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Introduction: Autism spectrum disorder (ASD) encompasses a diverse range

of neurodevelopmental disorders with complex etiologies, including genetic,

environmental, and neuroanatomical factors. While the exact mechanisms

underlying ASD remain unclear, structural abnormalities in the brain o�er

valuable insights into its pathophysiology. The corpus callosum, the largest white

matter tract in the brain, plays a crucial role in interhemispheric communication,

and its structural abnormalities may contribute to ASD-related phenotypes.

Methods: To investigate the ultrastructural alterations in the corpus callosum

associated with ASD, we utilized serial scanning electron microscopy (sSEM)

in mice. A dataset of the entire sagittal sections of the corpus callosum from

wild-type and Shank3B mutant mice was acquired at 4 nm resolution, enabling

precise comparisons ofmyelinated axon properties. Leveraging a fine-tuned EM-

SAMmodel for automated segmentation, we quantitatively analyzed keymetrics,

including G-ratio, myelin thickness, and axonal density.

Results: In the corpus callosum of Shank3B autism model mouse, we observed

a significant increase inmyelinated axon density, accompanied by thinner myelin

sheaths compared to wild-type. Additionally, we identified abnormalities in the

diameter distribution of myelinated axons and deviations in G-ratio. Notably,

these ultrastructural alterations were widespread across the corpus callosum,

suggesting a global disruption of myelinated axon integrity.

Discussion: This study provides novel insights into the microstructural

abnormalities of the corpus callosum in ASD mouse, supporting the hypothesis

that myelination deficits contribute to ASD-related communication impairments

between brain hemispheres. However, given the structural focus of this

study, further research integrating functional assessments is necessary to

establish a direct link between these morphological changes and ASD-related

neural dysfunction.

KEYWORDS

Shank3b, autism spectrum disorder, corpus callosum, serial scanning electron

microscopy, myelinated axons
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1 Introduction

Autism Spectrum Disorder (ASD) represents multifaceted

neurodevelopmental conditions, primarily characterized by deficits

in social communication and repetitive behavior patterns (Lord

et al., 2020). Over the past several decades, the understanding of

ASD has evolved, emphasizing the need for deeper exploration

into its structural and functional underpinnings (Lord et al., 2018).

Recent advances in genomics and neuroscience have identified

numerous genes associated with ASD (Ellegood et al., 2015; Lim

et al., 2022; Sebat et al., 2007; Zhou et al., 2019), among which

Shank3 stands out for its pivotal role in synapse formation and

functional maintenance (Boccuto et al., 2013; Moessner et al.,

2007). Deletions or mutations of the Shank3 gene have been

strongly implicated in ASD development, making it a focal point

of research into the disorder’s mechanisms (Boccuto et al., 2013;

Crawley, 2012; Mei et al., 2016; Peça et al., 2011).

Researchers have extensively used Shank3B knockout and

heterozygous mouse models as essential tools to study ASD (Cope

et al., 2023; Liu et al., 2024; Li, 2024; Szabó et al., 2024; Balasco et al.,

2022; Jiao et al., 2024). These models exhibit not only behavioral

traits reminiscent of ASD but also significant brain structural

abnormalities, including altered hippocampus and thalamus sizes,

as well as disruptions in white matter organization, all of which

contribute to impaired brain connectivity (Jesse et al., 2020;

Balasco et al., 2022). Functional Magnetic Resonance Imaging

(fMRI) studies in ASD patients reveal hypo- or hyperactivation of

brain regions and deficits in resting-state functional connectivity,

often linked to anomalies in white matter microstructure (Dekhil

et al., 2020; Scott-Van Zeeland et al., 2010). Diffusion tensor

imaging (DTI) studies have also shown reduced integrity in critical

white matter tracts, such as the corpus callosum and the arcuate

fasciculus (Hernandez et al., 2015), suggesting compromised signal

transmission efficiency across brain regions.

