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Electroencephalogram (EEG) signal analysis is important for the diagnosis of

various neurological conditions. Traditional deep neural networks, such as

convolutional networks, sequence-to-sequence networks, and hybrids of such

neural networks were proven to be e�ective for a wide range of neurological

disease classifications. However, these are limited by the requirement of a

large dataset, extensive training, and hyperparameter tuning, which require

expert-level machine learning knowledge. This survey paper aims to explore

the ability of Large Language Models (LLMs) to transform existing systems of

EEG-based disease diagnostics. LLMs have a vast background knowledge in

neuroscience, disease diagnostics, and EEG signal processing techniques. Thus,

these models are capable of achieving expert-level performance with minimal

training data, nominal fine-tuning, and less computational overhead, leading to

a shorter time to find e�ective solutions for diagnostics. Further, in comparison

with traditional methods, LLM’s capability to generate intermediate results and

meaningful reasoning makes it more reliable and transparent. This paper delves

into several use cases of LLM in EEG signal analysis and attempts to provide a

comprehensive understanding of techniques in the domain that can be applied

to di�erent disease diagnostics. The study also strives to highlight challenges

in the deployment of LLM models, ethical considerations, and bottlenecks in

optimizing models due to requirements of specialized methods such as Low-

Rank Adapation. In general, this survey aims to stimulate research in the area of

EEG disease diagnostics by e�ectively using LLMs and associated techniques in

machine learning pipelines.

KEYWORDS
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1 Introduction

Artificial intelligence and machine learning techniques have greatly contributed to

the field of EEG signal processing. The emergence of Large Language Models (LLMs)

to interpret and understand complex brain activity patterns is a new era in EEG

signal processing. Electroencephalography (EEG) or brain signal is one of the best

techniques for measuring neural activity and provides a vast amount of temporal data that

requires efficient algorithms for analysis and thereby extracting meaningful insights and

information. As EEG signals are non-invasive, more portable, have greater potential for

use, and apply to a wider population.

EEG analysis can be performed using different methods:
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(i) Representation learning in EEG analysis: It is the basic

step in EEG analysis that can extract relevant features from

EEG signals that are useful for identifying certain states or

pathologies. It is performed using self-supervised learning

methods to develop biomarkers for various pathologies.

This analysis technique can be applied to huge brain

signal data.

(ii) Discriminative EEG analysis: As the name suggests, this

analysis technique is employed for discrimination and for

distinguishing between various groups like disease and

normal, based on various patterns in EEG signals. This can

be done using advanced architectures such as Foundation

Models, LLMs, and Graph Neural Networks (GNNs). This

architecture efficiently captures the EEG patterns, which

are capable of discrimination and are crucial for learning

complex neural processes.

(iii) Generative EEG analysis: Generative EEG analysis refers

to a set of techniques that aims to understand and

model the underlying processes that cause electrical

activity in the brain and generate EEG signals. Unlike

traditional EEG analysis, which focuses on identifying

patterns or abnormalities in the recorded EEG data,

generative approaches seek to explain how these signals are

produced by the brain and how they relate to cognitive

or neural processes. Generative methods aim to generate

new modalities or signal data from EEG signals. Innovative

approaches such as diffusion produce images or text from

EEG data, providing novel approaches to the understanding

and visualization of brain activity.

The application of LLMs to EEG interpretation addresses

several critical challenges in neuroscience research and clinical

practice. First, EEG data is inherently complex, containing

various frequency bands, spatial relationships, and temporal

patterns that cannot be completely explored by traditional analysis

methods. LLMs, with their ability to process sequential data and

identify long-range dependencies, offer a promising approach to

understanding these intricate patterns within the EEG signal.

Secondly, the medical interpretation of EEG often relies heavily

on expert knowledge and pattern recognition skills developed over

many years. The capacity of LLMs to learn from large datasets of

annotated EEG recordings and medical reports could help bridge

this expertise gap and support clinical decision making.

Furthermore, LLMs are good at understanding context and

generating natural language descriptions, which makes them

particularly valuable for translating complex EEG patterns into

clinically relevant insights. This LLM capability can revolutionize

the way EEG signals are analyzed and neurological findings

are made and communicated between healthcare providers and

researchers. This can potentially improve diagnostic accuracy

and treatment planning. The ability of such models to process

multimodal inputs also gives new possibilities for integrating EEG

data with other clinical information, thereby creating a more

comprehensive understanding of various neurological pathologies.

Generative Large Language Models (LLMs) often present

several benefits compared to pre-trained Transformer language

models (Kalajdzievski, 2024). Firstly, many generative LLMs can

perform tasks without requiring explicit fine-tuning on annotated

datasets, leading to considerable savings in time and resources

associated with data annotation. Secondly, these models frequently

overcome the limitation of a fixed maximum input length, enabling

the processing of longer sequences of text. Thirdly, task-specific

behavior in generative LLMs is often achieved through prompt

engineering, which can be a more efficient approach than extensive

hyperparameter optimization typically needed for pre-trained

Transformer models.

LLMs are less susceptible to data imbalance issues due to

the vast pre-training they receive, covering domain knowledge,

signal analysis, and related methodologies. Fine-tuning methods

in LLMs, such as PEFT, freeze base model weights, and preserve

core knowledge. This approach prevents catastrophic overwriting

compared to training approaches used with traditional deep

learning methods. Hence, LLMs are less dependent on perfectly

balanced training datasets compared to traditional models.

Recent advances in LLM architectures and training techniques

have made these applications more feasible. The development

of specialized attention mechanisms and temporal embedding

methods has enhanced their ability to process time-series data

like EEG. Additionally, the success of transfer learning in various

domains suggests that pre-trained language models could be

effectively utilized for neurological signal interpretation, thereby

reducing the amount of labeled data required for specific

applications. However, applying LLMs to EEG analysis also

presents unique challenges that must be addressed. It includes the

need for appropriate data representations, integration of domain-

specific knowledge, and development of interpretable models that

can provide clinically meaningful outputs. Understanding these

challenges and potential solutions is crucial to advance the field and

realize the full potential of LLM in neuroscience. This survey makes

an effort to consolidate the major studies related to applying LLM

in the context of EEG signal interpretation.

1.1 Understanding neural signaling

Classical research in the neurological sector is concentrated

on advancements for diagnosing particular conditions, and the

majority of this research is centered on handling neurological

signals individually. There is a clear need to bridge the gap

and pave the way toward more generalized neurological signal

processing paradigms that can be applied to the broader context

of neuroscience. Although early applications of LLMs focused

on individual neural signals, mainly EEG and fMRI, the focus

is now increasingly shifting toward unified frameworks capable

of handling a wider range of neurological signals beyond these

popular modalities. The following subsections give an overview of

neurological signals that are considered in this study and inter-

relations between them (Gentile and Barragan, 2023; Hong et al.,

2018; Baghdadi et al., 2025; Chaudhary, 2025).

1.1.1 EEG signals
Electroencephalography (EEG) signals are used to record the

electrical activity of the brain via electrodes placed on the scalp.

