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Introduction: Motor imagery electroencephalographic (MI-EEG) signal 
recognition is used in various brain–computer interface (BCI) systems. In most 
existing BCI systems, this identification relies on classification algorithms. 
However, generally, a large amount of subject-specific labeled training data is 
required to reliably calibrate the classification algorithm for each new subject. To 
address this challenge, an effective strategy is to integrate transfer learning into 
the construction of intelligent models, allowing knowledge to be transferred 
from the source domain to enhance the performance of models trained in 
the target domain. Although transfer learning has been implemented in EEG 
signal recognition, many existing methods are designed specifically for certain 
intelligent models, limiting their application and generalization.

Methods: To broaden application and generalization, an extended-LSR-based 
inductive transfer learning method is proposed to facilitate transfer learning 
across various classical intelligent models, including neural networks, Takagi-
SugenoKang (TSK) fuzzy systems, and kernel methods.

Results and discussion: The proposed method not only promotes the transfer of 
valuable knowledge from the source domain to improve learning performance 
in the target domain when target domain training data are insufficient but also 
enhances application and generalization by incorporating multiple classic base 
models. The experimental results demonstrate the effectiveness of the proposed 
method in MI-EEG signal recognition.
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1 Introduction

A brain–computer interface (BCI) is a technology that establishes connections between 
the brain and external devices, facilitating information exchange between them (Edelman 
et al., 2024). BCIs collect and analyze electrical signals generated by brain activity, transforming 
these signals into instructions that can be used to control external devices such as computers, 
prosthetics, and wheelchairs. As such, BCIs can assist, enhance, and repair human sensory and 
motor functions, improving human–computer interaction capabilities. BCIs do not rely on 
the peripheral nervous system or muscles, providing a new method for people who have lost 
their mobility due to illness or disability to communicate with the external environment and 
operate devices. BCIs not only open new possibilities for people with disabilities but also 
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advance our understanding of the brain, ushering in a new era of 
human–computer interaction.

1.1 Motivation

Motor imagery electroencephalographic (MI-EEG) (Mohammadi 
et al., 2022) signal recognition is an important mechanism for brain-
computer interfaces (BCIs). Moreover, with the advancement of machine 
learning, numerous classification methods based on machine learning 
have been proposed for MI-EEG signal recognition in the literature 
(Abbas et al., 2021; Ko et al., 2021; Zhang et al., 2024; Ghumman et al., 
2021; Cover and Hart, 1967; Aldea et al., 2014; Kohavi, 1996; Wang and 
Zhang, 2016; Fisher, 1936; Li et al., 2022; Bennett and Demiriz, 1999; 
Fouad et al., 2020; Siddiqa et al., 2024; Siddiqa et al., 2023; Qureshi et al., 
2022; Qureshi et al., 2023), including neural networks (NNs) (Abbas 
et al., 2021; Ko et al., 2021), fuzzy logic systems (FLSs) (Zhang et al., 2024; 
Ghumman et al., 2021), k-nearest neighbors (kNNs) (Cover and Hart, 
1967; Aldea et al., 2014), naïve Bayes (NB) (Kohavi, 1996; Wang and 
Zhang, 2016), linear discriminant analysis (LDA) (Fisher, 1936; Li et al., 

2022), support vector machines (SVMs) (Bennett and Demiriz, 1999; 
Fouad et  al., 2020), and more. Although these methods have 
demonstrated varying degrees of success, they typically require a large 
amount of subject-specific training data to adjust their parameters. 
However, this data acquisition process can be time-consuming and not 
user-friendly. When calibration data is insufficient, the classification 
performance of these algorithms can significantly deteriorate. As 
highlighted in BCI Competition III (Blankertz et al., 2006), “a challenge 
is that more expectations of training a model with a good classification 
accuracy are becoming urgent in the case that only a small number of 
training samples are available.” Therefore, it is essential to develop 
advanced machine-learning methods for MI-EEG that perform 
effectively with small calibration datasets.

Transfer learning is a promising method for addressing the above 
problem. It can be used to transfer useful information from related scenes 
(i.e., source domains) to the current scene (i.e., target domain), which 
typically has limited training data (Pan and Yang, 2010). As a result, 
transfer learning is particularly effective in improving classification 
performance during the early stages of model training when there is not 
enough subject-specific training data. Figure 1 shows the differences 

FIGURE 1

Differences between traditional machine learning (a) and transfer learning (b).
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between traditional machine learning and transfer learning. Since its 
introduction in 1995, transfer learning has been successfully applied in 
classification, clustering, and regression, with classification being the most 
extensively researched area. Some representative studies can be found in 
Zhang et al. (2022), Jiang et al. (2019), Xie et al. (2018), Pan et al. (2011), 
Wan et al. (2021), Li et al., 2019). Existing transfer learning methods can 
be  categorized into three types: inductive transfer learning methods 
(Zhang et al., 2022; Jiang et al., 2019), which consider both supervised 
source and target domains; transductive transfer learning methods (Xie 
et al., 2018; Pan et al., 2011), which involve supervised source domains 
and unsupervised target domains; and unsupervised transfer learning 
methods, which account for both unsupervised source and target 
domains (Wan et al., 2021; Li et al., 2019). In MI-EEG signal recognition, 
when labeled MI-EEG samples in the target domain are insufficient, 
inductive transfer learning methods naturally become the preferred 
choice. Furthermore, since MI-EEG signals involve personal privacy 
information, inspired by Jiang et al. (2019), we investigate a knowledge-
based inductive transfer learning method to ensure security without 
directly utilizing samples from the source domain.