The corpus callosum (CC), the largest white matter structure in

the brain, is a vital conduit for interhemispheric communication

(Paul et al., 2007), facilitating integration between cortical and

subcortical tracts across various lobes (Hofer and Frahm, 2006;

van der Knaap and van der Ham, 2011). The “atypical connectivity”

theory (Belmonte et al., 2004; Frith, 2004) of ASD suggests that

disrupted development in higher-order association areas leads

to abnormal brain connectivity patterns (Catani et al., 2016).

Macrostructural findings, such as reduced volume and altered

development trajectories of the corpus callosum in individuals with

ASD, underscore its importance in understanding the disorder

(Badhe et al., 2024; Kirkovski et al., 2024).

Within the corpus callosum, myelinated axons account for

90% of its fibers (Riise and Pakkenberg, 2011), playing a crucial

role in efficient neural communication through rapid signal

conduction (Almeida and Lyons, 2017; Suminaite et al., 2019).

Thus, Exploring the structural properties of these myelinated

fibers is key to understanding the connectivity deficits observed in

ASD. While previous studies using scanning electron microscopy

(SEM) have provided valuable insights into the corpus callosum’s

ultrastructure, they primarily focused on healthy models or non-

ASD conditions (Lee et al., 2019; West et al., 2015). Furthermore,

these investigations often examined small, localized regions,

failing to capture a comprehensive view of the corpus callosum’s

microstructural connectivity and its functional implications in

ASD.

Emerging evidence from studies of Shank3B mouse models

suggests that myelination changes may be linked to ASD symptoms

(Malara et al., 2022). However, a detailed examination of how

Shank3B deficiency impacts the ultrastructure of the corpus

callosum remains unexplored. In this study, we leverage serial SEM

and deep learning-based image analysis to create a high-resolution

map of myelinated axons in the corpus callosum of Shank3B

heterozygous mouse. By uncovering critical microstructural

alterations, this research aims to advance the understanding of

ASD-associated connectivity deficits and pave the way for future

therapeutic strategies.

2 Materials and methods

2.1 Animals

The experiment mice used in this study were two non-

littermate individuals, one wild-type and one Shank3B+/- mutant,

both derived from the C57BL/6J strain. Animal experimentation

was conducted at the Experimental Animal Center of the Suzhou

Institute of Biomedical Engineering and Technology, Chinese

Academy of Sciences. Animal experiments were performed in

compliance with ethical standards. Mice were housed under

standard temperature, lighting, and humidity conditions in

ventilated chambers, with unrestricted access to food and water.

All procedures adhered to the “Guidelines for Ethical Conduct

in the Care and Use of Animals in Research” (Guo-Ke-Fa-Cai-Zi

[2016] No. 398) and the “Code of Conduct in Laboratory Animal

Management of Jiangsu Province” (promulgated by Order No. 45 of

the People’s Government of Jiangsu Province). The study protocol

was reviewed and approved by the institutional ethics committee

and carried out in full accordance with its guidelines.

2.2 Sample preparation

Samples were collected from two 5-week-old mice, one wild-

type and one Shank3B heterozygous. Animals were fixed by cardiac

perfusion with a solution containing 2.5% paraformaldehyde

(PFA), 2.5% glutaraldehyde, 0.15 M cacodylate buffer and 0.05 M

calcium chloride. Following perfusion, brain tissue was harvested,

and initially sectioned sagittally into large blocks using a mouse

brain slice mold (Beijing Jitai Yuancheng Technology, spacing 1

mm). Subsequently, a Leica VT1200S vibrating blade microtome

was used to further slice the sagittal blocks at 100 µm intervals,

enabling a precise approach to the exact midline plane with an

accuracy of 100 µm. The mid-sagittal slice of the corpus callosum

was then further fixed in the same solution, chemically stained

for enhanced contrast, dehydrated with anhydrous ethanol and

acetone, and embedded in epoxy resin; detailed experimental

procedures can be found in previously reported protocols (Fan

et al., 2021). The resin block was mounted on an ultramicrotome

(Leica UC7). Sections were cut with a diamond knife at 50 nm

thickness, collected on a carbon-coated Kapton tape, and restained
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with heavymetals. Finally, the sections were affixed to silicon wafers

using conductive adhesive tape for storage and subsequent imaging.

