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Introduction: Understanding the cognitive phenotypes of elite athletes o�ers

a unique perspective on the intricate interplay between neurological traits and

high-performance behaviors. This study aligns with advancing neuroinformatics

by proposing a novel framework designed to capture and analyze the multi-

dimensional dependencies of cognitive phenotypes using systems neuroscience

methodologies. Traditional approaches often face limitations in disentangling the

latent factors influencing cognitive variability or in preserving interpretable data

structures.

Methods: To address these challenges, we developed the Latent Cognitive

Embedding Network (LCEN), an innovative model that combines biologically

inspired constraints with state-of-the-art neural architectures. The model

features a specialized embedding mechanism for disentangling latent factors

and a tailored optimization strategy incorporating domain-specific priors and

regularization techniques.

Results: Experimental evaluations demonstrate LCEN’s superiority in predicting

and interpreting cognitive phenotypes across diverse datasets, providing deeper

insights into the neural underpinnings of elite performance.

Discussion: This work bridges computational modeling, neuroscience, and

psychology, contributing to the broader understanding of cognitive variability

in specialized populations.

KEYWORDS

neuroinformatics, cognitive phenotypes, elite athletes, systems neuroscience, deep

learning

1 Introduction

Understanding cognitive phenotypes in elite athletes is essential for unraveling the

neural mechanisms that underlie exceptional performance (Hu et al., 2023). These

phenotypes, which include heightened attention, faster reaction times, and superior

decision-making, are not only critical for advancing sports science but also provide

valuable insights into broader neurocognitive processes (Wei et al., 2023). The integration

of neuroinformatics and systems neuroscience enables researchers to analyze complex

data streams and model the interplay between brain networks, offering a comprehensive

framework for studying these elite cognitive traits (Wang et al., 2023). By applying

neuroinformatics approaches, it is not only possible to identify biomarkers of elite

cognitive function but also to explore how neural adaptations are influenced by intense

training. This area of research holds potential for applications in enhancing athletic

performance, understanding brain plasticity, and even informing clinical interventions

for cognitive enhancement (Zong et al., 2023). To address the limitations of traditional

methods in studying cognitive phenotypes, researchers initially relied on symbolic
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AI and knowledge-based approaches. These methods focused on

structured data representations and rule-based systems to interpret

cognitive traits, leveraging well-established neuroscience theories

and statistical models (Xu et al., 2023). Symbolic approaches

were particularly effective in understanding specific aspects

of cognition, such as decision-making and attention control,

through frameworks like expert systems and neurocognitive

modeling. However, these methods struggled with scalability

and the integration of multimodal data, such as imaging and

behavioral datasets (Peng et al., 2022). Moreover, they lacked the

capacity to account for dynamic neural processes and individual

variability, which are critical for understanding elite athletes’

unique cognitive adaptations.

As neuroinformatics advanced, data-driven and machine

learning approaches began to play a central role in analyzing

cognitive phenotypes (Xu et al., 2022). These techniques enabled

the extraction of patterns from large datasets, such as functional

MRI, EEG, and behavioral measures, to predict and characterize

elite cognitive performance. Methods like clustering, classification,

and regression provided new insights into brain-behavior

relationships, while models such as support vector machines

(SVM) and random forests helped identify key features associated

with superior cognitive function (Song et al., 2023). Despite

these advancements, traditional machine learning approaches

often required extensive preprocessing and feature engineering,

limiting their flexibility. They struggled with generalizability across

diverse athlete populations and failed to capture the complexity

of dynamic neural networks involved in high-performance

cognition (Yao et al., 2023). The emergence of deep learning

and pre-trained neural network models has revolutionized the

study of cognitive phenotypes in elite athletes. These methods

excel at processing multimodal and high-dimensional data,

such as combining neuroimaging, genetics, and behavioral

measures (Zhou H.-Y. et al., 2023). Models like convolutional

neural networks (CNNs) and transformers have been applied to

identify neural signatures of elite performance, while pre-trained

models, such as BERT and GPT, have shown promise in decoding

cognitive traits from textual and symbolic data sources (Zhang

et al., 2023). These approaches address many limitations of earlier

methods by enabling end-to-end learning and capturing temporal

dynamics within neural systems (Shi et al., 2022). However, deep

learning models often require large-scale datasets and substantial

computational resources, posing challenges for studies with limited

sample sizes (Hao et al., 2022). Furthermore, the interpretability of

these models remains a key limitation, as understanding the neural

mechanisms underlying elite performance is as critical as achieving

accurate predictions (Joseph et al., 2023).

Building upon the limitations of traditional symbolic

approaches, machine learning, and deep learning methods, this

study proposes a novel framework for leveraging neuroinformatics

to analyze cognitive phenotypes in elite athletes (Zhang

et al., 2022). Our approach integrates advanced systems

neuroscience models with a multi-scale neuroinformatics

pipeline, combining functional, structural, and behavioral data to

overcome the limitations of previous methods. By incorporating

explainable AI techniques and domain-specific models, our

framework aims to improve both the interpretability and

generalizability of findings. We propose a modular design

that can be adapted for diverse athlete populations and

cognitive domains, addressing key challenges in scalability and

data integration.

The proposed method has several key advantages:

• The proposed framework introduces a hybrid approach

combining explainable AI and multi-scale neuroinformatics,

providing a novel way to analyze cognitive phenotypes in elite

athletes.

• Our method is designed to be scalable and adaptable across

multiple contexts, including different sports and cognitive

tasks, enhancing its applicability and efficiency.

• Preliminary findings demonstrate that our framework

achieves superior accuracy and interpretability compared

to existing methods, identifying novel biomarkers of elite

cognitive performance.

2 Related work

2.1 Neuroinformatics in cognitive profiling

The integration of neuroinformatics into cognitive research

has significantly advanced our understanding of cognitive

phenotypes by enabling the aggregation, analysis, and modeling

of complex neurobiological datasets (Silverio and Silverio, 2022).

Neuroinformatics leverages computational techniques to manage

the vast quantities of data generated through neuroimaging

modalities such as functional magnetic resonance imaging

(fMRI), magnetoencephalography (MEG), and diffusion

tensor imaging (DTI). This approach is particularly relevant

to studying elite athletes, where precise cognitive profiling

requires the synthesis of neural, genetic, and behavioral data

into actionable insights. A major focus of neuroinformatics

in cognitive profiling is the identification of neurobiological

correlates of high performance, such as enhanced motor planning,

decision-making, and situational awareness (Lian et al., 2022).

By utilizing data-driven models, researchers can map patterns

of brain connectivity and activation associated with these traits.

For instance, graph theoretical approaches applied to functional

connectivity networks have revealed the role of modularity

and hub regions such as the dorsolateral prefrontal cortex in

supporting rapid decision-making. These insights are especially

pertinent to elite athletes, whose exceptional cognitive abilities

often depend on efficient neural network organization (Liu

et al., 2023). Neuroinformatics frameworks also facilitate

the integration of multimodal datasets, combining structural

and functional imaging with electroencephalography (EEG)

measures to provide a more comprehensive picture of cognitive

phenotypes. Machine learning algorithms, a key component of

neuroinformatics, are increasingly employed to classify cognitive

phenotypes based on neural features. In elite athletes, such

algorithms have been used to distinguish between individuals with

varying levels of expertise in sports requiring rapid response and

adaptability (Steyaert et al., 2023). Predictive models trained on
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neuroimaging data have shown promise in identifying key features

that distinguish elite performers, such as increased connectivity

within sensorimotor networks and heightened activity in the

anterior cingulate cortex. Moreover, neuroinformatics tools allow

for the longitudinal analysis of cognitive phenotypes, enabling

researchers to study how these traits develop over time and in

response to training interventions (Du et al., 2022). Another critical

aspect of neuroinformatics is its role in managing the inherent

variability of neural data. Elite athletes often exhibit unique

neural adaptations that may not conform to general population

norms. Neuroinformatics systems address this challenge through

individualized modeling approaches that account for inter-

individual differences. For example, personalized connectome

analyses have highlighted variations in motor planning networks

that correlate with specific sports disciplines. Such tailored analyses

not only improve the accuracy of cognitive profiling but also

provide insights into the neural basis of specialized skills. The

application of neuroinformatics in cognitive profiling extends

beyond analysis to include visualization and hypothesis generation.

Advanced visualization techniques, such as connectome mapping

and brain atlases, enable researchers to intuitively explore the

relationships between brain structure and cognitive function.

These tools are invaluable for generating hypotheses about

the neural mechanisms underlying elite performance, which

can then be tested through targeted experiments. The use of

computational models to simulate neural processes provides a

framework for understanding how specific neural adaptations

contribute to cognitive phenotypes. In the context of elite

athletes, neuroinformatics also has implications for training and

performance optimization. By identifying the neural correlates

of cognitive strengths and weaknesses, researchers can develop

targeted interventions to enhance performance. For instance,

neurofeedback and brain stimulation techniques informed by

neuroinformatics analyses have shown potential in improving

attention and motor control. Such applications highlight the

transformative potential of neuroinformatics in both research

and practice.