Inductive transfer learning has recently attracted widespread 
attention and demonstrated strong performance in MI-EEG signal 
recognition. However, most existing inductive transfer learning 
methods are tailored to specific base models, rendering them 
inapplicable to other base models. As a result, they demonstrate poor 
performance in terms of application and generalization. To address 
this limitation, we propose an extended-LSR-based inductive transfer 
learning framework (ELSR-TL) that integrates neural networks, 
Takagi-Sugeno-Kang (TSK) fuzzy systems, and kernel methods. 
Figure 2 shows the framework of ELSR-TL.

1.2 Contributions

The main contributions of this study can be highlighted as follows:

 1 ELSR-TL has an inductive transfer learning mechanism that can 
be used to transfer useful knowledge from the source domain 
to enhance learning performance in the target domain when the 
training data in the target domain are insufficient.

 2 ELSR-TL enhances LSR by integrating multiple classic base 
models, such as neural networks, TSK fuzzy systems, and 
kernel methods. As such, ELSR-TL is not only suited for a 
specific model but also demonstrates improved applicability 
and generalization.

 3 Experimental studies were conducted to validate the 
applicability of the proposed method for MI-EEG 
signal identification.

The remainder of this paper is organized as follows: Section II 
describes related work, including studies on existing MI-EEG feature 
extraction and pattern recognition methods. Section III details the 
proposed extended-LSR-based inductive transfer learning method. 
Section IV provides the experimental results and analysis. Finally, 
Section VI presents the conclusions drawn.

2 Backgrounds

This section states the backgrounds underlying the proposed 
MI-EEG recognition method. It describes the datasets used to evaluate 

FIGURE 2

Framework of ELSR-TL.
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the method and reviews several classical feature extraction and pattern 
recognition methods.

2.1 Datasets

We used BCI Competition Data Set IVa, provided by Fraunhofer 
FIRST and Charité University Medicine Berlin. A detailed description 
of this dataset can be found in (Blankertz et al., 2006).

This MI-EEG dataset contains five subsets corresponding to 
five healthy testers (aa, al, av., aw, and ay). Each subset contains 
280 EEG trials, which have 128 electrodes and a trial length of 
3.5 s. Each subset was partitioned into a training set and a test 
set, as shown in Figure  3. Figure  4 shows the representative 
MI-EEG signals in the five subsets.

2.2 Feature extraction methods

EEG signals are complex, nonlinear, and non-stationary. Effective 
feature extraction is critical to pattern recognition performance. Some 
of the most representative feature extraction methods have been 
proposed to manage raw MI-EEG signals. Typically, feature extraction 
methods can be classified into four main categories: time-domain 
analysis, frequency-domain analysis, time-frequency analysis, and 
space-domain analysis.

In time domain analysis, EEG signal features are analyzed in the 
time domain. Characteristics of the waveforms, such as mean, 
variance, amplitude, and kurtosis, can be used to extract features of 
MI-EEG signals (Greene et al., 2008).

In frequency domain analysis, the features of EEG signals are 
analyzed by investigating the relationship between their frequency and 
energy. The short-time Fourier transform (Schafer and Rabiner, 1973) 
is a classical power spectrum analysis method, and adaptive 
autoregression (Pfurtscheller et al., 1998) is an improved frequency 
domain analysis method.

In time-frequency analysis (Blanco et al., 1997), the features of 
EEG signals are extracted using the joint distribution information of 

the time and frequency domains. Wavelet transform analysis 
(Antonini et  al., 1992) is the most representative method in 
this category.

In space-domain analysis, the features of EEG signals are 
extracted by analyzing the electrical activity of neurons in 
different brain spaces. Common spatial pattern (CSP) (Lotte and 
Guan, 2011) is a commonly used method in this category. In this 
method, labeled trials are used to produce a transformation that 
maximizes the variance of one class while minimizing the 
variance of the other.

2.3 Pattern recognition methods

Pattern recognition utilizes the extracted EEG features for 
classification. Some of the most representative pattern 
recognition methods include the following: (1) NNs (Abbas et al., 
2021; Ko et  al., 2021), which simulate the mechanism of the 
human nervous system. Feedforward NNs are the most commonly 
used in EEG classification. (2) FLSs (Zhang et  al., 2024; 
Ghumman et  al., 2021), which emulate the human reasoning 
process and excel at managing numerical and linguistic 
uncertainties. (3) kNNs (Cover and Hart, 1967; Aldea et  al., 
2014), which determine the class of a new sample by considering 
its k nearest neighbors. (4) NB (Kohavi, 1996; Wang and Zhang, 
2016), a simple and efficient classification algorithm based on 
probability. By utilizing known conditional probability and a 
priori probability, NB calculates the posterior probability of each 
class and assigns the test sample to the class with the highest a 
posteriori probability. (5) LDA (Fisher, 1936; Li et  al., 2022), 
which applies the Fisher criterion to find the optimal projective 
vector that maximizes the largest scatter between classes while 
minimizing the scatter within each class. (6) SVMs (Bennett and 
Demiriz, 1999; Fouad et al., 2020), which aim to maximize the 
margins between different classes.

Although existing MI-EEG classification methods have 
demonstrated their effectiveness in various applications, they all 
require a substantial amount of subject-specific training data. In 
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FIGURE 4

Representative MI-EEG signals for each subset of the BCI 
Competition Data Set IVa.

FIGURE 3

Distribution of each subset from the BCI Competition Data Set IVa.
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practice, such training data may not be  easy to obtain, and the 
classification accuracy of existing methods may drop significantly. To 
address this challenge, we use an inductive transfer learning-based 
MI-EEG classification method.

3 Extended-LSR-based inductive 
transfer learning

In this section, we  provide a detailed description of the 
proposed extended-LSR-based inductive transfer learning (ELSR-
TL) method. First, we extend LSR (Naseem et al., 2010) to its 
extended version, ELSR, by merging neural networks, TSK fuzzy 
systems, and kernel methods. Then, we develop the proposed 
ELSR-TL. Finally, we  present the learning algorithm and 
theoretical analysis of ELSR-TL.