2.3 Image acquisition

Sample sections were imaged using a Zeiss MultiSEM 505

at a lateral resolution of 4 nm, with the following acquisition

parameters: a single-beam electron current of 570 pA, a landing

voltage of 1.5 kV, a working distance of 1.4 mm, and a dwell

time of 0.8 µs. This setup enabled the successful acquisition of

high-resolution electron microscopy images of the entire corpus

callosum sections from both wild-type and Shank3B heterozygous

mouse.

2.4 Image processing

To reconstruct the entire section from the raw data, we utilized

the overlapping regions of adjacent tiles for stitching and rendering.

The large data size and high resolution imposed stringent demands

on stitching accuracy while also constraining processing speed.

To balance these factors, we employed a hybrid feature stitching

algorithm based on error detection, previously developed by our

team (Shi et al., 2024). This algorithm integrates multiple feature-

based methods to optimize computational accuracy and speed,

significantly improving stitching efficiency without compromising

precision.

To achieve high-precision segmentation of myelinated axons

andmyelin sheaths, we developed EM-SAM, a deep-learningmodel

based on the Segment Anything Model (SAM) (Kirillov et al.,

2023b). SAM is a large-scale, generalizable image segmentation

model designed to handle diverse image tasks. Building upon

its robust feature extraction capabilities, EM-SAM integrates a

ViT-based SAM backbone with our custom U-shaped decoding

structure, enabling end-to-end segmentation tailored for electron

microscopy data (Cheng et al., 2023). The model was trained on

a manually annotated dataset, running 150,000 training iterations

with a batch size of 2 on two NVIDIA 3090 GPUs, and the

entire training process took 25 hours. After training completion,

the model was applied to the entire dataset, with the inference

process taking 30 hours. Following this, four months were spent

manually refining the segmentation results to ensure accuracy. For

visualizations of the model’s performance evaluation, please refer

to Supplementary Figure 1S. We compared the proposed model

with mainstream U-Net (Ronneberger et al., 2015) segmentation

models and the ViT-based UNetR (Hatamizadeh et al., 2022), using

the Dice coefficient and mIoU as evaluation metrics. Detailed

results are provided in Supplementary Table 1S, where EM-SAM

demonstrated the best performance in both axon segmentation and

myelin segmentation tasks. Using this model, we achieved highly

accurate semantic segmentation of myelinated axons. To obtain

precise instance labels, we further processed the segmentation

results using traditional image processing methods, such as

connected-component labeling, dilation, and erosion, to ensure

accurate identification of individual myelinated axons across the

entire dataset.

2.5 Analysis

Leveraging the instance label results from full-image

segmentation, we extracted key quantification metrics to

characterize the structural properties of myelinated axons,

converting image data into quantitative insights. All calculations

were performed on patches of 2,048 × 2,048 pixels at an 8 nm

resolution. The quantification metrics included.

2.5.1 Axon and myelin area
The total area of axons and surrounding myelin was directly

extracted from the corrected segmentation labels. This metric

facilitates a comparative analysis of the mouse corpus callosum

microstructures at the neuronal level.

2.5.2 G-ratio
The G-ratio is a well-established and critical metric for

quantifying myelinated axons, representing the degree of

myelination relative to the axonal cross-sectional size. This metric

is important as it is strongly associated with the conduction

velocity of neuronal signals, directly affecting the efficiency of

neural communication and brain function (West et al., 2016).

Conventionally, the G-ratio is defined as the ratio of the inner

radius (representing the axon) to the outer radius (including

the myelin sheath), assuming a simplified circular axonal cross-

section. However, high-resolution electron microscopy images

reveal that most axonal cross-sections are irregular and non-

circular, introducting significant inaccuracies in diameter-based

measurements. Such geometric deviations can undermine the

reliability of the G-ratio in assessing myelination properties. To

address this issue, we utilized our high-precision segmentation

results and adopted an area-based calculation approach,the

equation is defined as:

G− ratio =
rinner

Router
=

√

Axon area

Myelin area+ Axon area
(1)

By calculating the axonal area and the total area enclosed by the

myelin sheath, and then taking the square root of the area ratio, this

method minimizes measurement errors and improves the G-ratio

accuracy for axons with irregular shapes.