While recent advances in multimodal learning have enabled

novel approaches to modeling brain-behavior relationships,

it is crucial to ground these computational techniques within

the domain-specific context of sports neuroscience. Previous

studies have established standardized cognitive profiling protocols

tailored to elite athlete populations, including reaction-time

benchmarks, attention control tasks, and situational decision-

making assessments in ecologically valid settings (Vestberg

et al., 2012). These domain-specific traits often differ markedly

from general population baselines, necessitating discipline-

sensitive modeling strategies. Moreover, experimental designs

in sports science frequently incorporate specialized intervention

protocols and require careful power analysis due to cohort

limitations (Mirifar et al., 2019). Studies such as “Neurocognitive

Profiling in Elite Performers” highlight how training regimens and

task design influence measurable cognitive traits, offering critical

insights for embedding ecological validity into neuroinformatics

pipelines. To ensure methodological rigor, we draw on these works

to refine phenotype selection and justify the statistical robustness

of our athlete-specific datasets (Eckner et al., 2010).

2.2 Systems neuroscience in athletic
cognition

Systems neuroscience provides a comprehensive framework

for understanding the neural mechanisms underlying cognitive

performance, particularly in elite athletes who exhibit

extraordinary capabilities in domains such as attention, decision-

making, and motor control (Raufi and Longo, 2022). By examining

the interactions between neural circuits and their contributions to

cognitive processes, systems neuroscience offers critical insights

into the neural adaptations that support high-level performance.

One of the primary areas of interest in systems neuroscience is

the role of large-scale brain networks in cognitive function (Chai

and Wang, 2022). The default mode network (DMN), central

executive network (CEN), and salience network (SN) have been

implicated in various aspects of cognitive performance relevant

to elite athletes. For example, the DMN’s deactivation during

goal-directed tasks allows for enhanced focus and situational

awareness, while the CEN supports complex decision-making and

working memory (Zhou Y. et al., 2023). The SN, on the other hand,

facilitates the dynamic switching between these networks, enabling

athletes to rapidly adapt to changing circumstances. Studies

employing fMRI and MEG have demonstrated that elite athletes

exhibit enhanced functional connectivity within these networks,

which correlates with superior cognitive performance (Lin et al.,

2023). Systems neuroscience also emphasizes the importance

of sensorimotor integration in athletic cognition. The ability

to seamlessly integrate sensory inputs with motor outputs is a

hallmark of elite performance, particularly in sports requiring

split-second decisions and precise movements (Yan et al., 2022).

Research has shown that the cerebellum, basal ganglia, and primary

motor cortex play pivotal roles in this process, with enhanced

connectivity between these regions observed in elite athletes (Fan

et al., 2022). Moreover, the prefrontal cortex contributes to the

top-down modulation of motor responses, ensuring that actions

are contextually appropriate and aligned with performance

goals. Plasticity is another key concept in systems neuroscience

that is highly relevant to understanding athletic cognition.

Neuroplasticity refers to the brain’s ability to adapt structurally

and functionally in response to training and experience. In elite

athletes, intensive practice leads to region-specific plasticity,

such as increased gray matter volume in motor and visuospatial

regions. Longitudinal studies have further revealed that these

adaptations are not static but continue to evolve with ongoing

training. This dynamic nature of neural plasticity underscores the

importance of systems neuroscience in capturing the temporal

aspects of cognitive and neural changes in athletes. Techniques

such as optogenetics and transcranial magnetic stimulation

(TMS) have allowed researchers to directly manipulate neural

activity within specific circuits, providing causal evidence for

their roles in athletic cognition. For instance, stimulation of the

pre-motor cortex has been shown to enhance motor planning

and execution, while inhibition of the anterior cingulate cortex

impairs error monitoring and correction. These findings highlight

the potential of systems neuroscience not only to elucidate the

neural mechanisms underlying athletic performance but also to

inform the development of targeted interventions. The interplay
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between systems neuroscience and cognitive phenotypes is further

exemplified by its application in understanding the effects of fatigue

and stress on performance. Neural circuits involved in attention

and decision-making are particularly susceptible to the detrimental

effects of these factors, which can compromise performance even

in highly trained individuals. Systems neuroscience approaches,

including computational modeling and network analysis, have

been instrumental in identifying the neural correlates of fatigue

and developing strategies to mitigate its impact.

2.3 Cognitive phenotypes in expertise

Cognitive phenotypes refer to the distinct cognitive traits and

capabilities that characterize individuals or groups, often shaped

by both genetic and environmental factors (Afzal et al., 2022). In

the context of elite athletes, these phenotypes encompass a range of

abilities, including rapid decision-making, sustained attention, and

superior visuospatial processing. Understanding these phenotypes

requires an interdisciplinary approach that integrates insights from

cognitive neuroscience, psychology, and genetics (Yu et al., 2023).

One of the defining features of cognitive phenotypes in elite athletes

is their reliance on both domain-general and domain-specific

abilities. Domain-general abilities, such as working memory and

cognitive flexibility, enable athletes to adapt to a wide variety

of challenges (Chango et al., 2022). Domain-specific abilities,

on the other hand, are tailored to the demands of particular

sports. For instance, elite soccer players often exhibit exceptional

spatial awareness and anticipation, while archers display superior

fine motor control and focus (Ektefaie et al., 2022). Identifying

the neural basis of these phenotypes has been a major goal of

cognitive neuroscience, with studies revealing enhanced activity in

regions such as the superior parietal lobule and pre-motor cortex

in athletes. The genetic underpinnings of cognitive phenotypes

have also been a topic of interest, particularly in the context of

elite performance (Daunhawer et al., 2023). Variants in genes

related to dopamine signaling, such as COMT and DRD4, have

been associated with traits like risk-taking and attentional control,

which are relevant to athletic success. Similarly, genes involved

in synaptic plasticity, such as BDNF, may contribute to the rapid

learning and adaptation observed in elite athletes (Shah et al.,

2023). Advances in neurogenetics have made it possible to link

specific genetic profiles with cognitive phenotypes, providing a

more nuanced understanding of the interplay between biology and

performance. Training and experience also play crucial roles in

shaping cognitive phenotypes (Wu et al., 2022). The concept of

deliberate practice, which emphasizes focused and goal-directed

training, has been shown to induce significant changes in cognitive

and neural function. For example, studies on expert chess players

have revealed that extensive practice leads to enhanced connectivity

between the prefrontal cortex and parietal regions, supporting

superior strategic thinking. Similar findings have been reported

in athletes, where practice-related neural adaptations underlie

improvements in cognitive and motor performance. The study

of cognitive phenotypes is not limited to the identification of

traits but extends to their application in performance optimization.

By understanding the cognitive strengths and weaknesses of

individual athletes, coaches and trainers can tailor interventions to

address specific needs. Cognitive training programs, including tasks

designed to improve attention and decision-making, have been

shown to enhance performance in both laboratory and real-world

settings. Moreover, neurofeedback techniques that provide real-

time information about neural activity allow athletes to fine-tune

their cognitive states for optimal performance. The exploration of

cognitive phenotypes also has implications for injury prevention

and recovery. Traumatic brain injuries (TBIs), which are prevalent

in contact sports, can disrupt cognitive phenotypes and impair

performance. By identifying the cognitive and neural markers of

vulnerability, researchers can develop strategies to mitigate the

risk of injury and accelerate recovery. For example, pre-injury

assessments of cognitive phenotypes can serve as a baseline for

evaluating the impact of TBIs and guiding rehabilitation efforts.

3 Method

3.1 Overview

Understanding cognitive phenotypes is an essential pursuit in

unraveling the intricate mechanisms underlying human cognition.

Cognitive phenotypes refer to measurable and heritable traits that

serve as proxies for understanding higher-order cognitive processes

and their variability across populations. In this work, we propose

a novel framework that systematically models these phenotypes

through a combination of advanced neural architectures, domain-

specific constraints, and innovative optimization strategies.

This section outlines the primary contributions and structural

organization of our method. We first introduce foundational

concepts and notations in Section 3.2, providing a rigorous

formalization of the problem of cognitive phenotype analysis.

Here, we emphasize the multi-dimensional and hierarchical

nature of cognitive phenotypes, situating our study within the

context of prior theoretical and empirical work. In Section 3.3,

we detail our proposed model, termed the Latent Cognitive

EmbeddingNetwork (LCEN). This model leverages state-of-the-art

deep learning methodologies, combined with biologically inspired

constraints, to effectively capture the multi-scale dependencies

inherent to cognitive traits. Unlike prior approaches, LCEN

introduces a specialized embedding mechanism to disentangle

latent factors influencing cognitive variability while preserving

interpretable structures within the data. In Section 3.4, we

present a novel optimization and training strategy tailored to the

unique challenges of cognitive phenotype modeling. This strategy

incorporates domain-specific priors and novel regularization

techniques to ensure robust generalization across diverse datasets

and demographic distributions (Table 1).

3.2 Preliminaries

The study of cognitive phenotypes involves understanding

and modeling the measurable traits that define human cognition.

These traits are inherently multi-dimensional, hierarchical, and

influenced by genetic, environmental, and contextual factors.

Formulating this problem mathematically requires defining a
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TABLE 1 Glossary of technical terms used in this study.

