).

 • Device Parameters: Variations in exposure time, resolution, 
contrast, and scanning parameters can impact the quality of the 
obtained images.

 • Data Processing: The final steps in processing the captured data 
can influence the outcome.

The variation in imaging protocols is influenced by factors 
such as the type of equipment used, operator differences, 
institutional standards, and technological advancements. For 
instance, different organizations may use different models of MRI 
machines with distinct hardware, software, and scanning 
protocols. Even within the same institution, two machines might 
vary due to differences in magnetic field strength, coil types, and 
scan sequences. These inconsistencies make it difficult to 
standardize and compare images across devices (Hussain et al., 
2022). Then comes the quantitative imaging biomarkers, these are 
quantitative figures from pictures that can describe the nature of 
physiological developments, pathologies or treatment comebacks 
(Radwan et al., 2024).

The major concepts related to imaging biomarkers are:

 • Transition to digital imaging
 • Standardization and control of imaging
 • Accuracy and precision in results
 • Reliability and reproducibility (generalizability)
 • Statistical tools for assessing variability
 • Variation in MRI and CT scam along with the sources of variation
 • Computer aided software used in imaging (Wood, 2020).

5.1.1 Human factors and technological 
advancements

Human factors contribute significantly to variability in imaging 
results. Differences in operator training, experience, and expertise can 
lead to divergent approaches to data acquisition and analysis. 
Additionally, while new technologies generally improve imaging 
quality, older technologies become outdated, further complicating 
standardization efforts. Variations in machine settings—such as 
resolution, scanning time, and slice thickness—also affect image 
quality (Hussain et al., 2022).

5.1.2 Standardization efforts
To address these challenges, significant efforts have been made to 

standardize imaging protocols and results across institutions and 
devices. One such initiative is the Digital Imaging and 
Communications in Medicine (DICOM) standard, which aims to 
ensure high-quality imaging and protocol standardization (Hussain 
et al., 2022). Additionally, advancements in artificial intelligence (AI) 
and machine learning are being leveraged to automatically adjust 
imaging factors, optimizing image quality regardless of the 
equipment used.

5.2 Addressing small sample sizes and 
imbalanced data

Learning from imbalanced data remains a complex issue in 
machine learning and data mining. Despite two decades of research 
on this topic, the challenge persists, especially in binary 
classification tasks. The advent of big data has provided insights into 
imbalanced learning, but it has also introduced new challenges 
(Sandfort et al., 2019). Hybrid approaches—combining data-level 
and algorithm-level methods—are becoming more prominent in 
the field. Current approaches focus not only on the division of data 
but also on the inherent difficulties associated with the nature of the 
data itself (Krawczyk, 2016). The presence of small cohorts in 
machine learning is an important consideration which can reduce 
the reliability, statistical power, and generalization of the model and 
can cause overfitting that occurs when the model captures noise 
instead of the original patterns, leading to poor presentation to 
resolve this issue expansion of dataset is needed while including 
methods such as random forest to improve quality (Kokol et al., 
2022). However, implementing nested cross-validation can reduce 
biases even with limited data. Moreover, a careful model selection 
can also prevent overfitting in small sample sizes (Vabalas 
et al., 2019).

5.3 Generalizability across diverse 
populations and settings

Inferential goals in research typically involve gaining insights 
into a particular target population based on study observations. 
However, the results can vary depending on the chosen population. 
In some cases, such as randomized controlled trials (RCTs) or 
policy research, the sample may not truly represent the target 
population (Zhang et al., 2020b). Clinicians, in particular, may face 
challenges in making prognostic evaluations and can be prone to 
inaccuracies in their conclusions (Korevaar et  al., 2023). 
Reproducibility, defined as the ability to generate precise predictions 
across individuals not part of the study, remains a key challenge 
(Degtiar and Rose, 2023). Further, working on extensive and 
balanced datasets will reduce bias and increase the generalizability 
of findings across different cohorts and adapting self-directed 
models can help in increasing model performance, which can then 
detect diseases like chronic obstructive pulmonary disease (COPD) 
across different ethnic groups (D Almeida et al., 2024). The use of 
models that are specific to definite settings can enhance the 
outcomes and reliability, especially in  locations where data is 
frequently available (Yang et al., 2023).