2.5.3 Axon diameter and myelin thickness
Axon diameter is a critical determinant of signal conduction

speed, with larger diameters facilitating faster signal transmission

by reducing internal resistance. However, this advantage comes at

the cost of increased metabolic demand, necessitating a balance

between conduction efficiency and energy consumption. The

myelin sheath, a multilayered structure of lipids and proteins

surrounding the axon, enhances conduction efficiency by providing

insulation and minimizing electrical leakage. For axons with

a roughly circular cross-section, diameter measurements are

straightforward. However, irregularly shaped axons necessitate

alternative estimation methods, such as equivalent circular

diameter, fitted ellipse, or minimum enclosing circle. In this
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study, we adopted the fitted ellipse method, using its major

and minor axes for precise diameter estimation (West et al.,

2016). Accurately measuring myelin thickness across large corpus

callosum sections presents additional challenges, as manual

quantification is infeasible at this scale. To address this, we

leveraged instance segmentation labels for all myelin sheaths and

applied both fitted ellipse and distance transformation methods

to automatically quantify myelin thickness with high accuracy

(Lee et al., 2019). To further validate the accuracy of our

quantification method, a subset of axons and myelin was manually

quantified and compared with automated results, as shown in

Supplementary Figure 2S. The analysis showed a margin of error

within 0.05 microns.

2.5.4 Density
The density of myelinated axons, defined as the number of

myelinated axons per unit area, reflects their spatial distribution

within a specific region and plays a crucial role in neural signal

conduction, functional connectivity, and energy consumption. For

example, in the white matter of the spinal cord and the brain,

dense myelinated fibers facilitate rapid signal transmission between

the brain and the peripheral regions. In this study, we quantified

axonal density across the entire midsagittal section ofmouse corpus

callosum by counting the number of myelinated axons within each

label patch, with each patch covering an area of 268µm2.

Statistical analyses were performed using R (version 4.2.0) (R

Core Team, 2022). The Shapiro-Wilk test confirmed that the data

followed non-normal distribution, prompting the use of the Mann-

Whitney U test for comparisons. Data visualization was carried out

using ggplot2 (Wickham, 2016), with detailed methods outlined in

the main text and figure legends.

3 Results

The corpus callosum primarily mediates the information

transfer and integration between the left and right cerebral

hemispheres. It consists of dense white matter fibers, with

projections from various cortical regions converging at the midline

sagittal plane (Figure 1). For this study, we selected the mid-

region of the corpus callosum, highlighted in green in Figure 1,

where its morphology is most clearly observable. High-resolution

imaging was performed on the two-dimensional sections, and

the acquired raw image tiles were stitched into a large electron

microscopy image of the entire corpus callosum midline sagittal

section. Using advanced deep learning algorithms, we achieved

precise segmentation of myelinated axons and myelin sheaths,

enabling detailed ultrastructural analysis.

3.1 High-resolution corpus callosum EM
dataset

To investigate the ultrastructural features of the corpus

callosum, we constructed a high-resolution SEM dataset of the

midline sagittal cross-section of corpus callosum from both a wild-

type and a Shank3B heterozygous mouse (Figure 2). The dataset

encompasses the entire cross-section, including the genu, body, and

splenium of the corpus callosum. It comprises 59,292 tiles for the

wild-type mouse and 50,447 tiles for the Shank3B heterozygous

mouse. Raw image tiles were acquired at a pixel resolution

of 4 nm. To enhance data processing and storage efficiency

without compromising segmentation accuracy, we downsampled

the images to 8 nm per pixel. The rendered dataset was divided

into 4,096 × 4,096-pixel patches for processing. For the wild-type

mouse, 54 patches were generated in the X direction and 165 in

the Y direction, resulting in approximately 8,900 patches. For the

Shank3B heterozygous mouse, 56 patches in the X direction and

139 patches in the Y direction were obtained, yielding about 7,700

patches.