Term Definition

Latent Cognitive

Embedding Network

(LCEN)

A deep learning framework combining

encoder-decoder architecture, graph-based decoding,

and hierarchical attention to model cognitive

phenotypes from multimodal data.

Dilated Re-param

Block

A structure using dilated convolutions during latent

space reparameterization to capture multi-scale

features while preserving resolution.

Mutual Information

Maximization

An objective to preserve informative content from

input features in the latent representation by

maximizing statistical dependency.

Variational

Autoencoder (VAE)

A probabilistic generative model with encoder and

decoder modules that approximates the posterior of

latent variables for reconstruction.

Graph Attention

Layer

A neural layer that applies attention over graph nodes

to learn adaptive weights for phenotype

interdependencies.

Hierarchical

Attention

Mechanism

A method that assigns importance weights to different

abstraction levels (low, mid, high) of cognitive traits

during prediction.

KL Divergence A regularization term measuring how much the learned

latent distribution diverges from a prior (usually

Gaussian).

Contrastive Loss A loss function encouraging the model to bring

semantically similar embeddings closer and push

dissimilar ones apart.

Domain-Aware

Regularization

Incorporates biological/cognitive priors (e.g.,

phenotype relationships) to guide the learning process

and improve generalizability.

Cognitive Phenotype A quantifiable cognitive trait such as attention,

memory, or decision-making performance, often

derived from behavioral and neural data.

structured framework that captures these complexities while

allowing for effective learning and inference. This section

formalizes the problem, introduces key notations, and sets

the stage for the methodological contributions outlined in

subsequent sections.

Let X ∈ R
dx denote the space of input features representing

observable behavioral, neuropsychological, or genetic variables.

Each individual is represented as a sample xi ∈ X , where i =

1, . . . ,N, with N being the total number of individuals in the

dataset. The corresponding cognitive phenotypes are denoted by

Y ∈ R
dy , where yi ∈ Y represents the phenotype vector for

the i-th individual. The goal of this work is to learn a mapping

f :X → Y that predicts cognitive phenotypes yi from observable

features xi with high accuracy and interpretability. This work

seeks to decompose yi into latent factors zi ∈ Z , where Z ∈

R
dz represents a lower-dimensional latent space, such that yi =

g(zi) for some generative mapping g :Z → Y . These latent

factors aim to disentangle the underlying cognitive processes and

their interactions.

The input data D = {(xi, yi)}
N
i=1 is assumed to exhibit several

important properties. The phenotype yi exhibits dependencies

across its dimensions, meaning that y
(k)
i and y

(l)
i for k 6= l

may be correlated due to shared underlying cognitive processes.

The input features xi and phenotypes yi may contain hierarchical

relationships, such as sub-groupings within traits like verbal and

spatial cognition. We posit the existence of a latent variable zi ∈ Z

such that the conditional distribution p(yi|xi) can be modeled as

p(yi|xi) =

∫

p(yi|zi)p(zi|xi) dzi, (1)

which reflects the underlying processes driving

cognitive phenotypes.

We aim to model the joint distribution p(x, y) as

p(x, y) = p(y|x)p(x), (2)

where p(y|x) is parameterized by a conditional probabilistic model

that maps features to phenotypes. The latent variable model

introduces zi to characterize the generative process:

p(yi|xi) =

∫

p(yi|zi)p(zi|xi) dzi, (3)

where p(zi|xi) represents the posterior distribution of latent factors

given the observed features, and p(yi|zi) models the relationship

between latent factors and phenotypes.

Given the observed dataset D, the learning problem can be

expressed as maximizing the log-likelihood:

L =

N
∑

i=1

log p(yi|xi). (4)

To address the intractability of the marginal likelihood,

we employ a variational framework by introducing a

variational posterior q(zi|xi) and optimizing the evidence

lower bound (ELBO):

LELBO =

N
∑

i=1

Eq(zi|xi)[log p(yi|zi)]− DKL[q(zi|xi)‖p(zi)], (5)

where DKL[·‖·] is the Kullback-Leibler divergence.

To capture the hierarchical dependencies among cognitive

traits, we extend the phenotype vector yi into L levels of abstraction

{y
(1)
i , y

(2)
i , . . . , y

(L)
i }. The relationships across levels are modeled

using a multi-task objective:

Lmulti-task =

L
∑

l=1

λlLl, (6)

where λl is a weighting factor for level l, andLl represents the ELBO

for that level. This allows the model to simultaneously optimize for

fine-grained and coarse-grained cognitive phenotypes.

We represent the dependencies among phenotypes using a

directed graph G = (V , E), where V is the set of phenotypic

variables and E denotes edges capturing conditional dependencies.

This graph serves as a prior in the latent factor model to

regularize learning:

Rgraph =
∑

(k,l)∈E

‖z(k) − z(l)‖2. (7)
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3.3 Latent cognitive embedding network

In this section, we propose the Latent Cognitive Embedding

Network (LCEN), a novel deep learning framework for modeling

cognitive phenotypes. The design of LCEN is inspired by

the need to capture the hierarchical, multi-dimensional,

and latent dependencies underlying cognitive traits while

ensuring interpretability and robustness. LCEN integrates

an embedding-based generative framework with hierarchical

attention mechanisms (which assign weights to different levels of

abstraction), offering a powerful yet interpretable representation

of cognitive variability. To enhance the reproducibility and

architectural transparency of the Latent Cognitive Embedding

Network (LCEN), we provide a detailed description of both

the encoder and decoder components. The LCEN follows an

autoencoder-style architecture, where the encoder compresses

multimodal input features into a latent representation, and the

decoder reconstructs cognitive phenotypes from the latent space,

guided by graph-structured dependencies.

The encoder Eθ comprises four fully connected (FC) layers

with neuron configurations of 512, 256, 128, and 64 units

respectively. Each FC layer is followed by GELU activation

and batch normalization to improve non-linearity and training

stability. Dropout layers (dropout rate = 0.3) are applied after

the second and third FC layers to mitigate overfitting. The

latent representation zi ∈ R
64 is sampled from a variational

posterior modeled by a Gaussian distribution N (µi, σ
2
i ), with

reparameterization applied during training. The decoder Gφ
mirrors the encoder in reverse order, comprising FC layers of

64, 128, and the final output layer matching the dimension

of phenotype vector yi. Crucially, the decoder integrates a

residual block between the first and second layers, allowing

higher-order interactions and improved phenotype reconstruction.

Furthermore, graph-structured message passing is introduced via

an adjacency matrix A, enabling dependencies among phenotype

dimensions to inform the reconstruction process. Each decoder

layer utilizes GELU activation, and the final output layer applies a

linear transformation without activation for regression tasks. We

have revised Figure 1 to clearly annotate the encoder and decoder

regions. A complete architectural specification, including layer

sizes, regularization details, and activation functions, is provided

in Table 2.

3.3.1 Latent representation learning
The LCEN begins by transforming input features xi ∈ X into a

latent representation zi ∈ Z using a neural encoder, which consists

of a sequence of fully connected layers and regularization modules.

FIGURE 1

Architecture of the Latent Cognitive Embedding Network (LCEN). The framework integrates hierarchical attention mechanisms, graph-guided

phenotype decoding, and latent representation learning. It employs hybrid loss functions, a dilated re-parameterization block, and multi-scale

feature extraction to capture the hierarchical, multi-dimensional dependencies of cognitive phenotypes, ensuring robust and interpretable

representations for anomaly detection and phenotype modeling.
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TABLE 2 Detailed architecture of the LCEN encoder and decoder.

Component Layer
type

Output
size

Activation Notes

Encoder (Eθ )

Input - dx - Raw input

vector

FC1 Fully

connected

512 GELU BatchNorm

FC2 Fully

connected

256 GELU BatchNorm

+ Dropout

(0.3)

FC3 Fully

connected

128 GELU BatchNorm

+ Dropout

(0.3)

FC4 Fully

connected

64 Linear Latent

vector zi

Decoder (Gφ )

FC1 Fully

connected

64 GELU

Residual block 2 FC layers 128 GELU Skip

connection

Graph decoder Graph

attention

layer

dy Linear Adjacency

matrix A

used

Eθ , which is designed to capture complex feature interactions and

disentangle the underlying factors of variability.

LCEN is designed to accommodate heterogeneous input

modalities such as EEG time-series, structural MRI, and functional

neuroimaging data. To achieve this, the model employs a

modular encoding pipeline that first extracts modality-specific

features before mapping them into a unified latent space.

For EEG data, we apply bandpass filtering and time-frequency

transformation (e.g., wavelet decomposition) to derive power

spectral density (PSD) features, which are then processed using

1D temporal convolutional layers. These layers capture time-

dependent activation patterns critical for cognitive trait modeling.

For neuroimaging modalities such as structural MRI or fMRI,

we use pretrained convolutional neural networks (CNNs) to

extract spatial features from image volumes. MRI scans are

processed using 2D or 3D CNN backbones depending on

resolution and computational constraints. fMRI time series are

first reduced via ROI-based temporal averaging and then passed

through graph-based encoders. The outputs of all modality-specific

branches are concatenated and projected into a fixed-dimensional

representation using a shared linear transformation, followed by

batch normalization. This combined vector serves as the input xi
to the main encoder module Eθ . Such design enables LCEN to

effectively capture multi-scale and multi-domain features, ensuring

robust latent representations of cognitive phenotypes from diverse

data sources.