3.1 ELSR

3.1.1 Objective function of ELSR
ELSR is an extension of the basic LSR (Naseem et al., 2010). Given 

n d-dimensional samples ( ){ } =1
, N
i i i
yx , where ∈d

ix , { }∈ − +1; 1iy , the 
objective function of ELSR can be expressed as follows:
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where the matrix ( ) ( ) ρ
ρ ρ ρ × = ∈  1 , ,

T N d
NX x x  denotes all 

the given training samples, and ( ) ρρ ∈dx is the hidden mapping 
function in the hidden mapping space. w represents the mapping 
matrix, λ is the given regularization parameter, and y is the 
corresponding label matrix.

The decision-making function of ELSR can be  expressed 
as follows:

 ( ) ( )ρ= = Ty f x x w  (2)

Using different mapping functions ( )ρ x , we  can integrate 
multiple models, such as neural networks, TSK fuzzy systems, and 
kernel methods, into the proposed ELSR framework. In other words, 
ELSR can be developed for different base models, which improves its 
generalization and adaptability. We will describe its relationships with 
several base models next.

3.1.1.1 The relationship between ELSR and feedforward 
NNs

A multiple hidden layer feedforward network (MHFN) has 
an input layer, M hidden layers, and an output layer. The multiple 
hidden layers can be treated as a single complex hidden layer, 
allowing the overall activation function of these hidden layers to 
be  represented by a single complex function. Therefore, an 
MHFN can be  viewed as a generalized single hidden layer 
feedforward network (SHFN) with a more complex activation 

function. The output of a generalized SHFN can be expressed 
as follows:
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where MN  is the number of nodes in the last hidden layer of 
an MHFN. As demonstrated in Huang et  al. (2006), if the 
activation function ( )θ,i ig x  is piecewise continuous, then the 
hidden nodes can be randomly generated independently of the 
training data, and the corresponding NN still maintains its 
universal approximation capability. Let the hidden mapping 
function ( )ρ x  as Equation 4:

 
( ) ( ) ( )ρ θ θ =  1 1, , , ,

M M

T
N Ng gx x x

 (4)

Then, Equation 3 can be expressed as follows:

 ( ) ( )ρ= = Ty f x x w
 (5)

Comparing Equation 5 with Equation 2, we  can see that 
Equation 5 is a special case of Equation 2, so Equation 1 can be used 
to optimize the corresponding MHFN.

3.1.1.2 The relationship between ELSR and TSK fuzzy 
systems

The Takagi–Sugeno–Kang fuzzy system (Gu et  al., 2024; Bian 
et al., 2024) is the most widely used FLS due to its simplicity and 
flexibility. The rules in a TSK fuzzy system are typically represented as 
Equation 6:

TSK Fuzzy Rule kR :
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Then 1, ,

k k k
d d

k k k k
dd

x A x A x A

f p p x p x k Kx  
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Here, k
iA  is a fuzzy set for the ith input variable in the kth 

rule, K is the number of fuzzy rules, and ∧  is a fuzzy conjunction 
operator. The output of the TSK fuzzy system is computed as 
Equation 7:
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where ( )µk x  is the firing level of Rule kR , and ( )µ
˜ k

x  is the 
normalized ( )µk x , i.e., Equation 8:
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The parameters of the antecedent fuzzy sets are usually 
derived from clustering. The output of the TSK fuzzy system can 
subsequently be expressed as as Equations 9, 10:

 ( ) ( )ρ= = Ty f x x w
 (9)

where
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Equation 9 suggests that training the TSK fuzzy system can also 
be treated as a special case of ELSR, and thus, it can be addressed 
using Equation 1.

3.1.1.3 The relationship between ELSR and kernel 
methods

A kernel linear regression model is expressed as follows:

 ( )ρ= Ty x w
 (11)

The hidden mapping ( )ρ x  can be viewed as a kernel function; 
thus, Equation 11 can also be solved using Equation 1. In this case, 
ELSR also corresponds to the classical kernel ridge regression 
(Saunders et al., 1998).

3.1.2 Solution of ELSR
Depending on the condition of the hidden mapping, the objective 

function of ELSR in Equation 1 can be efficiently solved in various 
ways ( )ρ x . Here, we discuss the different cases as follows:

Case 1: ( )ρ x is known: In this case, we can obtain explicit values 
of the data ( )ρ x  in the hidden mapping space.

Let ( ) ρ
λ

= − +
2 21

min
2 2

J
w

w X w y w ; according to the 

optimization theory (Qu et al., 2023a; Qu et al., 2023b), the solution 
for the model parameter w  can then be  obtained by taking the 
derivatives of Equation 1 and equating them to zero. That is,
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(12)

The final decision function ( )f x  can then be  expressed as 
Equation 13:

 ( ) ( )ρ= = Ty f x x w  (13)

with w obtained in Equation 12.
Case 2: ( )ρ x  is unknown: In this case, the explicit formulation of the 

data ( )ρ x  in the hidden mapping space cannot be obtained, meaning 
that w cannot be  specified explicitly. Therefore, the kernel trick is 
necessary to determine the final decision function ( )f x . Although 
introducing the kernel trick into the solution strategy in Equation 12 is 
challenging, Equation 14, identity can be adopted to address this issue:

 ( ) ( )− −− − −+ = +
1 11 1 1T T T TP Q U Q Q U PQ QPQ U

 
(14)

In Equation 14, P, Q, and U are three matrices. Let 
ρλ

=
1

dP I , 
ρ=Q X , and = NU I . With the identity of Equation 14, the solution in 

Equation 12 can then be expressed as follows:

 ( ) ( )ρρ ρ ρ ρ ρ ρλ λ
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(15)

Define a Mercer kernel matrix as Equation 16:

 ρ ρ
×Ω = ∈ ,T N NX X 

 (16)

where ( ) ( ) ( )ρ ρΩ = =, ,T
i j i j i jKx x x x , and ( )·K  is a 

kernel function.
The final decision function ( )f x  can then be expressed as follows:
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3.2 ELSR-TL

3.2.1 Objective function of ELSR-TL
ELSR-TL integrates transfer learning and ELSR. Its objective 

function can be expressed as follows:

 
ρ

λ β
− + + −

2 2 2
,

1min
2 2 2t

t t t stw
X w y w w w

 
(18)

where ρ
ρ

×∈,
tN d

tX  represents tN  training samples of ρd  

dimensions in the target domain. tw  and sw  represent the mapping 
matrices of the target domain and source domain, respectively. λ and 
β  are the given regularization parameters, and y is the corresponding 
label matrix of the target domain.