To enable detailed analysis and support diverse processing

requirements, we further performed gradient downsampling,

producing image data at eight different resolutions: 8 nm, 16

nm, 32 nm, 64 nm, 128 nm, 256 nm, 512 nm, and 1024 nm.

This multi-resolution dataset, totaling approximately 300 GB,

provides flexibility for examining structures at varying scales.

Figures 2A, D present an overview of the corpus callosum at 512

nm resolution, while Figures 2B, E zoom into subregions at 64

nm resolution. Figures 2C, F illustrate the finest resolution at 8

nm, clearly revealing the ultrastrctures of myelinated axons, myelin

sheaths, and unmyelinated axons. These dense white matter fibers,

characteristic of the corpus callosum, can be observed in most

regions, forming the foundation for subsequent segmentation and

analysis.

3.2 Automated high-precision
segmentation of myelinated axons

Extracting detailed ultrastructural information from electron

microscopy (EM) images has traditionally been a labor-intensive

process, reliant on manual annotation by experts. While effective

for small datasets, this approach is impractical for large-scale data

like our corpus callosum dataset. Recent advances in deep learning

algorithms, however, have paved the way for automated annotation

techniques, significantly improving efficiency and scalability. Given

the extensive volume of our dataset, which covers the entire

midline sagittal section of the corpus callosum, we adopted the

EM-SAM model (Cheng et al., 2023), a fine-tuned version of the

Segment AnythingModel (SAM) (Kirillov et al., 2023a), to perform

high-precision segmentation of myelinated axons. This approach

allowed us to achieve automated annotation across the dataset,

addressing the impracticality of manual methods.

The segmentation results are summarized in Figure 3. While

the raw EM sections included portions of adjacent structures

such as the Dorsal Commissure of the Fornix (DCF) and the

Hippocampus (HC), these regions were excluded from further

analysis. Figures 3A, B illustrate the masks highlighting the

specific corpus callosum regions. Semantic segmentation results

for myelinated axons within the corpus callosum are shown

in Figures 3C, D. To ensure accuracy, manual corrections were

applied to the model outputs. Each myelinated axon was distinctly

segmented, allowing for the application of traditional image

processing techniques such as connectivity labeling, dilation,
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FIGURE 1

A schematic illustration showing the workflow for acquiring high-resolution electron microscopy images in the mid-sagittal plane from corpus

callosum tissue.

FIGURE 2

Demonstration of the dataset at multiple scales of resolution. (A–C), Scanning electron microscopy images of wild-type mouse at resolution scales

of low resolution(512 nm), medium resolution(64 nm), and high resulotion(8 nm) (from left to right). (D–F), Scanning electron microscopy images of

Shank3B mouse at di�erent resolution scales, in the same order as wild-type.

and erosion to transform the semantic segmentation results

into instance segmentation results. Figures 3E–J provide detailed

visualizations of our segmentation outcomes, showcasing data from

the genu, body, and splenium regions. For each subregion, from

top to bottom, rows display semantic segmentation labels, axon

instance labels, and myelin instance labels. This high-precision

segmentation framework enables a comprehensive analysis of

myelinated axons and their associated myelin sheaths, offering a

level of detail that surpasses traditional macroscopic neuroimaging

methods. By leveraging this automated approach, we have

established a robust foundation for investigating axonal-level

structural differences in the corpus callosum.

3.3 Quantitative analysis of myelinated
axon ultrastructure

Using the instance segmentation labels generated for all

myelinated axons in the midline sagittal section of the corpus

callosum, we performed a comprehensive quantitative analysis of
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FIGURE 3

High-precision segmentation results of myelinated axons. (A, B), Corpus callosum region in the sections [(A) Wild-type, (B) Shank3B]. (C, D), The

myelinated axon segmentation labels for the entire corpus callosum [(C) Wild-type, (D) Shank3B]. (E–G), Detailed segmentation labels of di�erent

subregions in the wild-type mouse [(E) genu, (F) body, (G) splenium]. (H–J), Detailed segmentation labels of di�erent subregions in the Shank3B

mouse [(H) genu, (I) body, (J) splenium].

keymetrics. These include axon area, myelin area, G-ratio, long and

short axon diameters, myelin thickness, and density, as illustrated

in Figure 4A.