The encoding process is formulated as

zi = Eθ (xi) = fθ (Wexi + be), (8)

where We ∈ R
dz×dx is a weight matrix, be ∈ R

dz is a bias

vector, and fθ represents a series of non-linear transformations

applied to extract hierarchical feature representations. The encoder

leverages activation functions such as ReLU or GELU to introduce

non-linearities and uses layer normalization to stabilize training.

The latent variables zi ∈ Z , where Z ∈ R
dz , are modeled to

preserve essential information while eliminating noise or irrelevant

factors in the input. To further improve the disentanglement and

interpretability of the latent space, a regularization term is applied.

These include variance control and proximity constraints (to keep

embeddings compact and well-distributed in latent space). The

total regularization for the latent space is given by

Rlatent =

dz
∑

j=1

Var(zi,j)+ β‖zi − z
prior
i ‖2, (9)

where Var(zi,j) computes the variance of the j-th dimension

of the latent variable, ensuring diversity across latent factors,

and the term ‖zi − z
prior
i ‖2 enforces proximity to a prior

distribution. Here, z
prior
i ∼ N (0, I) represents a standard

Gaussian prior, encouraging the latent space to follow a structured,

interpretable form. The trade-off between reconstruction accuracy

and regularization is controlled by a hyperparameter β . A mutual

information maximization (a method to ensure the latent variable

retains meaningful signals from the input features) term is

introduced to preserve high mutual information between the latent

representations and the input features:

Rmutual = −MI(zi, xi), (10)

where MI(zi, xi) represents the mutual information between the

latent embeddings and the input data, ensuring that zi captures as

much meaningful information from xi as possible.

To provide a formal foundation for the mutual information

(MI) term in Equation (10), we incorporate a variational estimation

of mutual information, as proposed by Barber and Agakov (2003).

The MI between the latent variable zi and input xi can be lower

bounded as:

MI(zi, xi) ≥ Eq(zi|xi)[log p(xi|zi)]− Eq(zi|xi)[log q(zi|xi)] (11)

This objective encourages the latent representation zi to retain

maximal information from the input xi, aligning with the principle

of mutual information maximization. In our implementation, we

adopt a tractable parametric approximation where the posterior

q(zi|xi) is modeled using fully connected layers to generate the

parameters of a Gaussian distribution. For each input xi, the

encoder produces a mean vector µi and a log-variance vector

log σ 2
i , from which zi is sampled via the reparameterization trick:

zi = µi + σi · ǫ, ǫ ∼ N (0, I) (12)

The prior p(zi) is assumed to follow an isotropic Gaussian

N (0, I), consistent with traditional VAE frameworks. The KL

divergence between q(zi|xi) and p(zi), included as a regularization

term, complements the MI maximization by ensuring a structured

latent space. We refer readers to MINE (Belghazi et al., 2018) for

alternative estimators of MI using neural networks.

To handle heterogeneous input data and ensure scale

invariance, LCEN normalizes the input features before encoding
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and applies dropout to the latent embeddings to improve

generalization. The complete latent embedding regularization

objective is given by

Rtotal = Rlatent + λmutualRmutual, (13)

where λmutual controls the relative importance of preservingmutual

information. This comprehensive latent representation learning

framework allows LCEN to generate disentangled, interpretable,

and robust embeddings that form the foundation for accurate

phenotype modeling and hierarchical inference.

3.3.2 Graph-guided phenotype decoding
To reconstruct the cognitive phenotypes yi ∈ Y from the

latent space zi ∈ Z , the LCEN employs a graph-based decoder

Gφ that explicitly incorporates the structured dependencies among

phenotypes encoded in a phenotype graph G = (V , E), where

V represents the set of phenotypic variables and E captures

their pairwise dependencies. The graph structure is defined by an

adjacency matrixA ∈ R
dy×dy , whereAij denotes the strength of the

connection between phenotype variables y(i) and y(j). The decoder

reconstructs the phenotype vector yi using both latent embeddings

and the graph structure (as shown in Figure 2), formulated as

yi = Gφ(zi) =Wdzi + Ayi, (14)

where Wd ∈ R
dy×dz is a learnable weight matrix that projects

latent variables zi into the phenotype space Y . The adjacency

matrix A introduces a message-passing mechanism where each

phenotype is influenced by its neighbors in the graph, thereby

encoding their dependencies into the reconstruction process. To

capture non-linear relationships among phenotypes and latent

variables, the decoder includes a residual block Rψ , consisting of

multiple fully connected layers with non-linear activations such

as ReLU or GELU. The updated phenotype reconstruction is then

given by

yi = Rψ (yi)+ Gφ(zi), (15)

where the residual block enhances the flexibility of the model to

capture higher-order interactions. The graph G plays a crucial

role in regularizing the decoding process, ensuring that phenotype

predictions remain coherent with known relationships. A structural

regularization term is introduced to enforce smoothness over

the graph:

Rgraph =
∑

(k,l)∈E

‖y
(k)
i − y

(l)
i ‖

2, (16)

where y
(k)
i and y

(l)
i are phenotype values corresponding

to connected nodes k and l. This term ensures that

phenotypes connected in the graph exhibit similar patterns,

reflecting their shared underlying cognitive processes. To

handle cases where the graph structure is not pre-defined,

LCEN can jointly learn the adjacency matrix A as part

of the training process. The learnable adjacency matrix is

FIGURE 2

Framework of graph-guided phenotype decoding, illustrating the integration of graph-based phenotype dependencies with hierarchical attention

mechanisms for cognitive phenotype reconstruction. The process incorporates transfer learning, feature projection, and contrastive loss optimization

to align latent embeddings with phenotype relationships, while classification loss ensures accurate emotion labeling. The top pipeline handles

phenotype graph decoding, and the bottom pipeline demonstrates hierarchical attention mechanisms applied to new subject calibration and testing.
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constrained to remain sparse and symmetric, with constraints

applied as

Rsparsity = ‖A‖1, Rsymmetry = ‖A− A⊤‖2F , (17)

where ‖ · ‖1 denotes the L1 norm to enforce sparsity, and ‖ · ‖F
is the Frobenius norm ensuring symmetry. The overall decoding

objective minimizes the reconstruction loss combined with the

regularization terms:

Ldecode =
1

N

N
∑

i=1

‖yi − ŷi‖
2 + λgraphRgraph + λsparsityRsparsity

+ λsymmetryRsymmetry, (18)

where ŷi represents the predicted phenotype vector, and

λgraph, λsparsity, λsymmetry are hyperparameters controlling the

contributions of the respective regularization terms. By integrating

graph-based dependencies and non-linear transformations, this

decoding process allows LCEN to accurately reconstruct cognitive

phenotypes while preserving their inherent structural relationships.

3.3.3 Hierarchical attention mechanism
To account for the hierarchical nature of cognitive phenotypes,

the Latent Cognitive Embedding Network (LCEN) incorporates a

hierarchical attention mechanism that dynamically assigns task-

specific weights to latent features at different levels of abstraction.

This mechanism is designed to effectively capture both fine-

grained details and high-level abstractions of cognitive traits. Let hl
represent the latent representation at the l-th level of the hierarchy,

where l = 1, . . . , L, and L is the total number of abstraction levels.

The attention mechanism computes attention weights αl for each

level l using a softmax function, which ensures that the weights are

normalized and sum to one.

In our implementation, the number of abstraction levels L is set

to 3. This choice is motivated by the hierarchical organization of

cognitive functions in neuroscience literature and was empirically

validated during model tuning. Each level captures a distinct

granularity of cognitive traits:

Level 1 focuses on low-level sensorimotor features such as reaction

time and motor control.

Level 2 targets mid-level cognitive control abilities including

working memory and attentional regulation.

Level 3 models high-level executive functions like strategic

planning, abstract reasoning, and decision making.

This design reflects the hierarchical modularity of brain function

and enables the attention mechanism to differentially weight

feature contributions across cognitive domains. The attention

scores are dynamically learned during training, allowing the

model to assign context-specific importance to each abstraction

level. Table 3 provides examples of cognitive phenotype variables

typically associated with each level, drawn from our experimental

datasets and supported by literature on cognitive neuroscience.

The computation is expressed as

αl =
exp(u⊤

l
hl)

∑L
l′=1 exp(u

⊤
l′
hl′ )

, (19)

TABLE 3 Examples of abstraction levels used in hierarchical attention.

Level Representative cognitive phenotypes

Level 1 (Low) Reaction time, visual-motor coordination, motor response

speed

Level 2 (Middle) Working memory span, sustained attention, error

monitoring

Level 3 (High) Strategic decision-making, abstract reasoning, planning

behavior

where ul is a learnable context vector associated with level l, and

u⊤
l
hl represents the compatibility score between the context vector

and the latent representation. These attention weights αl reflect the

relative importance of each level in predicting the final cognitive

phenotypes. The phenotype predictions across all levels are then

aggregated into a single output through a weighted sum:

yfinali =

L
∑

l=1

αly
(l)
i , (20)

where y
(l)
i represents the phenotype predictions at level l. By

integrating information from multiple levels, this mechanism

allows the model to balance coarse-grained and fine-grained

abstractions effectively.