This non-invasive method captures the summation of postsynaptic
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potentials of numerous of neurons firing synchronously in the

cerebral cortex. The resulting EEG signal reflects the ongoing

electrical activity and exhibits its changes in response to various

stimuli or pathological states. Small metal or silver/silver chloride

electrodes are attached to the scalp for EEG recording using

standard placements like the international 10–20 system. These

electrodes detect minute voltage fluctuations on the scalp, which

are then amplified and digitized by the EEGmachine. The raw EEG

data is typically formatted as a time series of voltage values for each

electrode, representing the electrical potential difference between

the recording electrode and a reference electrode over time. A

significant strength of EEG is its high temporal resolution, as it can

capture rapid changes in brain activity on the order of milliseconds,

making it excellent for studying the timing of neural events. EEG

also provides a direct measure of neuronal activity, offering a real-

time window into brain function. Compared to other neuroimaging

techniques like MEG and fMRI, EEG equipment and operational

costs are generally lower, making it more accessible for research

and clinical applications (Baghdadi et al., 2025). Furthermore, the

non-invasive nature of EEG, with electrodes placed on the scalp

surface, poses no surgical or internal risks to the subject. EEG

systems can also be relatively compact and portable, allowing for

recordings in various settings. However, EEG suffers from low

spatial resolution because the electrical signals recorded on the

scalp are blurred and attenuated as they pass through the skull and

scalp, making it difficult to precisely localize the sources of neural

activity within the brain. EEG signals are also highly susceptible

to various artifacts originating from physiological sources (e.g., eye

blinks, muscle movements, and heart activity) and external sources

(e.g., electrical noise), requiring careful preprocessing. Finally, EEG

is primarily sensitive to activity in the superficial layers of the

cortex and has difficulty detecting activity originating from deeper

brain structures.

1.1.2 MEG signals
Magnetoencephalography (MEG) is a non-invasive

neuroimaging technique that measures the magnetic fields

produced by electrical activity in the brain. These magnetic

fields, generated by the flow of ionic currents within neurons,

are extremely weak and are detected by highly sensitive

superconducting quantum interference devices (SQUIDs)

housed in a cryogenic dewar that does not touch the patient’s

head. MEG is particularly sensitive to neuronal currents that are

tangential to the scalp, making it complementary to EEG which

is more sensitive to radial currents. During a MEG recording,

the subject sits or lies down in a magnetically shielded room to

minimize external magnetic interference. The dewar containing

the SQUID sensors is positioned around the head, capturing

the minute magnetic field changes. Simultaneously, the subject’s

head position relative to the sensors is often tracked using head

position indicator (HPI) coils. The raw MEG data consists of a

time series of magnetic field measurements for each sensor. Similar

to EEG, MEG data is susceptible to artifacts from various sources,

including environmental magnetic noise, movement of the subject,

and physiological signals like heartbeats and eye blinks (Cuffin

and Cohen, 1979). Magnetoencephalography (MEG) measures the

magnetic fields produced by the electrical activity of the brain.

These magnetic fields are less distorted by the skull and scalp

compared to the electrical potentials measured by EEG. Similar

to EEG, MEG offers excellent temporal resolution, capable of

tracking rapid neural events in the millisecond range. MEG also

directly measures the electromagnetic consequences of neuronal

activity, providing a real-time assessment of brain function. A key

advantage of MEG over EEG is its better spatial resolution because

magnetic fields are less distorted by intervening tissues, allowing

for more accurate localization of neural sources. However, MEG

systems are significantly more expensive to purchase, maintain

(due to the need for cryogenic cooling of the sensors), and operate

compared to EEG. The use of MEG is also limited to specialized

facilities due to the requirement of magnetically shielded rooms

to minimize interference from external magnetic fields (Baghdadi

et al., 2025). Despite shielding, MEG recordings can still be affected

by subtle magnetic noise from the environment or even movement

of metallic objects near the scanner.

1.1.3 fMRI signals
Functional Magnetic Resonance Imaging (fMRI) is a

neuroimaging technique that measures brain activity by detecting

changes in blood flow and oxygenation. The underlying principle

is neurovascular coupling, which posits that local neural activity is

accompanied by changes in regional cerebral blood flow (rCBF)

and blood oxygenation. fMRI most commonly utilizes the blood-

oxygen-level-dependent (BOLD) contrast, which is sensitive to

the ratio of oxygenated to deoxygenated hemoglobin in the blood.

During an fMRI scan, the subject lies inside a strong magnetic field.

Radio frequency pulses are applied, causing protons in the brain

tissue to align and then relax, emitting signals that are detected by

the MRI scanner. For fMRI, specific pulse sequences are used to

make the images sensitive to the BOLD signal. A series of 3D brain

volumes are acquired over time, capturing the dynamic changes in

blood oxygenation related to neural activity. The raw fMRI data

is a 4D dataset (3 spatial dimensions + time), where each voxel

(volumetric pixel) contains a time series of signal intensity values.

Functional Magnetic Resonance Imaging (fMRI) is a neuroimaging

technique that measures brain activity by detecting changes in

blood flow and oxygenation using a strong magnetic field. The

most common method, Blood-Oxygen-Level-Dependent (BOLD)

fMRI, relies on the different magnetic properties of oxygenated

and deoxygenated hemoglobin. fMRI offers the highest spatial

resolution among these four techniques, allowing for detailed

mapping of brain activity down to the millimeter level. It also

provides complete brain coverage in a single scan, offering a

complete view of neural activity in different regions, and unlike

EEG and fNIRS, fMRI is sensitive to activity in both the cortical

and subcortical structures (deep brain) (Baghdadi et al., 2025).

However, the hemodynamic response measured by fMRI is

relatively slow, peaking several seconds after the onset of neural

activity, which limits its ability to precisely track the timing of

rapid neural events, resulting in low temporal resolution. fMRI

scanners are very expensive to purchase, install, and operate,

requiring specialized infrastructure and trained personnel, and

they are non-portable, being large, stationary pieces of equipment.
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A significant limitation of fMRI is the requirement for participants

to remain very still during scans to avoid motion artifacts, which

can significantly degrade the image quality, posing challenges for

certain populations.

1.1.4 fNIRS signals
Functional Near-Infrared Spectroscopy (fNIRS) is a non-

invasive neuroimaging technique that measures brain activity by

assessing changes in the concentration of oxygenated hemoglobin

(HbO) and deoxygenated hemoglobin (HbR) in the cerebral cortex.

fNIRS utilizes the principle of neurovascular coupling, similar

to fMRI, but uses near-infrared light to penetrate the scalp and

skull. Changes in neural activity may lead to changes in blood

flow and oxygen consumption, which in turn alter the absorption

and scattering of the near-infrared light that passes through the

brain tissue. An fNIRS system typically consists of light sources

that emit near-infrared light at one or more wavelengths (typically

between 700 and 900 nm) and detectors (photodiodes) placed

on the scalp. The sources and detectors are arranged in optodes,

which are positioned on the scalp using a cap or a custom-

made holder. The light emitted by the sources travels through

the head tissue and is partially absorbed and scattered before

reaching the detectors. The intensity of the detected light at each

wavelength is measured over time. The raw fNIRS data consists

of time series of light intensity measurements for each source-

detector pair (channel) and each wavelength. This raw data is then

converted to changes in optical density. Functional Near-Infrared

Spectroscopy (fNIRS) is an optical neuroimaging technique that

measures brain activity by assessing changes in the concentration

of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin

(HbR) in the cerebral cortex. It utilizes the principle that neural

activity is coupled with changes in local blood flow. fNIRS offers

the advantage of being portable, with devices that are generally

lightweight and allowing for measurements in more naturalistic

settings and with participants who may not be able to tolerate

other imaging modalities (Hong et al., 2018). Due to its portability

and tolerance to some movement, fNIRS is suitable for studying

brain activity during tasks involving movement. The non-invasive

nature of fNIRS, using light shone onto the scalp and detected

by sensors, is another benefit, and compared to MEG and fMRI,

fNIRS systems are often considered easier to set up and operate.