In Equation 18, the first two terms are inherited directly from 
ELSR for learning from the target domain data, while the third term 
is used to leverage knowledge from the source domain. In other 
words, ELSR-TL generalizes ELSR from the perspective of 
transfer learning.

Moreover, as a regularization parameter, β  can be used to adjust 
the role of transfer learning. When β  is large, it indicates that transfer 
learning has a significant impact, indicating that the knowledge 
obtained from the source domain has a significant positive effect on 
the target domain. In contrast, when β  is very small, it indicates that 
its role in learning of the target domain is relatively small. In extreme 
cases, when β = 0, it means that β  has no effect on the learning of the 
target domain. In other words, we can control the effectiveness of 
transfer learning by making adjustments, thus effectively avoiding 
negative transfer.

3.2.2 Solution of ELSR-TL
ELSR-TL is solved differently in different scenarios:
Case 1: ( )ρ x is known: In this case, we can obtain explicit values 

of the data ( )ρ x  in the hidden mapping space. The solution for the 
model parameter tw  can then be obtained in a similar form as that 
shown in Equation 12, that is
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(19)

The final output of the proposed ELSR-TL is expressed 
as follows:

 ( ) ( )ρ= = T
ty f x x w  (20)

with tw  obtained in Equation 19.
Case 2: ( )ρ x  is unknown: In this case, the explicit formulation of 

the data ( )ρ x  in the hidden mapping space cannot be obtained, and 
thus, tw  cannot be specified explicitly. Similar to the form shown in 
Equation 17, the output of the proposed ELSR-TL can be calculated 

using the kernel trick. From Equation 15, we  know that sw  can 
be expressed as Equation 21:

 
( )ρ ρ ρ λ

−
= +

1
, , , s

T T
s s s s s N sw X X X I y

 
(21)

Here, sw  is the parameter of ELSR in the source domain. For a 
similar scenario, let

 
( )ρ ρα λ

−
= +

1
, , s

T
s s s s N sX X I y

 
(22)

A Mercer kernel matrix is defined, and Equation 22 can then 
be re-expressed as Equation 23:

 ( )α λ −
= Ω +

1
ss s s N sI y

 (23)

where ( )ρ ρ ×
 Ω = =  , , , ,,

s s

T
s s s i s j s N N

KX X x x , in which 
( ), ,,i s j sK x x is the kernel function.

sw  can then be written as follows:

 ρ α= ,
T

s s sw X
 (24)

From Equation 19, we obtain the following:
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λ β
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λ β
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(25)

Substituting Equation 24 into Equation 25 and defining a Mercer 
kernel matrix, the equation above can then be rewritten as follows:
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 (26)

where ( )ρ ρ ×
 Ω = =  , , , ,,

t t

T
t t t i t j t N N

KX X x x ,  

( )ρ ρ ×
 Ω = =  , , , , ,,

t s

T
t s t s i t j s N N

KX X x x

Finally, by using tw  obtained in Equation 26, the decision function 
of the proposed ELSR-TL can be expressed as follows:
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 (27)

3.3 Learning algorithm of ELSR-TL

Considering the above discussion, we summarize the learning 
algorithm of ELSR-TL in Algorithm 1. Below, we  provide some 
remarks on ELSR-TL.

3.3.1 Remark 1
For the proposed ELSR-TL, if the hidden mapping is known and 

the amount of training data exceeds the dimensionality of the hidden 
mapping features (i.e., ( ρ ,t tN d ), obtaining the solution using 
Equation 25 is more efficient than that using Equation 19, due to the 
computational complexity of matrix; otherwise, Equation 19 is 
more efficient.

3.3.2 Remark 2
When the hidden mapping is known, only the knowledge sw  is used 

for transfer learning, and the data in the source domain are not required. 
This means that the proposed method provides good privacy protection. 
However, if the hidden feature mapping is unknown, the data in the 
source are also required, as shown in Equations 26, 27, to effectively 
implement transfer learning. In this case, the proposed method can no 
longer protect the privacy of the data in the source domain.

3.3.3 Computational Complexity
In this section, we discussed the computational complexity of 

Algorithm 1 as follows:

When the hidden mapping is known, the complexity of computing 
step  1 is about ( )ρ ρ+3 2

, ,s s sO d d N , where ρ ,sd is the dimension of 
samples and sN is the number of samples in the source domain. The 
complexity of computing the target domain model parameters tw  in 
step  2 is about ( )ρ ρ+3 2

, ,t t tO d d N , where ρ ,td is the dimension of 
samples and tN is the number of samples in the target domain. In this 
case, the computational complexity of Algorithm 1 is about 
( )ρ ρ ρ ρ+ + +3 2 3 2

, , , ,s s s t t tO d d N d d N . When the hidden mapping is 
unknown, the computational complexity of Algorithm 1 is 
about ( )+3 3

s tO N N .