To enhance the flexibility and adaptability of the attention

mechanism, the latent representations hl at each level are computed

as transformations of the original latent vector zi through level-

specific projection matricesWl:

hl = f (Wlzi + bl), (21)

where Wl and bl are learnable parameters, and f represents a

non-linear activation function such as ReLU. This ensures that

each level captures a unique aspect of the latent representation,

enabling the attention mechanism to differentiate between features

at different levels.

To train the LCEN with the hierarchical attention mechanism,

a composite loss function is used, combining phenotype

reconstruction, latent space regularization, and graph structure

regularization. The total loss is given by

L = Lreconstruction + λ1Rlatent + λ2Rgraph, (22)

where the reconstruction loss Lreconstruction measures the

discrepancy between the true and predicted phenotypes:

Lreconstruction =
1

N

N
∑

i=1

‖yi − ŷi‖
2, (23)

and ŷi is the final predicted phenotype vector after applying the

attention mechanism. The latent space regularization term Rlatent

ensures that the latent embeddings zi remain structured and

interpretable, while the graph regularization term Rgraph enforces

coherence among related phenotypes based on the phenotype

graph G. A sparsity-promoting regularization is applied to the
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attention weights to encourage the model to focus on the most

relevant levels of abstraction:

Rattention =

L
∑

l=1

‖αl‖1. (24)

The final optimization objective for the LCEN is thus

extended as

Ltotal = L+ λ3Rattention, (25)

where λ3 controls the contribution of the attention sparsity

regularization. This comprehensive hierarchical attention

mechanism enables LCEN to accurately model the multi-

level dependencies in cognitive phenotypes while maintaining

interpretability and robustness.

3.4 Cognitive optimization and
generalization strategy

In this section, we introduce the Cognitive Optimization

and Generalization Strategy (COGS), an innovative framework

designed to enhance the training (As shown in Figure 3),

generalization, and interpretability of the Latent Cognitive

Embedding Network (LCEN). This strategy integrates domain-

specific priors, advanced regularization techniques, and multi-

task optimization to address the unique challenges of modeling

cognitive phenotypes. The proposed strategy ensures that the

model not only captures intricate cognitive dependencies but also

generalizes effectively across diverse datasets and populations.

3.4.1 Domain-aware regularization
To enforce biologically plausible predictions, ensure

interpretability, and reduce overfitting, the Cognitive Optimization

and Generalization Strategy (COGS) incorporates domain-aware

regularization techniques that leverage both structural knowledge

and statistical constraints. A key component of this strategy is a

smoothness regularization term, which penalizes large variations

in predicted values across connected nodes in the cognitive

phenotype graph G = (V , E), where V represents the set of

phenotypic variables, and E denotes edges that encode known

relationships between these variables. This smoothness constraint

ensures that phenotypes with strong biological or functional

connections exhibit similar predictive patterns, and it is defined as

Rsmooth =
∑

(i,j)∈E

‖yi − yj‖
2, (26)

where yi and yj are the predicted phenotype values for nodes

i and j, respectively. This term acts as a graph Laplacian

regularizer, promoting smoothness along the edges of the graph and

enforcing consistency among related phenotypes. To disentangle

the underlying latent representations and prevent redundancy in

the latent space Z = {zi}
N
i=1, COGS applies a disentanglement

regularization term that minimizes the covariance between

different latent dimensions. This is expressed as

Rdisentangle =
∑

k6=l

Cov(z(k), z(l))2, (27)

where Cov(z(k), z(l)) computes the covariance between the k-th and

l-th latent dimensions across the dataset. By minimizing this term,

FIGURE 3

COGS framework for modeling cognitive phenotypes. The design integrates multi-scale convolutional layers for uncertainty quantification, temporal

modeling with sigmoid activation, spatial dependencies using pooling and conditional random fields, and adaptive multi-task optimization for robust

predictions.
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the model encourages each latent dimension to capture distinct and

independent factors, improving the interpretability and robustness

of the learned embeddings. In cases where data annotations are

sparse, incomplete, or noisy, sparsity-inducing penalties are applied

directly to the phenotype predictions to reduce overfitting and

focus the model on the most salient features. This is achieved

through an L1 regularization term on the predicted phenotype

vector yi:

Rsparse = ‖yi‖1, (28)

which enforces sparsity by penalizing the magnitude of non-zero

elements in yi, effectively reducing the influence of irrelevant or

noisy phenotypic dimensions. Together, these regularization terms

are combined into a total domain-aware regularization objective

as follows:

Rdomain = λsmoothRsmooth+λdisentangleRdisentangle+λsparseRsparse,

(29)

where λsmooth, λdisentangle, and λsparse are hyperparameters

controlling the relative importance of each regularization

term. These weights can be tuned to align the regularization

objectives with the specific characteristics of the dataset

and the biological domain. The inclusion of these domain-

aware regularization techniques ensures that the predictions

generated by COGS are not only accurate but also biologically

consistent, interpretable, and robust to variations in

data quality.

3.4.2 Adaptive multi-task learning
Cognitive phenotypes are inherently hierarchical, with traits at

different levels interacting and influencing one another, making

it essential to optimize multiple objectives simultaneously. In

our architecture, EEG and text inputs are processed through

distinct embedding pipelines before integration within the adaptive

multi-task learning module. For EEG signals, we extract power

spectral density (PSD) features using wavelet transforms and

feed them into a series of 1D convolutional layers, followed by

batch normalization and dropout. These time-series embeddings

are then encoded with sinusoidal positional embeddings to

preserve temporal order and injected into transformer blocks.

For text-based inputs—such as structured athlete reports or

domain-specific annotations—we tokenize the text using a

BERT-compatible tokenizer and encode the sequences using a

pretrained language model (e.g., BERT or RoBERTa). The final

hidden states are averaged or pooled, then passed through

a linear projection layer to match the dimensionality of the

EEG embedding space. To ensure alignment between these

heterogeneous modalities, we apply a contrastive learning objective

during pretraining, encouraging embeddings from semantically

similar inputs to cluster together in the latent space. These enriched

embeddings are subsequently used in downstream phenotype

prediction tasks through the shared transformer backbone depicted

in Figure 4.

To address this, COGS introduces an adaptive multi-task

learning framework that dynamically balances the contributions

of each task during training. The overall multi-task objective is

formulated as

Lmulti-task =

T
∑

t=1

λtLt , (30)

where Lt represents the task-specific loss for the t-th phenotype,

and T is the total number of tasks. The weights λt are dynamically

adjusted to prioritize tasks based on their difficulty or uncertainty

during training. To achieve this, the task weights are computed

inversely proportional to the expected magnitude of the gradients

of the corresponding task loss, ensuring that more difficult tasks

receive greater emphasis. This is expressed as

λt =
1

√

E[‖∇θLt‖2]+ ǫ
, (31)

where ∇θLt denotes the gradient of the task-specific loss with

respect to the model parameters θ , E[·] represents the expectation

over a batch of data, and ǫ is a small positive constant added to

prevent numerical instability. This weighting mechanism ensures

that tasks with larger gradients, which typically correspond to

harder tasks, are assigned greater importance during training.

To capture the hierarchical relationships among cognitive

phenotypes, the task-specific losses Lt are further augmented

with a structural dependency term. Let G = (V , E) represent

a directed acyclic graph (DAG) that encodes the hierarchical

structure of phenotypes, where V is the set of tasks and E

represents the dependencies among them. The structural term

enforces consistency between parent and child tasks in the graph,

defined as

Rhierarchy =
∑

(tp ,tc)∈E

‖ytp − ytc‖
2, (32)

where ytp and ytc are the predictions for parent task tp and child task

tc, respectively. This term penalizes large discrepancies between

related tasks, ensuring that lower-level tasks are consistent with

higher-level tasks.

To prevent overfitting and ensure robust generalization,

an uncertainty-aware regularization term is applied to the

predicted outputs. This term incorporates task-specific predictive

uncertainties, modeled as Gaussian distributions with means yt and

variances σ 2
t :

Runcertainty =

T
∑

t=1

1

2σ 2
t

‖yt − ŷt‖
2 +

1

2
log σ 2

t , (33)

where ŷt is the ground truth for task t, and σ 2
t is a learnable

parameter representing the uncertainty of the task prediction. This

term encourages the model to focus more on tasks with lower

uncertainty while allowing greater flexibility for tasks with higher

noise or ambiguity.

The final objective function combines the multi-task loss, the

hierarchical consistency term, and the uncertainty regularization,

expressed as

Ltotal = Lmulti-task + λhierarchyRhierarchy + λuncertaintyRuncertainty,

(34)
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FIGURE 4

Diagram of the adaptive multi-task learning framework for cognitive phenotype modeling. The framework incorporates EEG and textual inputs

through specialized embedding and encoding layers. Transformer blocks, positional embeddings, and adaptive multi-task learning modules

dynamically balance task-specific losses while leveraging hierarchical dependencies among cognitive phenotypes. The architecture integrates

multi-head attention, feed-forward layers, and regularization mechanisms to capture task interdependencies, uncertainty, and structural consistency

across diverse tasks.

where λhierarchy and λuncertainty are hyperparameters that control

the contributions of the hierarchy and uncertainty terms,

respectively. By dynamically weighting task-specific losses and

incorporating structural and uncertainty-aware regularization, this

adaptive multi-task learning framework ensures that COGS can

effectively model the complex interdependencies among cognitive

phenotypes while maintaining robust generalization across

diverse tasks.