However, fNIRS has relatively low spatial resolution compared

to fMRI and even MEG, as the scattering of light in the tissue

limits the precision of source localization (Gentile and Barragan,

2023). The depth penetration of near-infrared light is also limited,

primarily allowing measurement of activity in the superficial layers

of the cortex. As fNIRS measures brain activity indirectly through

hemodynamic changes, which are slower than the direct neuronal

activity measured by EEG and MEG, its temporal resolution is

also limited compared to electrophysiological methods. Finally, the

presence of hair and variations in scalp and skull thickness can

affect the light transmission and signal quality, requiring careful

consideration during setup and analysis, and a baseline scalp

condition is typically needed for reliable measurements.

1.2 Overview of large language models

Advanced language models with huge parameter sizes and

remarkable learning capacities are known as large language models,

or LLMs. The self-attention module in Transformer (Vaswani et al.,

2017) is the fundamental component of many LLMs, including

GPT-3 (Floridi and Chiriatti, 2020) and GPT-4.

A crucial component of LLMs is in-context learning (Brown

et al., 2020), in which the model is trained to produce text

based on a specified context or prompt. As a result, LLMs

can produce responses that are more logical and pertinent to

the situation, which makes them appropriate for conversational

and interactive applications. Another essential component of

LLMs is Reinforcement Learning from Human Feedback (RLHF)

(Christiano et al., 2017). By using human-generated replies as

rewards, this technique fine-tunes the model, enabling it to learn

from its errors and gradually enhance its performance. Prompt

engineering is a popular method of communicating with LLMs in

which users build and provide certain prompt messages to direct

LLMs to produce the required responses or perform particular tasks

(White et al., 2023; Clavié et al., 2023; Zhou et al., 2022). People can

participate in dialogue interactions, which involve speaking with

LLMs in natural language, or question-and-answer interactions, in

which they ask the model questions and get replies. In summary,

LLMs have transformed NLP and have the potential for several uses

thanks to their Transformer architecture, in-context learning, and

RLHF capabilities.

1.2.1 Bidirectional encoder representations from
transformers

Bidirectional Encoder Representations from Transformers

(BERT) introduced a deep, bidirectional, unsupervised language

representation. BERT considers the entire context of a word, both

preceding and succeeding, during training, unlike previous models,

which process text sequentially (Koroteev, 2021). This enables

the model to capture rich semantic and syntactic information,

leading to significant performance improvements in various NLP

tasks. This powerful understanding is further enhanced by BERT’s

pre-training process, which utilizes two unsupervised learning

objectives. Firstly, Masked Language Modeling (MLM) forces the

model to deeply understand language semantics by randomly

masking words in the input and training it to predict the masked

words based on the surrounding context. Secondly, Next Sentence

Prediction (NSP) improves the model’s ability to understand

discourse by training it to predict whether two given sentences are

consecutive in the original text, thereby capturing crucial sentence-

level relationships.

BERT’s architecture is based on the Transformer model, which

utilizes self-attentionmechanisms to capture complex relationships

between words. It consists of multiple layers of stacked transformer

blocks, each containing a Multi-Head Self-Attention and Position-

wise Feed-Forward Network (FFN) (Devlin et al., 2018; Hao et al.,

2019). Multi-head self-attention allows the model to attend to

different parts of the input sequence simultaneously, capturing

diverse relationships between words. FFN introduces non-linearity

and allows the model to learn complex representations. Two
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unsupervised pre-training tasks are used by BERT: Next Sentence

Prediction, which asks the network to determine whether two

sentences are consecutive, and Masked LM, in which some words

are masked and the network infers their meaning from context.

The main limitations of BERT include high computational

cost, requiring significant resources for pre-training, and difficulty

in handling very long sequences due to its fixed maximum

sequence length. It is challenging to fine-tune the BERT model

for some specific tasks, which may require careful tuning

of hyperparameters.

1.2.2 GPT-1
There has been a long history behind GPT-1 dating back to

the groundbreaking paper “Attention is all you need” (Vaswani

et al., 2017). According to it, the Transformer is divided into two

parts: encoder and decoder, both of which perform Multi-Head

Self Attention, though the encoder is able to observe information

from the entire source sequence while the decoder does not.

Similar to filling in the gaps, the Bert model adjusts the encoder

and uses context to forecast the missing intermediate phrases

when creating pre-training tasks. GPT-1 also executes masked

multi-head self-attention by using a decoder, which anticipates the

subsequent context based on the preceding context.Making context

predictions from a huge corpus of data is the pre-training phase.

The final token’s embedding is fed into the prediction layer, which

fits the downstream data’s label distribution after the model has

been trained using downstream data during the fine-tuning stage.

The model’s accuracy and generalization abilities improve as the

number of layers increases. Zero-shot learning is a built-in feature

of GPT-1 and as themodel gets bigger, so does this capability, which

leads to the development of later GPT models.

1.2.3 GPT-2
Based on the Transformer architecture for language modeling,

GPT-2 is an improved version of GPT-1. Large amounts of

unlabeled data can be used to train models with GPT-2, and

fine-tuning improves model performance and optimizes it for

downstream tasks. GPT-2 places more focus on the language

model in a zero-shot scenario, when the model hasn’t been trained

or optimized for downstream tasks before being used. GPT-1

often relies on fine-tuning, and adjusting the model’s parameters

specifically for each downstream task. This typically involves

introducing special tokens, such as start and separator symbols, to

guide the model’s understanding of the task at hand. In contrast,

GPT-2 emphasizes zero-shot learning, aiming to perform tasks

without explicit fine-tuning. This necessitates a different approach

to task specification. Instead of modifying the model, GPT-2

primarily modifies the input sequences.

GPT-2 significantly scales up the Transformer architecture,

boasting 48 layers and 1.5 billion parameters, compared to

GPT-1’s 12 layers and BERT’s 24. This scaling necessitates a

massive training dataset, derived from WebText after basic data

cleaning. Research suggests that larger models require more

data to reach their full potential, and current models, including

GPT-2, are likely still under-trained (Radford et al., 2019).

Unlike BERT, which employs bidirectional transformers, GPT-

2 utilizes unidirectional transformers, mirroring the sequential

nature of language generation. Furthermore, GPT-2 adopts a

novel multi-tasking approach during pre-training. Instead of

focusing on a single objective, it learns across multiple tasks

simultaneously, ensuring that the model converges effectively.

Notably, the core Transformer parameters are shared across these

tasks, promoting efficient learning and enhancing generalization.

This multi-tasking strategy, inspired byMT-DNN (Liu et al., 2020),

empowers GPT-2 to achieve impressive performance even without

task-specific fine-tuning.

1.2.4 GPT-3
GPT-3 primarily focuses on the idea of a universal language

model excluding traditional fine-tuning. To address the

computational challenges associated with its massive 175 billion

parameters, GPT-3 incorporates the sparse attention mechanism

from Sparse Transformers (Floridi and Chiriatti, 2020). This

technique reduces computational load by selectively attending to

relevant parts of the input sequence. For downstream tasks, GPT-3

employs a few-shot learning approach, demonstrating remarkable

performance with just a few examples. This highlights the

significant impact of model size on few-shot learning capabilities.

The GPT-3 architecture is identical to the GPT 2, except the

transformer layers have dense and sparse attention (Child et al.,

2019; Radford et al., 2019). GPT-3 employs the gradient noise

scale as in (McCandlish et al., 2018) to determine the batch size

during training, demonstrating that big models may train on larger

batch sizes with a lower learning rate. In general, GPT-3 raises

model parameters to 175B, demonstrating that large language

models improve with the scale and are competitive with the

fine-tuned models.

One important feature of GPT-3 is its capacity for in-context

learning. By merely supplying examples within the input sequence,

in-context learning provides few-shot performance, in contrast

to traditional fine-tuning, which updates model parameters based

on downstream task examples. As the number of instances

increases, this “prompting” strategy shows a notable performance

improvement. But after eight shots, the effect of more examples

decreases and, after ten rounds, is insignificant.