Due to the irregular morphology of axons we employed an

ellipse-fitting approach to calculate the long and short diameters

for more accurate and consistent quantification. The computed

results were specially mapped back onto the original regions in

the corpus callosum, as shown in Figures 4B, C. These figures

provide a visual representation of the metrics distributions across

different subregions in the wild-type and Shank3B mouse corpus

callosum, respectively. Our analysis revealed that the distribution

patterns for several metrics were consistent across the corpus

callosum in both groups. For example, axon density exhibits sparse

inner regions and denser outer regions, particularly in the body

and splenium, while the genu region shows a reversed trend with

denser inner regions. Myelin thickness demonstrats similar spatial

variation. These observations suggest that structural differences in

the corpus callosum may be influenced by projections originating

from different brain regions. This quantitative assessment provides

a nuanced understanding of the microstructural organization of

the corpus callosum and highlights the potential for structural

variations to impact its functional connectivity.

3.4 Structural alterations in corpus
callosum myelinated axons of Shank3B
mouse

To further investigate the structural differences observed in the

corpus callosum, we conducted a detailed statistical analysis of the

extracted metrics, comparing the wild-type and Shank3B mouse.

Frequency distribution histograms for each metric, including axon

area, myelin area, G-ratio, myelin thickness, and axon diameters,

are presented in Figures 5A–G. Quantitative results revealed

distinct variations between the two groups. In the wild-type mouse,

the mean ± SD for key metrics are as follows: axon area: 0.401 ±

0.135, myelin area: 0.414 ± 0.128, G-ratio: 0.699 ± 0.025, myelin

thickness: 0.168 ± 0.014, long-axis diameter: 0.820 ± 0.198, and

short-axis diameter: 0.543± 0.065. In contrast, the Shank3Bmouse
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FIGURE 4

Quantitative metric results (all data standardized using z-score normalization). (A) Schematic representation of the calculated metrics. (B) Variation of

various metrics across distinct regions of the corpus callosum in wild-type mouse [left-to-right order matches (A)]. (C), Variations of di�erent metrics

in di�erent regions of the corpus callosum in Shank3B mouse [left-to-right order matches (A)].

exhibits reduced values for axon area (0.380 ± 0.104), myelin area

(0.315± 0.082), and myelin thickness (0.145± 0.012), while the G-

ratio (0.738 ± 0.023) is notably elevated, indicating thinner myelin

relative to axon size and suggesting the potential alterations about

ultrastructural characteristics of myelination.

To assess statistical significance, we applied theWilcoxon rank-

sum test, a non-parametric method, which confirmed significant

differences across all metrics (p-value < 0.001, Figures 5A–

G). Particularly, the Shank3B mouse demonstrated a higher G-

ratio median, consistent with compromised myelin structure,

and exhibited smaller axonal cross-sections and thinner myelin

sheaths compared to the wild-type mouse. While the long-axis

diameters of axons remained relatively similar between the two

groups, the Shank3B mouse had significantly smaller short-axis

diameters, reflecting a reduction in overall axonal size. These

findings suggest that the Shank3B mouse display substantial

alterations in the structure of myelinated axons within the corpus

callosum, which may impair neural transmission efficiency. Such

structural deficits could disrupt the integration and transfer of

information between hemispheres, contributing to the connectivity

abnormalities associated with ASD.

Notably, segmentation results identified 625,754 myelinated

axons in the Shank3B mouse, a 36.4% increase compared to the

458,671 observed in the wild-type mouse, indicating a higher

axonal density in the former (Figure 5C). The elevated axon density

and total axon count in the Shank3B mouse may counterbalance

the transmission inefficiencies caused by structural alterations such

as reduced myelin thickness, smaller axon area, and larger G-

ratio—factors typically associated with diminished conduction rate.