3.4.3 Self-supervised pre-training
To address the challenge of sparse annotations and improve

the robustness of the model, COGS employs a self-supervised

pre-training strategy to initialize the Latent Cognitive Embedding

Network (LCEN). This approach leverages the unlabeled data to

learn meaningful representations by optimizing self-supervised

objectives that do not require explicit phenotype labels. The first

component of the pre-training objective focuses on reconstructing

the input features xi ∈ X . The model uses an encoder-

decoder structure, where the encoder Eθ maps xi into a latent

space zi ∈ Z , and the decoder Dφ reconstructs the input

as x̂i:

x̂i = Dφ(Eθ (xi)), (35)

where Eθ and Dφ are parameterized neural networks. The

reconstruction loss minimizes the discrepancy between the original

input and its reconstruction, ensuring that the latent representation

zi preserves critical information:

Lrecon =
1

N

N
∑

i=1

‖xi − x̂i‖
2. (36)

The second component of the self-supervised objective aims

to regularize the latent space by estimating phenotype-related

auxiliary variables. These auxiliary variables, such as demographic

factors, genetic markers, or behavioral metrics, provide additional

context for cognitive phenotypes. The posterior distribution

q(zi|xi), representing the latent space, is encouraged to align with

a predefined prior distribution p(zj) that incorporates domain

knowledge about the auxiliary variables:

LKL =

J
∑

j=1

KL(q(zi|xi)‖p(zj)), (37)

where KL(·‖·) represents the Kullback-Leibler divergence, which

penalizes deviations of the posterior from the prior. This term

regularizes the latent space Z , ensuring that it encodes meaningful

and interpretable features relevant to cognitive phenotypes.

To further enhance the quality of the learned representations,

a contrastive learning objective is integrated into the pre-training.

For each sample xi, a positive pair (zi, z
+
i ) is generated through

data augmentation, and the model is trained to maximize the
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similarity between positive pairs while minimizing it for negative

pairs (zi, z
−
i ). The contrastive loss is given by:

Lcontrast = −
1

N

N
∑

i=1

log
exp(sim(zi, z

+
i )/τ )

exp(sim(zi, z
+
i )/τ )

+
∑

k6=i exp(sim(zi, z
−
k
)/τ )

, (38)

where sim(zi, zj) is a similarity function such as cosine similarity,

and τ is a temperature hyperparameter that controls the sharpness

of the distribution. This objective encourages the latent space

to cluster semantically similar representations while separating

dissimilar ones.

The overall self-supervised pre-training objective combines

the reconstruction loss, the KL divergence regularization, and the

contrastive loss:

Lself = Lrecon + λKLLKL + λcontrastLcontrast, (39)

where λKL and λcontrast are hyperparameters that control the

relative contributions of the KL and contrastive terms. By

optimizing this composite loss, the model learns a structured and

meaningful latent space that captures relevant features even in the

absence of extensive labeled data. This initialization significantly

improves the performance of downstream tasks, enabling the

LCEN to generalize effectively across diverse cognitive phenotypes.

4 Experimental setup

4.1 Dataset

The EEG Motor Movement Dataset (Al-Saegh et al., 2021) is

a publicly available dataset that consists of electroencephalogram

(EEG) recordings collected to study brain activity during motor

movements and imagery tasks. The dataset includes recordings

from healthy participants performing tasks such as opening

and closing fists or imagining these movements. The data is

collected using 64-channel EEG systems with high temporal

resolution, making it suitable for studying motor control, brain-

computer interfaces, and neurological disorders. This dataset

is frequently used in signal processing and machine learning

research focused on EEG-based classification tasks. The CAMCAN

Dataset (Batchuluun et al., 2023) is a comprehensive dataset

aimed at studying aging and cognition through neuroimaging

and behavioral data. It includes magnetoencephalography (MEG),

magnetic resonance imaging (MRI), and behavioral tests collected

from participants across a wide age range. The dataset provides a

rich source of information for studying brain structure, function,

and connectivity in relation to aging, cognitive decline, and

memory. CAMCAN’s multimodal nature and large sample size

make it a valuable resource for neuroscience and machine learning

researchers working on lifespan-related studies. The OpenNeuro

Dataset (Markiewicz et al., 2021) is a platform hosting a wide

variety of publicly available neuroimaging datasets contributed by

the research community. It contains data from different modalities,

including functional and structural MRI, MEG, EEG, and PET,

catering to diverse research needs. OpenNeuro promotes open

science by providing standardized datasets for developing and

benchmarking machine learning models. Its datasets span different

demographics, tasks, and clinical conditions, making it a crucial

resource for generalizable neuroimaging analysis. The MyBrain

Dataset (Pérez-Rodríguez et al., 2023) is a custom neuroimaging

dataset designed for personalized neuroscience research. It includes

high-resolution EEG and MRI scans of individual participants,

focusing on brain connectivity and functional networks. The

dataset is curated to support studies on brain dynamics,

individual differences in cognition, and personalized medicine

applications. MyBrain’s emphasis on individual-level data provides

researchers with the ability to analyze unique neural signatures and

develop customized computational models for understanding brain

function and dysfunction.

To provide context for our evaluation, we summarize the nature

of the cognitive phenotypes investigated and the composition

of our datasets. The cognitive traits analyzed in this study

include sensorimotor reaction time, attention stability, response

inhibition, and decision-making performance. These phenotypes

are quantified through behavioral performance metrics as well

as neuroimaging-derived features such as prefrontal activation

levels and connectivity indices. The number of elite athletes or

sport-trained individuals involved in each dataset is as follows:

EEG Motor Movement Dataset includes 109 subjects with motor

task performance data; CAMCAN includes 652 participants, of

which 72 met our inclusion criteria for advanced athletic or

physically intensive backgrounds; OpenNeuro datasets vary, with

an average of 50 to 100 subjects per study; the MyBrain dataset

includes 33 individual-level records curated for this work. Across

all datasets, we curated a total of approximately 800 usable subject

instances. For each dataset, we split the samples into 70% training,

15% validation, and 15% testing. The cognitive phenotype vector

dimensionality ranged from 6 to 15 depending on the data

source. Further details, including subject-level inclusion criteria,

feature extraction protocols, and phenotype labeling processes, are

available in our project documentation. To further contextualize

our experimental setup, we provide a quantitative overview of

the subject population and data split used in model training and

evaluation. Table 4 summarizes the number of subjects involved

in each dataset, with emphasis on the subset of participants

possessing advanced athletic backgrounds. It also outlines the

total number of samples curated per dataset and the distribution

across training, validation, and testing subsets. All datasets were

consistently partitioned using a 70%/15%/15% ratio, ensuring

balanced exposure during model training and fair evaluation.

The relatively large volume of subject-level instances, combined

with heterogeneous cognitive tasks and modalities (EEG, MRI,

fMRI), supports the robustness and generalizability of our proposed

LCEN framework.

4.2 Experimental details

The experiments were conducted using a robust and

standardized pipeline designed to evaluate the performance of

our proposed method. All datasets were preprocessed to ensure

consistency in data quality and format. For EEG datasets, raw

signals were band-pass filtered between 1–40 Hz to remove noise

Frontiers inNeuroinformatics 13 frontiersin.org

https://doi.org/10.3389/fninf.2025.1557879
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Huang et al. 10.3389/fninf.2025.1557879

TABLE 4 Summary of dataset composition and data split used for training, validation, and testing.

Dataset Subjects (Athletes) Total samples Train (70%) Validation (15%) Test (15%)

EEGMotor Movement 109 3,000 2,100 450 450

CAMCAN 652 (72 athletes) 4,500 3,150 675 675

OpenNeuro (Avg.) 80 per study 2,000 1,400 300 300

MyBrain 33 800 560 120 120

Total 874 10,300 7,210 1,545 1,545

The values in bold are the best values.

and artifacts. Downsampling was performed at 128 Hz to reduce

computational complexity while preserving critical information.

For neuroimaging datasets, structural and functional MRI data

were preprocessed using a standard pipeline, including motion

correction, normalization to the MNI template, and smoothing

with a Gaussian kernel (FWHM= 6 mm). Functional connectivity

matrices were computed using Pearson correlations between brain

regions of interest (ROIs) based on the Automated Anatomical

Labeling (AAL) atlas. The proposed model was implemented using

PyTorch 2.0 and trained on an NVIDIA A100 GPU with 80 GB of

memory. The training process utilized the Adam optimizer with

a learning rate of 0.001 and a batch size of 32. Early stopping was

employed to prevent overfitting, with the patience parameter set to

10 epochs. A total of 100 epochs were performed for training. Data

augmentation techniques, including signal shifting and scaling,

were applied to enhance model robustness for EEG datasets. For

neuroimaging datasets, augmentation included random flipping

and affine transformations. Performance was evaluated using

five-fold cross-validation to ensure generalizability. The evaluation

metrics included accuracy, precision, recall, F1-score, and area

under the receiver operating characteristic curve (AUC-ROC)

for classification tasks. For regression tasks, mean absolute error

(MAE) and root mean square error (RMSE) were reported.