1.2.5 GPT-4
In comparison to GPT-3, GPT-4 has more than a trillion

parameters and greatly enhances the GPT model scale and

training methods. The GPT-4 model may produce text more

accurately and naturally by employing a novel training method

called Reinforcement Learning from Human Feedback (RLHF). To

train through reinforcement learning, RLHF combines pre-training

and fine-tuning techniques, having conversations with human

operators. This increases GPT-4’s performance on particular tasks

and strengthens its understanding of context and questions

(Nori et al., 2023; Wang et al., 2023). GPT-4 generally employs

the same pre-training, prompting, and prediction-based training

methodology as ChatGPT. Three noteworthy improvements

are introduced in GPT-4: (1) Using a rule-based reward

model (RBRM); (2) Including multi-modal prompt learning to
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accommodate different prompts; (3) Including a chain of thought

mechanism to improve overall coherence in thinking. GPT-4 is a

strong multimodal model that can interpret text and image input,

producing text outputs that rank among the top 10% of test takers.

On conventional benchmarks, the GPT-4 language model performs

better than most cutting-edge NLP systems (Liu et al., 2021; Chang

et al., 2023).

1.2.6 Claude
Anthropic, a business started by former OpenAI researchers

with experience in language models such as GPT-3, created the AI

helper Claude (Wu et al., 2023). With a high Google investment,

Anthropic seeks to develop AI that is both beneficial and safe.

AnthropicLM v4-s3, their flagship model, is an autoregressive

model with 52 billion parameters that was trained on enormous

text datasets. Anthropic uses a novel “Constitutional AI” technique

in contrast to conventional fine-tuning techniques that depend

on human input (Bai et al., 2022). This novel system employs a

model to direct the process of fine-tuning, guaranteeing that the

AI abides by a set of principles centered on autonomy (respecting

freedom of choice), beneficence (maximizing positive impact), and

non-maleficence (avoiding giving harmful advice).

1.2.7 Open-source LLMs
Open Source Large Language Models (LLMs) stand in contrast

to proprietary models like GPT and Claude, which are often fine-

tuned to align with human preferences, enhancing their usability

and safety. This alignment process, however, can be expensive

in terms of computational resources and human annotation,

and its lack of transparency can hinder progress in AI safety

research within the wider community. Open source LLMs offer an

alternative by providing researchers and developers with the ability

to examine, modify, and build upon the underlying technology.

This fosters innovation, allows for greater customization, and

promotes a deeper understanding of these models’ inner workings.

Llama 2 prioritizes helpfulness and safety through specific training.

Qwenmodifies the Transformer architecture for efficiency and long

sequence handling.

The two notable open source LLMs are Llama 2 and Qwen.

Llama 2 is a family of pre-trained and fine-tuned LLMs developed

by Meta AI, scaling up to 70 billion parameters. Considering to

achieve the two benchmarks, helpfulness and safety, Llama 2-

Chat models reportedly outperform existing open-source models

on benchmarks for both these qualities and, in human evaluations,

appear to be comparable to some closed-source models. Meta AI

implemented several safety measures, including the use of safety-

specific data for annotation and tuning, red-teaming exercises

to identify vulnerabilities, and iterative evaluations to refine

safety. The accompanying documentation provides a detailed

account of their fine-tuning methodology and their strategies for

enhancing LLM safety. A noted limitation of Llama 2, particularly

its larger versions, is the longer computational time required

for operation.

Qwen, short for Tongyi Qianwen, is another open-source LLM

that utilizes a modified version of the Transformer architecture,

inspired from the LLama model. Qwen’s architecture incorporates

several specific modifications. It employs a unified embedding

approach, which aims to improve performance at the cost of

increasedmemory usage. For incorporating positional information,

Qwen utilizes Rotary Positional Embedding (RoPE). Additionally,

biases are added to the Query, Key, and Value layers of the attention

mechanism to enhance the model’s ability to handle longer

sequences. Qwen also replaces the traditional layer normalization

technique with RMSNorm, which is reported to offer similar

performance with greater efficiency. For the activation function,

Qwen has chosen SwiGLU, a combination of Swish and Gated

Linear Unit.

Both Llama 2 and Qwen represent significant advancements in

the realm of open-source LLMs. They provide transparency and

flexibility, enabling the AI community to understand and build

upon these technologies. Llama 2 places a strong emphasis on

safety through dedicated training and evaluation methodologies,

while Qwen introduces architectural modifications aimed at

improving performance and efficiency, particularly in handling

longer sequences. Both models contribute to the growing landscape

of accessible and powerful language models.

2 Taxonomy of AI tasks

The usage of LLMs in the context of EEG-based disease

diagnostics can be classified into generative and discriminative

tasks. Generative tasks help us create all new content, such as

textual output showing the reasoning behind a specific decision. On

the other hand, discriminative tasks are useful for the categorization

of given input data into classes, such as in the case of disease

classification. Utilization of both of the models is important

for achieving effective disease diagnostics. Use of various key

LLM models in the context of neuro signal analysis is listed in

Table 1.

The block diagram shown in Figure 1 details the modules

involved in a typical machine-learning pipeline using LLM for

EEG-based disease diagnostics. It has got 4 stages as given below:

• Input Stage

This stage reads the input data in the form of EEG which

can optionally be multimodal inputs bringing additional

information helpful for categorization or generation of data

at the output.

• EEG LLM fine-tuning stage

Fine-tuning is the key step of the pipeline and tunes

the LLM for a specific context which can be a single task

or multiple tasks in the same context. This stage uses

various adaptation methods for tuning a given LLM for a

specific task such as report generation or disease classification.

Internally it makes use of techniques such as transfer

learning and incremental adaptation for generative tasks, and

incremental adaptation and hybrid model enhancement for

discriminative tasks. It can be a mixture of both approaches

and the associated techniques based on the use case that is

being addressed.

• Output stage

The output can be generated text or labels indicating the

class of health condition of the patient. It can be a combination
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of both for hybrid models. In case of multi tasking, the labels

generated by the model can belong to different set of classes

based on the task in focus.

TABLE 1 Description of key LLMmodels in the context of neuro signal

analysis.

Research Year LLM Task

Mishra et al. (2024) 2024 Llama v3,

MISTRALv0.3,

QWEN2.5

Generative

Tung et al. (2024) 2024 Gemini 1.5 flash,

Claude 3 sonnet,

GPT-4

Generative

Chen et al. (2024) 2024 Qwen2-0.5B Generative

Wang et al. (2024a) 2024 BART Generative

Kim et al. (2024) 2024 da Vinci GPT-3 base Discriminative

Parani et al. (2024) 2024 pre trained

Longformer

Discriminative

Jiang et al. (2024) 2024 Large Brain Model

(LaBraM)

Discriminative

Zhang et al. (2023) 2023 GPT-3.5, GPT-4 Discriminative

Gijsen and Ritter

(2024)

2024 EEG Language Model

(ELM)

Discriminative

Lee and Chung (2024) 2024 GPT-3.5 turbo model Discriminative

Sano et al. (2024) 2024 GPT-4, GPT-4 Vision,

GPT-3.5

Discriminative

Zhang et al. (2024c) 2024 BERT Discriminative

Wang et al. (2024b) 2024 Llama 2 Generative

Han et al. (2024) 2024 BERT Generative

Ma et al. (2024) 2024 miniGPT-4, CLIP Generative

Yang et al. (2024) 2024 Qwen2 1.5B Generative

Zhang et al. (2024a) 2024 Llama 2 Generative

2.1 LLMs for generative tasks

2.1.1 Thought2Text
The goal of this approach is to evaluate efficiency of public

LLMs such as LLAMA v3, MISTRALv0.3, and QWEN2.5 in

translating visual thoughts from EEG signals into textual form

(Mishra et al., 2024). This is achieved by a 3 step approach,

involving capturing of EEG signals, encoding of these signals

as token embeddings and fine-tuning of language models with

these features.