4 Experiments

In this section, we adopted a real MI-EEG dataset to evaluate 
the performance of the proposed ELSR-TL method. Moreover, 
we compared it with seven non-transfer learning methods—LSR 
(Naseem et  al., 2010), KNN (Cover and Hart, 1967), SVM 
(Bennett and Demiriz, 1999), NB (Kohavi, 1996), CNN (Zhang 
et al., 2019), ELSR (NN), ELSR (TSK), and ELSR (Ker)—alongside 
two transfer learning methods—Au-SVM (Wu and Dietterich, 
2004) and Tr-Adaboost (Dai et al., 2007). The comparison was 
conducted in terms of both average classification accuracy and 
standard deviation for 10 runs. The details of the experimental 
settings and the MI-EEG recognition results are provided 
as follows.

ALGORITHM 1

The ELSR-TL.

https://doi.org/10.3389/fninf.2025.1559335
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Jiang et al. 10.3389/fninf.2025.1559335

Frontiers in Neuroinformatics 09 frontiersin.org

4.1 Data preparation and feature extraction

4.1.1 Configurations of source and target 
domains

To match the transfer learning task, we  constructed 20 
different transfer learning datasets by subject-to-subject 
transferring. Table  1 shows the 20 different configurations of 
source and target domains. All source domains have the same 
number of training data, but the target domains do not. Please 
note that in our experiments, non-transfer learning methods are 
only used on the target domain.

4.1.2 Feature extraction
As mentioned in the background section, effective feature 

extraction is critical to pattern recognition performance. Based on 
(Lotte and Guan, 2011), we primarily used the Tikhonov regularization-
based common spatial pattern (TR-CSP) (Lotte and Guan, 2011) for 
feature extraction. Furthermore, we conducted simple experiments 
using two other feature extraction methods, namely Composite CSP 
(C-CSP) and Filter Bank CSP (FB-CSP), to compare with TR-CSP. The 
three feature extraction methods are briefly introduced as follows:

 1 TR-CSP: It introduces a quadratic regularization into the CSP 
objective function and replaces the feature matrix of the new 
data with the prior knowledge matrix. This regularization 
prefers filters with smaller norms, reducing the influence 
of noise.

 2 C-CSP: It aims to perform subject-to-subject transfer by 
regularizing the covariance matrices using data from other 
subjects. Within the framework of this study, it relies only on 
theβhyperparameter and defines the generic covariance 
matrices according to the covariance matrices of other subjects.

FB-CSP: This is a feature extraction method used for motor 
imagery classification in BCI. It improves the accuracy of motion 
imagery classification by combining CSP and filter bank techniques, 
optimizing the subject-specific frequency band for CSP.

We extracted features from the time segment between 0.5 and 
2.5 s after the cue instructing the subject to perform MI. Each trial is 
bandpass filtered in the 8–30 Hz range using a fifth-order Butterworth 
filter. For TR-CSP, we applied three pairs of filters, as recommended 
in (Lotte and Guan, 2011). Some examples of features extracted from 
subset aa are shown in Figure 5.

4.2 Adopted methods and parameters 
settings

All the adopted methods (without CNN) are listed in Table 2. 
Based on the guidelines in (Jiang et al., 2019; Xie et al., 2018; Zhang 
X. et al., 2023) and our experiments, we employ a grid search strategy 
to identify the appropriate parameters for all the adopted methods. 
Table 2 also includes a list of the grid search ranges for each parameter 
related to all the adopted methods.

4.3 Performance indices

The classification accuracy defined Equation 28 is used to evaluate 
the performances of different methods:

 

( )
( )

+
=

+ + +

TP TN
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TP TN FP FN  
(28)
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FIGURE 5

Features extracted from subset aa by TR-CSP.

TABLE 1 Settings of the source domain and target domain.

Source domain Target domain

Datasets Size Datasets
Size

Training Test

al 280 aa

168 112
av 280 aa

aw 280 aa

ay 280 aa

aa 280 al

224 56
av 280 al

aw 280 al

ay 280 al

aa 280 av

86 196
al 280 av

aw 280 av

ay 280 av

aa 280 aw

56 224
al 280 aw

av 280 aw

ay 280 aw

aa 280 ay

28 252
al 280 ay

av 280 ay

aw 280 ay
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4.4 Results and discussions

In all the experiments, each comparison method is implemented 
for 10 runs to report the average classification performance. The 
experimental results are shown in Tables 3, 4 and Figure 6. Please note 
that the feature extraction method used for these results is 
TR-CSP. We can make the following observations:

 i In general, the performance of the proposed ELSR-TL-based 
methods significantly surpasses that of the other methods 
used, whether they are non-transfer learning methods such as 
LSR, kNN, SVM, NB, CNN, and ELSR-based methods, or 
transfer learning methods such as Au-SVM and Tr-Adaboost. 
This provides experimental evidence that ELSR-TL effectively 

enhances MI-EEG recognition through knowledge transfer 
from the source domain to the target domain.

 ii Comparing the performances of the seven non-transfer learning 
methods, we can see that the performance of ELSR (TSK) is the best, 
while the performance of NB is inferior. Moreover, each method 
obtains significant performance differences on different datasets. 
Specifically, seven non-transfer learning methods obtain the best 
performance on dataset al but poor performance on datasets aw and 
ay. This is because these methods require a large amount of training 
samples to achieve satisfactory performance, while their 
performance decreases when there are few training samples.

 iii Table 4 shows the performances of five transfer learning methods, 
showing that ELSR-TL (TSK) performs the best while Tr-Adaboost 
performs the worst. Furthermore, each method achieves similar 

TABLE 2 The parameter setting of different methods.

Methods Parameter settings for grid search

LSR (Naseem et al., 2010): Learns a linear regression model by using 

each class of training samples with the 2-norm regularization. The regularization parameter { }10 ,10 , ,10 ,106 5 5 6λ∈ …− −

kNN (Cover and Hart, 1967): A classical supervised learning model 

and has been widely used for classification and regression analysis.
The number of nearest points: { }1,3,5,7,9k∈ .