Statistical significance of the results was assessed using paired

t-tests between our method and state-of-the-art approaches. To

ensure fair comparisons, hyperparameters for all baseline models

were tuned using grid search on the validation set. We used the

same training/validation/test splits for all experiments. Feature

extraction for EEG datasets employed both time-domain and

frequency-domain features, such as power spectral density (PSD)

and wavelet coefficients. For neuroimaging datasets, graph neural

networks (GNNs) were applied to connectivity matrices, while

convolutional neural networks (CNNs) processed the raw image

data. The computational complexity of the proposed method was

analyzed by measuring the inference time and memory footprint

for different dataset sizes. Results demonstrated that our method

achieves a balance between efficiency and performance, with

an average inference time of 0.2 seconds per sample for EEG

datasets and 0.5 seconds for neuroimaging data. Reproducibility

was ensured by setting random seeds and publishing all code

and preprocessing scripts alongside this paper. The experiments

highlight the effectiveness of our method across diverse datasets,

outperforming state-of-the-art approaches while maintaining

computational efficiency (Algorithm 1).

To ensure the statistical validity of our comparisons, we

conducted an a-priori power analysis using G*Power 3.1. Assuming

a medium effect size (d = 0.5) and α = 0.05, the minimum

required sample size to achieve 80% power in paired comparisons

was 34. All datasets used in our experiments exceeded this

threshold, with final training/evaluation subject counts ranging

from 80 to over 600 (see Table 5). Demographic distributions are

also summarized therein. All paired t-tests were conducted as

two-tailed tests with α = 0.05. We used the Holm-Bonferroni

method to correct for multiple comparisons across datasets and

metrics. The assumptions of normality and homogeneity of

variance were validated using the Shapiro-Wilk and Levene’s tests,

respectively. When assumptions were violated, we used non-

parametric alternatives such as the Wilcoxon signed-rank test. To

prevent data leakage, all hyperparameter tuning procedures were

fully nested within the 5-fold cross-validation framework. For each

training fold, a separate validation set was used exclusively for

parameter selection. No information from the held-out test folds

was used during this process. This setup guarantees a fair and

unbiased estimation of generalization performance.

To promote reproducibility and support further research, the

complete source code for the Latent Cognitive EmbeddingNetwork

(LCEN) is now available at: https://github.com/QIyu2025007/

NeuroAthlete-LCEN.git. This repository includes the model

implementation (encoder, decoder, and attention modules), dataset

preprocessing scripts for EEG, fMRI, and structural MRI data, and

all experimental configuration files used in our study. Users will find

detailed instructions for setting up the environment, reproducing

experiments on all four datasets, and extending the pipeline

for additional cognitive tasks. The codebase is implemented in

PyTorch 2.0, and the repository also provides pre-trained weights

for the CAMCAN and EEG Motor Movement datasets to facilitate

benchmarking. Additionally, our GitHub release includes Tables

1 and 3, as well as Supplementary Figure Annotations, to assist

replication. We hope that by making our work transparent

and accessible, this study can serve as a robust foundation for

subsequent advancements in explainable neuroinformatics models.

4.3 Comparison with SOTA methods

In this section, we present a comprehensive comparison

of our proposed method with state-of-the-art (SOTA) models

on four benchmark datasets: EEG Motor Movement Dataset,

CAMCAN Dataset, OpenNeuro Dataset, and MyBrain Dataset.

The performance metrics include accuracy, recall, F1 score, and

area under the curve (AUC). Tables 6, 7 summarize the results

across all datasets. For the EEG Motor Movement Dataset, our
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Input: Pretraining datasets

DEEG,DCAMCAN,DOpenNeuro,DMyBrain, learning rate η,

batch size B, number of epochs E, regularization

weights λ1, λ2, λ3.

Output: Trained LCEN model MLCEN.

Initialize model parameters θ randomly;

Preprocess all datasets: Apply filtering,

normalization, and feature extraction;

Split datasets into training, validation, and

test sets;

for epoch e = 1 to E do

Shuffle training data Dtrain;

for batch b in Dtrain do

Compute latent representations zi using the

encoder:

zi = Eθ(xi) (40)

Reconstruct the input x̂i:

x̂i = Dφ(zi) (41)

Compute reconstruction loss:

Lrecon =
1

B

B
∑

i=1

‖xi − x̂i‖
2 (42)

Compute graph regularization:

Rgraph =
∑

(i,j)∈E

‖yi − yj‖
2 (43)

Compute total loss:

Ltotal = Lrecon + λ1Rgraph + λ2KL(q(zi|xi) ‖ p(z))

+ λ3RattentionRgraph + λ2KL(q(zi|xi)‖p(z))

(44)

Update model parameters:

θ ← θ − η∇θLtotal (45)

end

Evaluate on validation set Dval;

Compute metrics: Recall, Precision, F1-score,

AUC-ROC;

if Validation loss does not improve for 10

epochs then

Break training;

end

end

Test model on Dtest:

MAE =
1

N

N
∑

i=1

|yi − ŷi|, RMSE =

√

√

√

√

1

N

N
∑

i=1

(yi − ŷi)2 (46)

Report metrics: Recall, Precision, F1-score,

AUC-ROC, MAE, RMSE;

return Trained model MLCEN;

Algorithm 1. Training procedure for LCEN on multimodal datasets.

TABLE 5 Sample sizes, demographics, and exclusions per dataset.

Dataset Participants
(N)

Excluded Age
range

Gender
(M/F)

EEG motor

movement

109 5 (noise) 18–34 61/43

CAMCAN 652 18 (motion

artifact)

20–80 312/322

OpenNeuro 85 4 19–55 47/38

MyBrain 33 0 24–41 18/15

method significantly outperformed the SOTA models, achieving

an accuracy of 93.74% compared to the next best performance of

91.12% by RF (Jagannath et al., 2022). Similarly, the recall, F1 score,

and AUC values for our method were consistently higher, with

improvements of approximately 3%–5% over the other models.

This superior performance can be attributed to the tailored feature

extraction approach that leverages both temporal and frequency-

domain information, as well as the use of an advanced architecture

capable of capturing complex patterns in the EEG signals. On the

CAMCAN Dataset, our method achieved remarkable results, with

an accuracy of 95.22% and an AUC of 94.76%, outperforming the

best baseline model, CNN (Kattenborn et al., 2021), by a significant

margin. The improved recall and F1 scores highlight the robustness

of our approach in handling noisy and multimodal data. The

integration of domain-specific knowledge into the model design

and the use of advanced regularization techniques contributed to

these improvements, particularly in datasets characterized by high

variability in brain signals.

For the OpenNeuro Dataset, our method demonstrated

an accuracy of 93.78%, outperforming GCN (Sharma et al.,

2022), which achieved 91.45%. The consistent performance

across all metrics underscores the versatility of our method

in handling diverse neuroimaging modalities. Our graph neural

network (GNN)-based approach for functional connectivity

analysis enabled the model to capture complex inter-regional

dependencies in the brain, thereby enhancing classification

accuracy. On the MyBrain Dataset, our method achieved the best

performance with an accuracy of 95.12% and an AUC of 94.89%,

surpassing CNN (Kattenborn et al., 2021) and GCN (Sharma et al.,

2022) by a substantial margin. The combination of individual-

level feature extraction and a deep learning architecture that

adapts to unique neural signatures contributed to these superior

results. The significant performance gap demonstrates the efficacy

of our personalized approach in leveraging unique subject-specific

patterns for improved predictions. The graphical trends across

these datasets in Figures 5, 6, reveal that our method consistently

delivers higher performance across all metrics. These results

highlight the generalizability and robustness of our approach
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TABLE 6 Comparison of ours with SOTA methods on EEG motor movement dataset and CAMCAN dataset.

Model EEG Motor Movement Dataset CAMCAN Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

SVM (Kurani et al., 2023) 89.45± 0.03 86.21± 0.02 87.92± 0.03 91.10± 0.03 88.34± 0.02 85.12± 0.01 84.76± 0.02 89.87± 0.03

RF (Jagannath et al., 2022) 91.12± 0.02 87.40± 0.02 85.89± 0.02 92.03± 0.03 90.50± 0.03 89.23± 0.02 86.14± 0.02 87.72± 0.03

MLP (Tolstikhin et al., 2021) 88.78± 0.03 85.34± 0.02 88.67± 0.03 89.92± 0.02 86.72± 0.02 83.94± 0.02 84.29± 0.03 85.81± 0.02

CNN (Kattenborn et al., 2021) 90.32± 0.02 89.45± 0.03 87.12± 0.02 90.21± 0.03 91.56± 0.02 88.67± 0.03 89.42± 0.02 88.94± 0.02

LSTM (Zha et al., 2022) 87.91± 0.03 84.62± 0.02 83.88± 0.02 88.43± 0.03 85.45± 0.02 82.87± 0.03 85.04± 0.02 86.12± 0.03

GCN (Sharma et al., 2022) 90.05± 0.03 88.11± 0.02 89.43± 0.03 89.67± 0.02 89.97± 0.02 87.45± 0.02 88.31± 0.03 89.20± 0.02

Ours 93.74 ± 0.02 91.56 ± 0.02 90.82 ± 0.03 94.32 ± 0.03 95.22 ± 0.02 93.84 ± 0.03 92.45 ± 0.03 94.76 ± 0.02

The values in bold are the best values.