For the first step, to generate embeddings, this solution

makes use off a EEG encoder derived from a deep convolutional

neural network model—ChannelNet—that converts EEG signals to

multidimensional embeddings (Heeg). Pooled image embeddings

(Hclip) are generated by a pre-trained CLIP model capable

of abstracting image representations. The encoder functions by

minimizing two set of losses—one which is a categorical cross-

entropy loss between predicted and actual labels using EEG

embeddings and secondly, the mean squared error (MSE) between

EEG embeddings (Heeg) and pooled image embeddings (Hclip). In

the following stage, these representations are further translated into

multimodal embeddings (Hmm) by passing through a projector

implementing a transformation. The LLMs learns representation in

multimodal feature form generated from an image sketch filtering

original image using Gaussian blur and Canny filters. In the next

step, it learns the representation generated by the projector using a

multichannel EEG signal that represents the response of the brain

to the image shown to the subject.

On using this trained model for inference, the EEG encoder

generates EEG embeddings and makes use of no images.

This representation is further passed through projectors to get

multimodal features for performing predictions. The embeddings

from EEG signal segments are further concatenated and given to

fine-tuned LLM which generates meaningful text descriptions.

2.1.2 Multi-stage LLM report generation
The objective of the proposed system here is to generate

and verify EEG reports with the help of a multi-stage LLM

FIGURE 1

Overview of LLM solutions for EEG diagnosis use cases.
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solution (Tung et al., 2024). Generation phase, which is first

among the two phase approach, takes EEG features as inputs and

format them to generate a structured prompt. This prompt is

also given to the Google Gemini 1.5 pro API for the processing

and generation of reports. In the second phase, the system uses 3

promising LLMs—Gemini 1.5 flash, Claude 3 sonnet, and GPT-

4—and performs verification. This solution makes use of advanced

LLM capabilities of Gemini pro to build its core language model.

The model is chosen for its advanced capabilities that include long

context memory, reasoning abilities, and optimized computational

performance. The input of this pipeline employs a hybrid AI

algorithm that generates a JSON object based on structured

EEG features. This ensures capturing of important metrics such

as background frequency, amplitude, symmetry, and detected

anomalies. These objects are further used by the LLM along with

an efficient prompt engineering method. The prompt engineering

method used in this system has four parts, namely : (1) role as

neurologist, (2) structure EEG features and interpretations, (3) task

specifications for generation of report, and (4) outline of report.

Each of the LLM model is set to assess independently and finally

decision is based on majority voting. Validation of the method by

generation of reports on a few hundred report showed effectiveness

of the system in guiding neurologist to make infallible decisions.

2.1.3 EEG emotion copilot
EEG emotion copilot uses a lighter LLM in a local server

to perform multiple tasks using EEG signals (Chen et al., 2024).

The features of this system include emotion recognition, the

generation of custom diagnostics, treatment recommendations,

and the automatic creation of medical records for patients. It also

provides an ergonomic user interface and employs strong privacy

safety measures through novel data processing protocols.

The study methodology involves pre-processing EEG signals

and transforming them via wavelet to shorten the signal length.

The final prompt is constructed using the initial context-defining

prompt, demographic data, emotional label, and treatment as

training data. Qwen2-0.5B pre-trained model is used for pruning

and achieving 50% reduction over the model parameters. A warm-

up during the fine-tuning phase using Lora gradually increases the

learning rate of the model. Finally, the RAG (Retrieval-augmented

generation) technique is used to deploy the model to enhance

retrieval performance and improve the interactivity through the

dialogue method in the user interface.

This approach addressed the issue of data redundancy inherent

in EEG signal processing. The long EEG data sequence handling

was managed through efficient data compression techniques,

thus improving computational efficiency and computing the

real-time emotion. This study highlighted the importance of

patient privacy by ensuring that the proposed model is run

locally. Model pruning strategies were explored to create a

lightweight version of the language model, making it feasible

to deploy in environments with limited computational resources

while maintaining high performance. While signal compression

improves efficiency, complex scenarios still require additional

channel signals for accurate analysis. The study proposed that

LLMs could potentially generate dense channel signals from limited

channel data, which would significantly enhance computational

efficiency. This approach could revolutionize emotion analysis

and streamline the overall process. This research demonstrates

the potential of EEG Emotion Copilot to transform emotional

recognition and treatment in clinical settings.

2.1.4 Contrastive EEG-text masked autoencoder
This research work reports a significant advancement in EEG-

based language decoding through CET-MAE (Contrastive EEG-

Text Masked Autoencoder) and E2T-PTR (EEG-to-Text using Pre-

trained Transferable Representations) (Wang et al., 2024a). While

E2T-PTR utilizes these pre-trained representations together with

BART for better text generation, the CET-MAE model combines

masked autoencoding with contrastive learning in an innovative

manner for both single-modality and cross-modality processing.

This study suggests a novel pre-trained model called Contrastive

EEG-TextMasked Autoencoder (CET-MAE) to align EEG and text.

CET MAE uses a specialized multi-stream encoder to combine

masked signal modeling and contrastive learning. By balancing

the semantic-level aligned embeddings of text tokens and text-

evoked EEG features with the latent embeddings represented by

self-reconstruction, it efficiently learns pre-trained representations

of text and EEG. Concerning masked signal modeling, CET-MAE

applies a high mask ratio (75%) to both text and EEG data, which

poses a significant challenge for the model to manage more missing

data during the reconstruction step.

CET-MAE integrates intra- and cross-modal SSL into a single

unified system utilizing a multistream architecture: (1) Using

masked modeling with a mask ratio of up to 75%, intramodality

streams investigate representative embeddings that capture the

inherent properties of text or EEG sequences. (2) The intermodality

stream constrains the encoder to maximize semantic consistency

between text and its related EEG sequences and offers dual-

modal representations to improve intramodality reconstruction.

E2T-PTR uses BART’s capabilities to generate text from these

consistent and representative features by transferring pre-trained

EEG representations. Multiple experiments using ZuCo, the latest

text-evoked EEG dataset, highlight the high standard of this study

in both qualitative and quantitative evaluations. Other inner speech

BCI data sets can also be used to study the performance of the

suggested CET-MAE model, which exhibits significant potential to

improve EEG-based language decoding tasks.

2.1.5 LLM analysis of fMRI language data in
neurocognitive disorder

A study by Wang et al. (2024b) investigates language-related

functional changes in older adults with Neurocognitive Disorders

(NCD) using LLM-based fMRI encoding. This work explores the

correlation between brain scores derived from fMRI encoding

models and cognitive scores in subjects with NCD, in contrast to

previous studies that focused on healthy young adults. This study

develops an fMRI encoding model using LLaMA2, specifically for

older adults with early stage NCD or at risk, in order to quantify

the association between brain areas and language functions.

Individuals with higher cognitive abilities were revealed to have

better brain scores compared to those with lower cognitive abilities,
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with maximum correlations observed in the middle temporal gyrus

(r = 0.368) and the superior frontal gyrus (r = 0.289). This suggests

that fMRI encoding models and brain scores have the potential

to detect early functional changes in NCD patients, offering a

promising avenue for developing interpretable machine learning

models for early detection of NCD based on language-related fMRI

signals. This study marks the beginning of applying an LLaMA2-

based fMRI encoding model to study subjects with NCD.