SVM (Bennett and Demiriz, 1999): A classical classification method 

based on kernel trick and margin maximization.
The tradeoff parameter { }2 ,2 , ,2 ,2 , ,2 ,26 5 0 1 5 6C∈ − −

  ; the width in the Gaussian kernel 

function { }2 ,2 , ,2 ,2 , ,2 ,26 5 0 1 5 6σ ∈ − −
 

NB (Kohavi, 1996): A classification method based on Bayes’ theorem 

and independent assumption of feature conditions. The tradeoff parameter { }10 ,10 ,10 ,10 ,10 ,105 4 3 2 1 0α ∈ − − − − −

ELSR (NN): Applying the proposed ELSR for signal layer neural 

networks.

The number of hidden nodes { }10,20,30,40,50,75,100,150,200P∈ , the parameters of the 

sigmoid function: { }2 ,2 , ,2 ,2 , ,2 ,26 5 0 1 5 6κ ∈ − −
  , and the regularization parameters: 

{ }10 ,10 , ,10 ,106 5 5 6λ∈ …− −

ELSR (TSK): Applying the proposed ELSR for TSK. The number of fuzzy rules: { }5,10,15,20,25,30,40,50,80,100M ∈ ; the regularization parameter: 

{ }10 ,10 , ,10 ,106 5 5 6τ ∈ …− −
, the regularization parameters: { }10 ,10 , ,10 ,106 5 5 6λ∈ …− −

.

ELSR (Ker): Applying the proposed ELSR for the kernel method. The width in the Gaussian kernel function { }2 ,2 , ,2 ,2 , ,2 ,26 5 0 1 5 6σ ∈ − −
   and the 

regularization parameters: { }10 ,10 , ,10 ,106 5 5 6λ∈ …− −
.

Au-SVM (Wu and Dietterich, 2004): an inductive transfer learning 

method based on the linear programming support vector machine 

with the RBF-type kernel function by using the auxiliary data.
The tradeoff parameter { }2 ,2 , ,2 ,2 , ,2 ,26 5 0 1 5 6C∈ − −

  ; the width in RBF kernel function 

{ }2 ,2 , ,2 ,2 , ,2 ,26 5 0 1 5 6σ ∈ − −
 

Tr-Adaboost (Dai et al., 2007): an inductive transfer learning method 

based on the LS-SVM learner with the RBF-type kernel function for 

classification.
The tradeoff parameter { }2 ,2 , ,2 ,2 , ,2 ,26 5 0 1 5 6C∈ − −

  ; the width in RBF kernel function 

{ }2 ,2 , ,2 ,2 , ,2 ,26 5 0 1 5 6σ ∈ − −
 

ELSR-TL (NN): Applying the proposed method for transfer learning 

of signal layer neural networks.

The number of the hidden nodes: { }10,20,30,40,50,75,100,150,200P∈ , the parameters of 

sigmoid function: { }2 ,2 , ,2 ,2 , ,2 ,26 5 0 1 5 6κ ∈ − −
  , the regularization parameters: 

{ }10 ,10 , ,10 ,106 5 5 6λ∈ …− −
, { }10 ,10 , ,10 ,106 5 5 6λ∈ …− −

.

ELSR-TL (TSK): Applying the proposed method for transfer learning 

of TSK.

The number of fuzzy rules: { }5,10,15,20,25,30,40,50,80,100M ∈ ;

the regularization parameters: { }10 ,10 , ,10 ,106 5 5 6τ ∈ …− −
, { }10 ,10 , ,10 ,106 5 5 6λ∈ …− −

, 

{ }10 ,10 , ,10 ,106 5 5 6λ∈ …− −
.

ELSR-TL (Ker): Applying the proposed method for transfer learning of 

the kernel method. The width in the Gaussian kernel function { }2 ,2 , ,2 ,2 , ,2 ,26 5 0 1 5 6σ ∈ − −
  , the regularization 

parameters: { }10 ,10 , ,10 ,106 5 5 6λ∈ …− −
, { }10 ,10 , ,10 ,106 5 5 6λ∈ …− −

.
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performances for each target subject, regardless of the auxiliary 
subject chosen as the source domain. Additionally, for a fixed 
configuration of the source and target domains, the three ELSR-
TL-based methods yield similar classification accuracies.

 iv Comparing the performances of transfer learning methods (i.e., 
Au-SVM and ELSR-TL-based methods) with their corresponding 

non-transfer learning methods (i.e., SVM and ELSR-based 
methods), we  can see that the transfer learning methods 
outperform the others. Therefore, transfer learning strategies are 
effective for MI-EEG signal recognition. Impressively, even the 
least effective transfer learning methods still perform better than 
or are comparable to the non-transfer learning methods.

FIGURE 6

Classification accuracies of 13 different methods, where the accuracies of the transfer learning methods represent the average accuracies across four 
different source domains with a fixed target domain.

TABLE 3 Classification accuracies of the non-transfer learning method.