5.4 Handling missing data and noise in 
multimodal datasets

Multimodal learning, which combines insights from different data 
sources, is increasingly applied to address real-world challenges, such 
as noisy or incomplete data (Cao et al., 2022). Despite this, current 
research lacks a deep investigation into how noise and data 
incompleteness affect prognostic outcomes in multimodal datasets. 
Understanding the impact of these factors is essential for improving 
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the accuracy and reliability of predictions derived from multimodal 
data sources (Degtiar and Rose, 2023).

5.4.1 Challenges in deploying AI models for 
Alzheimer’s disease diagnosis

While AI-driven models show promise in diagnosing Alzheimer’s 
disease (AD), several hurdles must be addressed before they can 
be  widely adopted in clinical settings. These include regulatory 
approval, real-world validation, and seamless integration into existing 
workflows. Table 8 summarizes that for AI to be effectively deployed 
in Alzheimer’s disease diagnosis, it must be regulatory-compliant, 
validated in real-world settings, and seamlessly integrated into 
clinical workflows. Overcoming these hurdles will ensure that AI 
serves as a trustworthy, efficient, and clinically useful tool in early 
detection and patient care.

5.5 Future directions (these lines needs to 
be added in existing conclusion)

To enhance Alzheimer’s AI models, future research should focus 
on, combining multiple xAI techniques for better interpretability, 
integrating multimodal data (imaging + genetics + clinical features) for 
a comprehensive diagnosis and developing interactive AI interfaces that 
allow doctors to query and adjust AI-driven predictions.

6 Conclusion

The integration of deep learning with multimodal brain 
imaging marks a significant step forward in the early diagnosis 
and treatment of Alzheimer’s disease. By leveraging AI’s power to 
analyze complex datasets, researchers can achieve more accurate, 
timely, and personalized approaches to AD diagnostics and 
treatment. However, several challenges remain, particularly 
regarding data standardization, model generalization, and clinical 
applicability. Future efforts should focus on improving the 
interpretability of AI models and overcoming technical and 

ethical barriers to facilitate their broader adoption in 
clinical settings.
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TABLE 8 Key challenges and practical implications of AI models.

Hurdle Challenges Potential Solutions

Regulatory Approval AI models must comply with strict healthcare regulations (e.g., 

FDA, CE Marking, GDPR in AI/ML) (Pantanowitz et al., 2024)

Develop explainable AI (xAI) models to enhance transparency and 

regulatory acceptance (Gaur and Gaur, 2024)

Variability in data sources (MRI/PET scans, biomarkers) leads to 

model inconsistencies (Stefano, 2024)

Conduct standardized multi-center trials to validate model reliability 

(Kumar et al., 2024)

Real-World Validation AI models trained on research datasets often fail in diverse patient 

populations (Daneshjou et al., 2021)

Perform external validation on real-world hospital data to assess 

generalizability (Birkenbihl et al., 2020)

Lack of longitudinal studies hinders AI’s ability to track disease 

progression (Habibi et al., 2025)

Integrate AI with longitudinal datasets to improve early detection 

and monitoring (Kale et al., 2024)

Integration into Clinical 

Workflows

AI tools must seamlessly work with existing Electronic Health 

Records (EHRs) and PACS (Picture Archiving and Communication 

Systems) (Kaur and Sharma, 2024)

Develop interoperable AI solutions compatible with major healthcare 

IT systems (Adegoke et al., 2025)

Physicians may lack trust in AI predictions due to the black-box 

nature of deep learning (Lai, 2024)

Incorporate explainable AI techniques (Grad-CAM, SHAP, LIME) to 

improve clinician confidence (Tuan, 2024)

Time constraints in clinical practice limit AI adoption (Adler-

Milstein et al., 2022)

Design AI systems with user-friendly interfaces that provide rapid, 

interpretable insights (Li et al., 2024)
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