2.1.6 Mindformer
Mindformer, introduced by Han et al. (2024), is a novel

semantic alignment method for multisubject fMRI signals,

designed to overcome limitations in current multisubject brain

decoding techniques. MindFormer generates fMRI-conditioned

feature vectors suitable for conditioning Stable Diffusion for fMRI-

to-image generation and LLMs such as Bidirectional Encoder

Representations from Transformers (BERT) for fMRI-to-text

generation. The model incorporates two key innovations: subject-

specific tokens to capture individual differences while leveraging

multisubject data for training, and a feature embedding and

training scheme based on the Image Prompt Adapter(IP)-

Adapter to extract semantically meaningful features from fMRI

signals. By effectively embedding multisubject fMRI signals using

subject tokens and the IP-Adapter, MindFormer significantly

outperforms existing multisubject brain decoding frameworks.

This advancement provides a new framework for understanding

the decoding of the brain of multiple subjects and identifying

common neural patterns, effectively leveraging shared information

while maintaining individual-specific accuracy. The current

implementation primarily focuses on visual stimuli, and extending

it to more complex cognitive and sensory experiences requires

advancements in model architecture and training methodologies.

However, the computational complexity associated with training on

larger datasets presents a limitation.

2.1.7 LLM visual encoding model
LLM Visual Encoding Model (LLM-VEM) introduced in Ma

et al. (2024) provided a new multimodal training paradigm,

utilizingminiGPT-4 to enhance the encoding of fMRI activity in the

visual cortex. The paradigm generates detailed textual descriptions

for stimulus images using the LLM, creating a high-quality text

description set. These descriptions are then processed through a

pre-trained text encoder, namely Contrastive Language Image Pre-

training (CLIP), to obtain text embedding features. A contrastive

loss function is used to minimize the distance between image

embedding features and text embedding features, aligning the

stimulus image and text information. This alignment, facilitated

by the LLM, improves the visual encoding model learning process,

leading to higher precision. Such an effective visual encodingmodel

helps researchers investigate and predict the brain responses to

different visual stimuli.

LLM-VEM processes stimulus image features in two stages:

Stage 1 utilizes a frozen image feature extractor, Explore the limits

of Visual representation at scAle (EVA), for feature extraction,

followed by dimensionality reduction via feature projection. To

mitigate overfitting, a portion of the voxel mapping network is

replaced with a Principal Component Analysis (PCA) module,

reducing model parameters. Stage 2 refines the model by

unfreezing specific blocks within EVA while freezing others,

and incorporates the LLM-aligned loss function to further align

stimulus image and text features. By extending unimodal features to

multimodal features, this training paradigm improves the encoding

model performance. LLM-VEM integrates stimulus images and

textual descriptions, aligning them to obtain multimodal feature

information and achieve strong performance.

2.1.8 NeuGPT
NeuGPT is a multimodal language generation model designed

to unify the analysis of various neural recording types (EEG, MEG,

ECoG, SEEG, fMRI, and fNIRS) which have traditionally been

studied separately (Yang et al., 2024). The goal is to create a model

that can process various neural signals and interact with speech and

text, focusing on brain-to-text decoding.

The model is structured in two main stages:

• Stage 1: Neural signal tokenization: this stage focuses on

converting neural signals into discrete codes. It consists

of four components: an encoder that transforms raw

neural signals into embeddings, a quantizer that converts

these embeddings into discrete code indices, a decoder

that reconstructs the neural signals from the quantized

embeddings, and a discriminator that enhances the quality of

the reconstructed signals.

• Stage 2: LLM fine-tuning for neural code understanding:

this stage involves fine-tuning a large language model (LLM)

to understand and generate neural codes, facilitating cross-

modal communication between neural signals, speech, and

text. QWEN2-1.5B, a relatively small but efficient LLM with

a 32K context length, was chosen as the base model for this

fine-tuning.

This model demonstrates the feasibility of translating neural

signals into coherent speech and text, bridging the gap between

brain activity and expressive communication. Highlights the

benefits of a unified framework for processing various types of

neural signal, overcoming the traditional compartmentalization

in neural recording research. The model’s flexibility in handling

various sensor layouts and coordinates allows for broader

application across different experimental settings. The integration

of neural signals into language generationmodels offers insight into

human brain language processing and paves the way for advanced

brain-computer interfaces.

2.1.9 fNIRS and LLM for VR rehab evaluation in
mild cognitive impairment

The study addresses the challenge of effectively evaluating

Virtual Reality (VR) tasks designed for Mild Cognitive

Impairment (MCI) rehabilitation (Zhang et al., 2024b). Traditional

evaluation methods, such as post-training metrics and subjective

questionnaires, do not capture the comprehensiveness and

intensity of cognitive stimulation provided by VR tasks. To

overcome these limitations, Zhang et al. (2024b) proposed a novel
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approach that integrates functional near-infrared spectroscopy

data with an LLM to evaluate and optimize VR rehabilitation tasks.

The study introduces a systematic paradigm, based on the

Diagnostic and Statistical Manual of Mental Disorders (DSM-

5), to assess the scope of cognitive domains stimulated by

VR tasks. This paradigm enables a unified assessment of

various cognitive domains, including attention, memory, executive

functions, language, visuospatial skills, and psychomotor abilities.

This study uses fNIRS technology to objectively measure cognitive

stimulation with high time resolution. They extract graph

parameters from fNIRS data to quantify brain region connectivity

and efficiency during VR tasks, providing robust neural indicators

of cognitive engagement.

LLM-enabled analysis: A key innovation of the study is

the development of a three-stage prompt strategy to facilitate

LLM-based analysis. The LLM is used to translate complex

metrics derived from fNIRS and the scope of stimulated cognitive

domains into easy-to-understand evaluation reports and actionable

recommendations for VR task optimization. This approach aims to

bridge the gap between complex neural observations and practical

insights for VR task designers.

This approach exhibits the potential of integrating fNIRS data

and LLMs to provide a comprehensive and objective evaluation

of VR rehabilitation tasks. The proposed framework improves

the design and effectiveness of VR interventions for MCI, by

automating the analysis and interpretation of complex neural data.

2.1.10 MindSpeech
A novel AI model, named MindSpeech, is designed to decode

imagined continuous speech using high-density functional near-

infrared spectroscopy (fNIRS). The study aims to develop a non-

invasive brain-AI interface that can translate imagined thoughts

into text, enhancing human-AI communication.

Zhang et al. (2024a) used high-density fNIRS to record

brain signals from participants engaged in an imagined speech

task. They developed a “word cloud” paradigm to elicit a

variety of imagined sentences across a broad semantic space.

In this paradigm, participants were presented with a central

topic word and surrounding keywords and instructed to imagine

sentences using these words. After the imagined speech period,

the participants typed the sentences, providing ground-truth

data for decoder training. In addition, a continuous-wave high-

density fNIRS system was used to collect neurovascular data.

The fNIRS data was preprocessed through several steps, including

conversion to optical density, detrending, motion artifact removal,

and bandpass filtering.

The core of the MindSpeech model involves using a prompt

tuning approach with the Llama2 model. This approach allows

the LLM to generate text guided by the fNIRS brain signals. The

process includes segmenting the imagined sentences into context

input and continuation, converting both context input and fNIRS

signals into embeddings, and concatenating these embeddings as

input to the LLM.

A brain encoding model, using a sequence-to-sequence

(Seq2Seq) neural network with transformers, maps the fNIRS

data to LLM embeddings. The model is trained to predict the

continuation text from the brain signal-generated embeddings

and the context input embeddings. The model’s performance was

evaluated using natural language processingmetrics to compare the

generated sentences with the ground truth. The study also explored

the combination of data from multiple participants to improve the

decoder performance.