Datasets LSR kNN SVM NB CNN ELSR (NN) ELSR 
(TSK)

ELSR (Ker)

aa
0.6673

(0.0133)

0.5982

(0.0148)

0.6518

(0.0071)

0.6696

(0.0101)

0.6041

(0.0136)

0.6664

(0.0106)

0.6693

(0.0110)

0.6708

(0.0107)

al 1(0) 1(0)
0.9821

(0.0031)
1(0)

0.5450

(0.0029)
1(0) 1(0) 1(0)

av
0.5416

(0.0115)

0.5663

(0.0132)

0.5561

(0.0064)

0.5510

(0.0124)

0.5459

(0.0028)

0.5612

(0.0127)

0.5658

(0.0122)

0.5508

(0.0103)

aw
0.7122

(0.0139)

0.7277

(0.0129)

0.7143

(0.0158)

0.7009

(0.0125)

0.5556

(0.0072)

0.7188

(0.0103)

0.7366

(0.0109)

0.7054

(0.0128)

ay
0.7019

(0.0142)

0.7302

(0.0172)

0.7698

(0.0145)

0.5873

(0.0129)

0.5137

(0.0107)

0.7143

(0.0120)

0.7063

(0.0117)

0.7262

(0.0114)

Avg.Acc 0.7246 0.7245 0.7348 0.7018 0.5527 0.7321 0.7356 0.7306

Avg.Std 0.0106 0.0116 0.0094 0.0096 0.0074 0.0091 0.0092 0.0090

The best results are highlited in this table.

TABLE 4 Average accuracies of four different source domains for the transfer learning methods.

Target domain Au-SVM Tr-Adaboost ELSR-TL (NN) ELSR-TL (TSK) ELSR-TL (Ker)

aa 0.6583(0.0165) 0.6630(0.0242) 0.7320(0.0116) 0.7332(0.0108) 0.7352(0.0108)

al 1(0) 0.9955(0.0002) 1(0) 1(0) 1(0)

av 0.5725(0.0180) 0.5561(0.0146) 0.5840(0.0101) 0.5935(0.0114) 0.5887(0.0113)

aw 0.7359(0.0179) 0.7389(0.0117) 0.7939(0.0108) 0.7907(0.0117) 0.7929(0.0100)

ay 0.7838(0.0184) 0.7460(0.0173) 0.8277(0.0111) 0.8433(0.0110) 0.8380(0.0110)

Avg.Acc 0.7501 0.7399 0.7875 0.7921 0.7910

Avg.Std 0.0142 0.0136 0.0087 0.0090 0.0086

The best results are highlited in this table.
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 v When datasets aa, al, and av are used in the target domain, the 
performance improvements achieved by the ELSR-TL-based 
methods are not very significant. This is because the target 
domain contains sufficient data to train a good model; 
therefore, the knowledge from the source domain is not critical. 
However, when datasets aw and ay are used in the target 
domain, the ELSR-TL-based methods significantly outperform 
the other methods due to the limited training data available in 
the target domain.

 vi To visually compare the performances of all methods, Figure 6 
illustrates the performance of each method across all datasets for 
visual comparison. Please note that, for transfer learning methods, 
we  report the average performance of four different source 
domains with fixed target domains in Figure 6. For each dataset, 
the ELSR-TL-based methods achieve either the best accuracy or 
performance comparable to that of the other methods.

In summary, we  show that ELSR-TL-based methods can 
outperform other methods, especially when the number of training 
samples in the target domain is limited.

4.5 On different feature extraction

In this section, we  compare the effectiveness of three feature 
extraction methods. Figure 7 illustrates the classification results of 

these methods when using the same classification method. Specifically, 
we use ELSR-TL (TSK) as the classification method.

4.6 On running time

In this section, we  compared the average running times of all 
adopted methods (without CNN) over ten trials. Table 5 lists the average 
time (in seconds) for each method across all datasets. It is evident that 
LSR has the shortest computational time. However, among all transfer 
learning methods, the computational time of ELSR-TL (NN) is less than 
that of the other two transfer learning methods. Nevertheless, the 
running time of the proposed ELSR-TL is still not particularly small. 
Therefore, determining how to accelerate the proposed method for large-
scale data remains an open problem that we should explore in the future.

4.7 Statistical analysis

A nonparametric Friedman test (Zhang Y. et al., 2023) is used to 
validate whether the performance differences among different 
algorithms are statistically significant. This test uses the rankings of 
different algorithms in multiple comparisons. First, we calculate the 
sum ranking and average ranking of the accuracy of each algorithm 
(without CNN), as shown in Table 6, and find the best one. We then 
perform post hoc hypothesis testing.

FIGURE 7

Classification results of three feature extraction methods.

TABLE 5 Running time (Seconds) for all adopted methods on all datasets.

Datasets LSR kNN SVM NB ELSR(NN) ELSR(TSK) ELSR(Ker) Au-
SVM

Tr-
Adaboost

ELSR-
TL 

(NN)

ELSR-
TL 

(TSK)

ELSR-
TL 

(Ker)

aa 0.2715 0.3014 83.9542 0.3058 84.5401 85.0113 86.7844 823.7881 325.6131 269.3713 274.3649 298.0787

al 0.2646 0.3001 83.0776 0.3022 84.5932 84.9688 85.0619 819.3875 325.2478 269.0109 271.3828 293.1613

av 0.2503 0.2953 82.5644 0.2759 82.9663 83.6533 83.9803 818.7702 310.2496 260.4783 270.5006 289.3647

aw 0.2382 0.2922 82.1311 0.2801 80.6762 81.4226 82.2949 803.2313 298.1549 252.3586 266.1136 279.5312

ay 0.2344 0.2887 79.6846 0.2794 78.4760 78.6811 79.1756 801.4153 296.9221 249.3428 258.9078 268.5438
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The Friedman test statistics are as Equation 29:
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where iR  is the sum ranking of each algorithm, n is the number of 
algorithms, and kis the number of datasets.

From Table 6, we have = 26.25Q , and the corresponding p-value 
is 0.005964. This suggests that the performance differences among the 
12 methods are statistically significant, with ELSR-TL (TSK) 
performing the best. To further evaluate the performance differences 
between ELSR-TL (TSK) and the other 11 methods, we also conduct 
post hoc multiple comparison tests:

−
=

0 iR R
z

SE

 with ( )∗

∗

+
=

1

6

n n
SE

k

where z is subject to the standard normal distribution that will 
be used further to calculate the value of P.