TABLE 7 Comparison of Ours with SOTA methods on OpenNeuro Dataset and MyBrain dataset.

Model OpenNeuro Dataset MyBrain Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

SVM (Kurani et al., 2023) 88.12± 0.02 84.56± 0.03 85.23± 0.03 87.93± 0.02 89.34± 0.02 85.45± 0.02 86.78± 0.03 88.56± 0.03

RF (Jagannath et al., 2022) 89.87± 0.03 87.15± 0.02 86.34± 0.02 89.90± 0.03 88.72± 0.03 86.93± 0.02 85.67± 0.02 87.49± 0.02

MLP (Tolstikhin et al., 2021) 87.45± 0.02 85.78± 0.02 83.96± 0.03 86.12± 0.02 85.91± 0.02 84.12± 0.02 83.76± 0.02 84.89± 0.03

CNN (Kattenborn et al., 2021) 90.32± 0.03 88.12± 0.02 87.15± 0.03 91.14± 0.03 92.01± 0.02 89.56± 0.02 88.45± 0.02 90.12± 0.02

LSTM (Zha et al., 2022) 86.91± 0.02 84.11± 0.03 85.43± 0.02 87.67± 0.02 84.45± 0.02 83.87± 0.02 82.34± 0.03 85.76± 0.02

GCN (Sharma et al., 2022) 91.45± 0.02 89.67± 0.02 88.23± 0.03 90.89± 0.03 90.56± 0.02 88.91± 0.03 87.78± 0.02 89.87± 0.03

Ours 93.78 ± 0.03 91.56 ± 0.03 90.45 ± 0.02 94.12 ± 0.03 95.12 ± 0.02 93.78 ± 0.03 92.34 ± 0.03 94.89 ± 0.02

The values in bold are the best values.

FIGURE 5

Performance comparison of SOTA methods on EEG motor movement dataset and CAMCAN dataset datasets.

in various settings, from EEG-based motor tasks to multimodal

neuroimaging data analysis.

4.4 Ablation study

To evaluate the contribution of individual components of

our proposed method, we performed an ablation study on four

datasets: EEG Motor Movement Dataset, CAMCAN Dataset,

OpenNeuro Dataset, and MyBrain Dataset. The ablation study

involved systematically removing key components of the model to

assess their impact on performance. The results are summarized in

Tables 8, 9. On the EEG Motor Movement Dataset, the removal

of Latent Representation Learning resulted in a noticeable drop

in accuracy from 93.74% to 91.12%. Similarly, recall, F1 score,

and AUC also experienced significant declines. This indicates

that Latent Representation Learning plays a critical role in

capturing the temporal dependencies in EEG signals. Removing

Hierarchical Attention Mechanism showed a smaller performance

reduction, with accuracy dropping to 92.45%, highlighting the

importance of this module in enhancing feature representation.

Domain-Aware Regularization showed a marginal decrease in

performance, suggesting it plays a supportive but less critical role.

The results show that all components contribute to the final model’s
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FIGURE 6

Performance comparison of SOTA Methods on OpenNeuro Dataset and MyBrain Dataset datasets.

TABLE 8 Ablation study results on EEG motor movement dataset and CAMCAN dataset.

Model EEG Motor Movement Dataset CAMCAN Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

Ours w./o. Latent

Representation Learning

91.12± 0.02 88.45± 0.02 87.90± 0.03 92.34± 0.03 92.56± 0.02 89.32± 0.03 88.12± 0.02 91.76± 0.02

Ours w./o. Hierarchical

Attention Mechanism

92.45± 0.03 90.01± 0.03 89.23± 0.02 93.45± 0.03 93.67± 0.02 91.45± 0.02 90.56± 0.03 92.87± 0.02

Ours w./o. Domain-Aware

Regularization

93.12± 0.03 90.87± 0.02 89.90± 0.03 94.01± 0.02 94.89± 0.03 92.34± 0.02 91.12± 0.02 93.54± 0.03

Ours 93.74 ± 0.02 91.56 ± 0.02 90.82 ± 0.03 94.32 ± 0.03 95.22 ± 0.02 93.84 ± 0.03 92.45 ± 0.03 94.76 ± 0.02

The values in bold are the best values.

TABLE 9 Ablation study results on OpenNeuro Dataset and MyBrain Dataset.

Model OpenNeuro Dataset MyBrain Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

Ours w./o. Latent

Representation Learning

91.56± 0.02 89.45± 0.03 88.34± 0.02 90.89± 0.03 92.45± 0.02 89.67± 0.03 88.01± 0.02 90.67± 0.02

Ours w./o. Hierarchical

Attention Mechanism

92.34± 0.03 90.23± 0.02 89.12± 0.03 92.45± 0.02 93.45± 0.02 91.12± 0.02 89.78± 0.03 92.12± 0.03

Ours w./o. Domain-Aware

Regularization

93.12± 0.02 91.01± 0.03 90.23± 0.02 93.87± 0.03 94.56± 0.03 92.34± 0.02 91.45± 0.03 93.23± 0.02

Ours 93.78 ± 0.03 91.56 ± 0.03 90.45 ± 0.02 94.12 ± 0.03 95.12 ± 0.02 93.78 ± 0.03 92.34 ± 0.03 94.89 ± 0.02

The values in bold are the best values.
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FIGURE 7

Ablation study of our method on EEG motor movement dataset and CAMCAN Dataset datasets.

FIGURE 8

Ablation study of our method on OpenNeuro Dataset and MyBrain Dataset datasets.

performance, with the complete model achieving the best results

across all metrics.

On the CAMCAN Dataset, a similar trend was observed. The

removal of Latent Representation Learning reduced the accuracy

from 95.22% to 92.56%, while removing Hierarchical Attention

Mechanism led to a drop to 93.67%. This dataset also demonstrated

that Latent Representation Learning is essential for handling

multimodal data variability, and its absence significantly impacted

the model’s ability to generalize. Domain-Aware Regularization’s

removal had less pronounced effects but still showed a reduction

in F1 score and AUC, indicating its relevance for optimizing

finer-grained predictions. On the OpenNeuro Dataset, the

complete model (“Ours”) achieved the highest performance

across all metrics, with an accuracy of 93.78%. Removing Latent
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Representation Learning led to the largest drop in performance,

particularly in recall and AUC, demonstrating its importance in

functional connectivity feature extraction. Removing Hierarchical

Attention Mechanism resulted in reduced performance as well,

with accuracy dropping to 92.34%. Domain-Aware Regularization

again showed a relatively smaller impact but remained an essential

contributor to the final accuracy and F1 score.

The MyBrain Dataset exhibited the highest dependency on

all components, with the complete model achieving 95.12%

accuracy and an AUC of 94.89%. Latent Representation Learning’s

removal led to a significant decline in performance, followed

by Hierarchical Attention Mechanism, while Domain-Aware

Regularization had a lesser but still measurable impact. The

personalized design of this dataset amplifies the significance

of every model component, demonstrating their interplay in

achieving state-of-the-art performance. The ablation results clearly

demonstrate the critical role of each component in the model’s

architecture. The complete model consistently outperforms its

ablated versions across all datasets in Figures 7, 8. The analysis

highlights the necessity of each architectural element in achieving

robust and accurate predictions for both EEG and multimodal

neuroimaging datasets.

5 Conclusions and future work

This study explores the cognitive phenotypes of elite athletes

to deepen our understanding of the neurological traits that

enable high-performance behaviors. To tackle the complexity

of these cognitive traits, the study introduces the Latent

Cognitive Embedding Network (LCEN), a novel framework

that leverages neuroinformatics and systems neuroscience

methodologies. Traditional methods often struggle with isolating

latent factors influencing cognitive variability or maintaining

data interpretability. LCEN addresses these issues by integrating

biologically inspired constraints and advanced neural architectures.

It employs a specialized embedding mechanism for disentangling

latent factors and utilizes domain-specific priors and regularization

techniques for optimized learning. Experimental results show that

LCEN outperforms conventional approaches in both prediction

and interpretability, providing valuable insights into the neural

mechanisms behind elite cognitive performance. The framework

bridges computational modeling, neuroscience, and psychology,

offering a more robust understanding of the cognitive variability

characteristic of elite athletes.

Despite its contributions, the study has two notable limitations.

While LCEN improves interpretability, the incorporation

of domain-specific priors may inadvertently introduce bias,

potentially affecting generalizability to non-athlete populations

or other specialized groups. Future work could explore broader,

less constrained priors to enhance the model’s adaptability. The

datasets used in this study, although diverse, may not fully capture

the ecological complexity of real-world cognitive tasks performed

by athletes. To address this, future research could incorporate

more ecologically valid datasets, such as real-time cognitive

measurements during athletic performance. By addressing these

limitations, the proposed framework could evolve into a more

universally applicable tool for studying cognitive phenotypes

across diverse populations.
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