2.1.11 Language postdiction vs. prediction in
MEG

A research study by Azizpour et al. (2024) investigated whether

MEG data can reveal predictive information during natural

listening, similar to findings in fMRI. The researchers examined

whether pre-onset neural encoding of upcoming words could

be detected in MEG signals, aligning with results from other

neuro signals. They also tested whether incorporating future word

embeddings, as done in fMRI studies, would enhance the alignment

between MEG data and linguistic predictions. To address

these questions, the study built encoding models using GPT-2

embeddings to map to MEG data recorded while participants

listened to approximately 10 h of narrated stories. The results

showed that the GPT-2 embeddings explain the variability in post-

onset MEG signals. Critically, consistent with electrocorticography

findings, pre-onset representations of upcoming words were

detected up to 1 second before word onset in language-related

regions. However, unlike fMRI findings, including future word

embeddings did not improve MEG encoding.

The study concludes that while MEG can capture pre-

onset representations similar to electrocorticography, the lack of

enhancement with future word embeddings suggests that these

signals might not reflect predictive processing and could be due to

correlations between nearby embeddings and word co-occurrences.

The findings also revealed robust evidence for postdiction. In

general, the study demonstrates the value of MEG combined with

LLMs for studying naturalistic language processing and emphasizes

the need for more research to define evidence for prediction in

this context.

2.2 LLMs for discriminative tasks

2.2.1 EEG-GPT
EEG GPT is an attempt to use a comparatively small training

data set to fine-tune an LLM and achieve performance comparable

to that of other classical approaches in a deep learning context, for

classification of the given EEG signal segment as normal or disease.

It shows that with zero-shot learning, the base LLM yields improved

performance in such classification tasks (Kim et al., 2024). The

pipeline used for this approach generates quantitative EEG features

that are fed to a fine-tuned LLM that uses a specific private

knowledge base. The dataset used here is the Temple University

Hospital Abnormal Corpus, which is made up of 1140 hours of

EEG data acquired from 2,993 subjects. It is balanced between

normal and abnormal recordings to some extent and is further

pre-split into train and evaluation sets for uniformity of evaluation

over experiments.
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Each of the given EEG files is segmented into non-overlapping

20-second epochs and quantitative features such as standard

deviation, kurtosis power ratios, etc. are calculated for each

epoch. Open AI’s Completions APIs are further used to fine-

tune and evaluate on da Vinci GPT-3 base LLM. The original

quantitative features are converted to verbal representation with

the use of prompts, making it generate normal/disease labels at the

output. This solution aims to use 50 times less data, yet provides

performance comparable to that of deep learning approaches such

as ChronoNet, StanfordCNN, and HybridCNN. This study also

highlights the reasoning ability and ability of EEGGPT to make use

of specialist EEG tools on several temporal scales in a gradual and

transparent way. Such a tree-of-thought reasoning approach helps

generate the reasoning behind predictions in a human-readable

form by making use of tools such as qEEG. By going through

multiple segments until the system is confident in predicting the

start and duration of a seizure or as normal, this solution helps to

allow early stoppage of seizures.

2.2.2 Pretrained longformer LLM
This method utilizes a large language model for epilepsy

classification by re-factoring the data for a pre-trained LLM model

(Parani et al., 2024). Such an approach requires minimal retraining

and still results in better performance compared to deep learning

models trained from scratch.

The data preparation stage of the mode converts EEG signals

that are in the form of real numbers into string tokens. Due

to memory limitations, the tokenization is performed on each

of the 20 EEG channels individually. The generated tokens

are divided into segments corresponding to 1 second each to

improve efficiency. Further, a locally deployed open-source LLM—

Longformer—is utilized for learning from generated features, i.e.,

tokens. By using sliding window attention to process tokens

within a specific window and symmetric global attention that

captures relationships between pairs of tokens, LLM is trained for

the given disease classification context. The training is focused

on the classifier layer of Longformer with a chosen set of

hyperparameters for 4 batches. The final classification result of

a segment corresponding to detection or otherwise is performed

by majority voting, where detection over 10 channels indicates a

positive label.

The study further compares the chosen LLM solution against

ViT methods having multiple stages of transformer blocks followed

by a classifier stage. ViT is efficient in extracting spatial features

and short-term local temporal features efficiently. However, its

incapability to capture long-term temporal dependencies and

correlations makes it inferior to the aforementioned LLM method

of disease classification.

2.2.3 NeuroLM—multitask foundation model
Even though there are many advances in large-scale pre-

training with EEG, proving significant potential for advancing

brain-computer interfaces and healthcare applications, current pre-

trained models typically require complete fine-tuning for each

downstream task (Jiang et al., 2024). This limits their flexibility and

leads to inefficient resource usage. This study develops NeuroLM,

a multi-task foundation model that treats EEG signals as a

foreign language, leveraging the capabilities of Large Language

Models (LLMs) to enable multi-task learning and inference.

NeuroLM addresses three major challenges in combining EEG

processing with LLMs: the alignment of EEG and text embeddings,

effective representation learning within the LLM framework, and

unified multi-task learning across diverse EEG applications. This

system introduces a text-aligned neural tokenizer that converts

EEG signals into discrete neural tokens through vector-quantized

temporal-frequency prediction. These tokens are then processed by

an LLM that learns causal EEG information through multi-channel

autoregression and enables the model to understand both EEG and

language modalities.

The architecture of this model is remarkable for its scale

and comprehensive training approach. It features 1.7B parameters

which have been pre-trained on approximately 25,000 h of EEG

data. The data goes into a text-aligned neural tokenizer which

is trained through adversarial training. In the next step, a VQ

encoder helps extract compressed embedding representations for

LLM processing. Finally, multitasking instruction tuning helps to

implement a vast set of downstream applications.

The dataset for the study included six different EEG datasets

to evaluate NeuroLM, TUAB (Harati et al., 2015) (abnormal

detection), TUEV (Zheng and Lu, 2015) (event type classification),

SEED (Zheng and Lu, 2015) (emotion recognition), HMC

(Alvarez-Estevez and Rijsman, 2021) (sleep stage classification),

Workload (Zyma et al., 2019) (cognitive workload classification)

and TUSL (von Weltin et al., 2017) (slowing event classification).

The model performance is demonstrated across six different

tasks, including abnormal detection, event type classification,

emotion recognition, sleep stage classification, cognitive workload

prediction, and slowing type classification. The use of instruction

tuning for multi-task learning in EEG signal processing has shown

remarkable success in this model, thus eliminating the need for

individual fine-tuning while maintaining high performance across

various applications.

2.2.4 Word-level neural state classification
This study makes use of LLMs that are provided by eye-

tracking data and EEG measurements, for the investigation of

neural responses (Zhang et al., 2023). It utilizes the Zurich

Cognitive Language Processing Corpus (ZuCo), focuses on

semantic inference processing and analyzes brain states during

word fixation periods.

The classification pipeline consists of (i) Initial word

classification where two language models evaluate sentences and

words categorized into: high-relevance words (HRW) and low-

relevance words (LRW), (ii) Data processing where joint selection

process identifies shared HRW set, eye-gaze data is used to extract

corresponding EEG signals and four feature-extraction techniques

are applied to reduce signal complexity, and (iii) Classification

System where three distinct classifiers implemented and follow

standard brain-computer interface methodology to perform binary

HRW/LRW classification. It achieved over 60% validation accuracy

across 12 subjects and successfully distinguished between high and

low-relevance word processing. This is the first study to classify
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brain states at the word level using LLM knowledge and contributes

to the understanding of human cognitive processing.