Table  7 shows the post hoc comparison results for α = 0.05 
(Friedman). The null hypothesis is rejected when ≤ 0.00625p  because 
≤p Holm. In summary, we conclude that there are significant performance 

differences between ELSR-TL (TSK) and other methods, confirming that 
transfer learning is effective in boosting classification accuracy.

In addition, Figure  8 shows the specific differences between 
ELSR-TL (TSK) and other methods. Clearly, it is consistent with the 
above conclusion that there are significant performance differences 
between ELSR-TL (TSK) and the other methods.

4.8 Sensitivity analysis

We also conduct experiments to study the sensitivity of ELSR-TL to 
various parameters. Below, we use the AW dataset as an example of 
sensitivity analysis. Figure 9 illustrates how accuracy varies with different 
values of four parameters while the others remain fixed, based on the 
grid search detailed in section 4.2. Please note that, due to the limitations 
of this paper, we only use ELSR-TL (TSK) for the sensitivity analysis.

TABLE 6 Rankings of the 12 algorithms (Friedman test).

Algorithm aa al av aw ay Sum Ranking Average 
Ranking

LSR 7 5.5 12 10 11 45.5 9.1

kNN 12 5.5 5 7 7 36.5 7.3

SVM 11 12 8.5 9 5 45.5 9.1

NB 5 5.5 10 12 12 44.5 8.9

ELSR(NN) 8 5.5 7 8 9 37.5 7.5

ELSR(TSK) 6 5.5 6 5 10 32.5 6.5

ELSR(Ker) 4 5.5 11 11 8 39.5 7.9

Au-SVM 10 5.5 4 6 4 29.5 5.9

Tr-Adaboost 9 11 8.5 4 6 38.5 7.7

ELSR-TL(NN) 3 5.5 3 1 3 15.5 3.1

ELSR-TL(TSK) 2 5.5 1 3 1 12.5 2.5

ELSR-TL(Ker) 1 5.5 2 2 2 12.5 2.5

TABLE 7 The post-hoc comparison for α = 0.05 (Friedman).

i Algorithm z p Holm Hypothesis

11 LSR 2.894291 0.0038 0.004545 Reject

10 SVM 2.894291 0.0038 0.005 Reject

9 NB 2.806586 0.005007 0.005556 Reject

8 ELSR(Ker) 2.368057 0.017882 0.00625 Reject

7 Tr-Adaboost 2.280351 0.022587 0.007143 Accept

6 ELSR(NN) 2.192645 0.028333 0.008333 Accept

5 kNN 2.104939 0.035297 0.01 Accept

4 ELSR(TSK) 1.754116 0.079411 0.0125 Accept

3 Au-SVM 1.490999 0.135962 0.016667 Accept

2 ELSR-TL(NN) 0.263117 0.79246 0.025 Accept

1 ELSR-TL(Ker) 0 1 0.05 Accept
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FIGURE 9

Accuracy changes with different values of four parameters: (a) M, (b) τ , (c) λ, (d) β .

FIGURE 8

Specific differences of ELSR-TL (TSK) compared to other methods.

https://doi.org/10.3389/fninf.2025.1559335
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Jiang et al. 10.3389/fninf.2025.1559335

Frontiers in Neuroinformatics 15 frontiersin.org

4.9 Limitations

Although the proposed ELSR-TL demonstrates effectiveness in 
these experiments, it still has some limitations. For example, there are 
four hyperparameters in the proposed method, and the hyperparameter 
optimization procedure based on grid searching and cross-validation is 
computationally expensive. The running time of the proposed method 
is significant, especially compared to traditional simple methods, 
making it unsuitable for real-time scenarios. The proposed ELSR-TL 
operates offline and cannot be used in online scenarios. The datasets 
used in this paper contain only five subjects on a small scale, and the 
effectiveness of the proposed method needs to be validated on more 
extensive and larger datasets in future studies. In addition, it is also 
worth further investigating how to provide more theoretical 
justifications for knowledge transfer and how to avoid negative transfer. 
We  primarily focused on binary MI tasks in this study; therefore, 
exploring how to extend the proposed ELSR-TL to multi-class MI tasks, 
multimodal integration, and cross-dataset transfers is worth studying.

5 Conclusion

In this study, an extended LSR-based inductive transfer learning 
method was proposed to facilitate transfer learning for several classical 
intelligent models, including neural networks, TSK fuzzy systems, and 
kernel methods. We applied this method to MI-EEG signal recognition in 
BCIs. ELSR-TL provides three distinctive advantages: (1) It features an 
inductive transfer learning mechanism that allows for the transfer of useful 
knowledge from the source domain to enhance learning performance in 
the target domain when the training data in the target domain are 
insufficient. (2) It enhances application and generalization by extending 
LSR while integrating multiple classic base models such as neural networks, 
TSK fuzzy systems, and kernel methods. (3) It uses knowledge extracted 
from the source domain to train the classification model in the target 
domain, ensuring security for MI-EEG signal recognition. Experimental 
studies indicate the effectiveness of the proposed method in MI-EEG 
signal recognition. Although the proposed ELSR-TL demonstrates 
effectiveness in these experiments, there is still room for further research. 
For example, the hyperparameter optimization procedure based on grid 
searching and cross-validation is computationally expensive, so future 
research should focus on addressing this issue. The proposed ELSR-TL 
operates offline and cannot be applied in real-time scenarios. The datasets 
used in this study are relatively small in scale; thus, the effectiveness of the 
proposed method needs validation on more extensive datasets in future 
studies. Additionally, it is also worth further examining how to provide 
more theoretical justifications for knowledge transfer to avoid negative 
transfer. While this study primarily focuses on binary MI tasks, extending 
the proposed ELSR-TL to multi-class MI tasks, multimodal integration, 
and cross-dataset transfers is also worth studying.
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