2.2.5 Zero-shot pathology detection
The study integrates clinical EEG data with language modeling

and develops a novel approach for medical diagnostics and

pathology detection, based on an extensive dataset of 15,000 EEGs

paired with corresponding clinical reports (Gijsen and Ritter,

2024). It employs contrastive learning techniques and is one of

the pioneer works in applying multimodal pre-training using

natural language and functional brain data in a medical context. It

seems that exposure to a range of textual material combined with

contrastive learning produces the most accurate representations.

In particular, retrieval performance was significantly enhanced

by integrating data on the patient’s medication and clinical

history with EEG interpretation. Zero-shot pathology detection

also proved to be possible with such multimodal models. It showed

significant performance over EEG-only SSL was noted using linear

probing, with the greatest improvements in situations with a

limited number of annotated samples.

2.2.6 LLM for neural decoding
This study aims to employ LLM to develop a novel neural

decoder for interpreting intracranial EEG (iEEG). It tried to

overcome the limitations of traditional decoders, which often

specialize in specific tasks and struggle to interpret complex, real-

world brain activity (Lee and Chung, 2024).

This novel approach can provide more comprehensive, and

faster interpretations of iEEG signals more efficiently. The GPT-

3.5 turbo model was fine-tuned with preprocessed iEEG signals

categorized by frequency bands [high-gamma (30–200 Hz), beta

(12–30 Hz), and theta (4–8 Hz)] and by the regions of the

brain. These signals were presented as prompts to the model.

A Python-based system was developed to integrate neural signal

processing with the LLM decoder. The authors observed frequent

responses corresponding to visual and auditory stimuli. This

variability in responses to identical prompts highlights a limitation,

which could be addressed through more specific fine-tuning of

the LLM.

2.2.7 LLM on human attention
This research applies LLMs in the context of human attention

and sleep and tries to estimate the stages and quality of sleep

and attention states (Sano et al., 2024). The model can generate

suggestions for improving sleep and adaptive guided imagery

scripts based on electroencephalogram (EEG) and data related

to physical activity. This study’s results show that LLMs can

estimate sleep quality based on human textual behavioral features,

even though it requires further training data and domain-specific

knowledge. The study utilized (a) zero-shot learning: LLMs (GPT-

4, GPT-4 Vision) were used without specific training, relying

on their pre-trained knowledge to interpret the input data. (b)

In-context learning: LLMs (GPT-4) were provided with input

data and label examples within the prompts to enable them to

learn from the context. (c) Fine-tuned LLMs: GPT 3.5 Turbo

was fine-tuned on specific datasets for improved performance,

and (d) traditional Machine Learning: XGBoost, a gradient

boosting algorithm, was used as a benchmark for comparison.

The study focused on using interpretable features (e.g., power

spectrum density) to understand the extent to which LLM

contributes to the detection and improvement of altered states

of sleep.

LLMs, even with fine-tuning, showed lower accuracy in directly

detecting attention states, sleep stages, and sleep quality from EEG

and activity data compared to traditional machine learning models

like XGBoost. This study is done with limited datasets and limited

LLMs. Refining prompts and using large and diverse datasets can

enhance the model’s performance. More extensive training of LLM

can be done with diverse physiological and behavioral data to

effectively capture complex human patterns.

2.2.8 LLM on human reading comprehension
This study developed a Brain-Computer Interface (BCI)

system that can predict the relevance of words during reading

comprehension tasks by integrating EEG and eye-tracking data

with a novel reading embedding representation. LLMs are used to

guide the learning process and understand the underlying semantic

relationships within the text (Zhang et al., 2024c). This study uses

the pre-trained BERT model to generate word embedding that

helps to learn the semantic context of every token within a given

sentence. In addition, it also utilizes important eye-gaze features

such as fixation duration and pupil size, as well as conditional

entropy of the EEG signal at the input. In the next step, these bio-

signal features are normalized and projected into a common space.

The final set of processed features is passed on to an attention-based

transformer encoder combining word embeddings and biosignal

features resulting in effective multimodal representations. This

approach provides a reliable LLM-guided labeling process.

This improvement highlights the superior performance of

the transformer architecture in handling complex, multi-modal

data. This representation, which combined eye-tracking and EEG

biomarkers using an attention-based transformer encoder, had

the highest single-subject accuracy of 71.2% and a mean 5-

fold cross-validation accuracy of 68.7% across nine people using

a balanced sample. This is a pioneer study in eye tracking,

EEG, and LLMs to predict human reading comprehension

at the word level. Without any prior information about the

reading tasks, the Bidirectional Encoder Representations from

Transformers (BERT) model is fine-tuned for word embedding.

The model easily achieves an accuracy of 92.7% despite the lack of

task-specific information.

3 Discussion

The studies considered here show the ability of LLMs to

generate several meaningful features, especially proving to be

promising for use cases where the available data set size is limited.

This is achieved through the use of zero-shot and few-shot learning.

Recent research has shown the effectiveness of LLMs in performing

few shot learnings in domains ranging from seizure forecasting to

EEG textual report generations. Many of these works have reported
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that these transformer architectures are efficient in making use

of in-context learning for zero-shot tasks, merely by utilization

of information given over a textual prompt resulting in better

performance for both generative and discriminative tasks.

One of the key advantages of LLMs is their ability to generate

intermediate reasoning steps for the analysis of complex problems.

The use of strategies such as Chain of Thought for multi-step

calculations with LLM was proven to be effective due to strategic

lookahead and backtracking. Moreover, LLMs are proven to be

capable of using external expert tools in the analysis of EEG

and then synergizing those outputs to generate more meaningful

results, similar to a subject matter expert of the domain.

3.1 Ethical considerations

A serious aspect of using LLMs with neurological signal

processing and analysis is its ethical considerations. The data, that

is fed to the LLMs are personal physiological and behavioral data

which can raise privacy concerns. The users might get worried

about security and confidentiality, as the data is sent to cloud

servers with the use of popular LLMs such as GPT 4, Gemini,

and Claude. Transparency and effective data anonymization are

essential in this regard for avoiding issues due to leakage of data

from cloud platforms. Additionally, concerns are raised around

the generated contents from LLMs, which potentially be harmful

and inaccurate or may intend to manipulate the user. To avoid

this, implementing comprehensive guidelines covering ethical and

safety aspects is necessary.

A possible solution to reduce concerns around privacy and

security is to run the models locally on high-end servers. However,

this requires model pruning resulting in lightweight LLMs well-

suited for local execution with limited resources. Such a solution

often results in compromises around model’s effectiveness in terms

of prediction accuracy and computational time.

3.2 Limitations and future work

The need for LLM in the context of EEG analysis arises

from the gaps that were identified from existing literature. One

major challenge is the limited availability of EEG data. Unlike

image or text data collection, acquiring EEG data is complex.

Expert annotation is particularly time-consuming and results in

small datasets of labeled EEGs for specific BCI tasks. Existing

EEG datasets are not substantial enough to support robust LLM

training required for significant model efficiency gains. Thus the

questions to address are: how can we effectively utilize large-scale

unlabeled EEG data, and what volume of data would be necessary

for training LLMs?

Varying EEG collection configurations pose another challenge

to the use of LLMs for EEG analysis. Although the international

10–20 system provides standardization guidelines for EEG testing,

clinicians often use different numbers of electrodes based on

their specific application requirements. This variability creates a

significant research challenge in adapting various EEG data formats

to align with the input specifications of the neural transformer.

An additional hurdle involves developing effective EEG

representation learning approaches. The primary difficulty is the

low signal-to-noise ratio (SNR) and various types of interference.

Successfully balancing temporal and spatial characteristics is

essential for effective learning of EEG representation. Despite the

existence of various deep learning approaches for raw EEG data

processing, including CNN, RNN, and GNN architectures, many

researchers continue to rely on manually designed EEG features

due to these inherent challenges.
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