While we cannot confirmwhether this results from a compensatory

mechanism, this phenomenon intriguingly aligns with clinical

studies that have reported increased white matter density, including
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FIGURE 5

Frequency distribution histograms and statistical test results of various metrics between wild-type and Shank3B mouse (Wilcoxon rank-sum test,

***p-value < 0.001). (A) Axon area. (B) Myelin area. (C) Density. (D) Myelin thickness. (E) Diameter long-axis. (F) Diameter short-axis. (G) Gratio.

in the corpus callosum, in individuals under 15 years of age with

hyper-connectivity (Ecker et al., 2010; Galvez-Contreras et al.,

2020). In such cases, the abnormal increase in axon numbers

may lead to redundancy or confusion in signal transmission,

potentially disrupting normal neural circuit function (Khanbabaei

et al., 2019; Solso et al., 2016). These findings suggest a complex

interplay in the Shank3B mouse between reduced single-axon

efficiency and compensatory hyper-connectivity, highlighting the

potential multifaceted impact of altered axonal structures on neural

transmission and connectivity dynamics.

3.5 Global structural alterations in corpus
callosum subregions

The corpus callosum is anatomically divided into distinct

subregions–genu, body, and splenium–based on their cortical

projections and functional characteristics, with each subregion

contributing uniquely to neural circuit integration and information

processing. In this study, we analyzed the midsagittal plane of

the corpus callosum to determine whether structural differences

observed in the Shank3B mouse are global or localized to specific

subregions. Our investigation focused on two key metrics: G-ratio

and myelin thickness. Pairwise comparisons of G-ratio between

the Shank3B and wild-type mouse, as illustrated in Figures 6A, B,

revealed significant differences across all three subregions. This

underscores the diverse yet interconnected roles these subregions

play in supporting cortical communication. Similarly, myelin

thickness also displayed significant differences across subregions

(Figures 6C, D), suggesting widespread structural abnormalities.

Further within-subregion analyses, as shown in Figures 6E, F,

confirmed that these variations were consistently present across

different areas of the corpus callosum.

4 Discussion

This study provides a detailed examination of the

ultrastructural and pathological changes in the corpus callosum

of the Shank3B mutant mouse. Using high-resolution serial

scanning electron microscopy, we generated a dataset covering
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FIGURE 6

Statistical test of Gratio and myelin thickness between di�erent subregions of the corpus callosum(Wilcoxon rank sum test, ****P < 0.001). (A, B),

Di�erence test results of Gratio in di�erent subregions of the corpus callosum. (C, D), Di�erence test results of myelin thickness in di�erent

subregions of the corpus callosum. (E), Di�erence test results of Gratio in the same subregion of wild-type and Shank3B mouse. (F). Di�erence test

results of myelin thickness in the same subregion of wild-type and Shank3B mouse.

the midsagittal plane of the entire corpus callosum with precise

annotations ofmyelinated axons. To our knowledge, this represents

the first large-scale, high-resolution EM imaging dataset specifically

focused on white matter regions. Most existing datasets primarily

emphasize gray matter or small areas of white matter, particularly

in neurodevelopmental and neurodegenerative contexts (Lucchi

et al., 2011; Wei et al., 2020, 2021; Abdollahzadeh et al., 2021). Our

dataset addresses this gap, serving as a critical resource for both

algorithm development and neuroscience research.

In addition to advancing the application of deep learning

algorithms for processing large-scale neural imaging data, our study

improves the accuracy of image segmentation and quantitative

analysis. By converting EM images into quantitative datasets, we

focused on specific biological questions, such as the structural

characteristics of myelinated axons in the corpus callosum

of the Shank3B ASD mouse model. This analysis revealed

significant axonal structure changes, offering new insights into

the pathological mechanisms underlying autism spectrum disorder,

particularly the corpus callosum’s role in neural information

transmission. Our findings not only provide valuable biological

evidence for ASD research but also support the theory of disrupted

neural connectivity, highlighting the corpus callosum’s critical role

in this framework.

Unlike previous studies that have primarily explored the corpus

callosum in ASD using macroscopic imaging techniques such

as MRI and DTI, our nanoscale approach offers unprecedented

detail. While macroscopic studies often examine features like

volume, morphology, or overall connectivity (Del Casale et al.,

2022; Goodwill et al., 2023; Zaidi et al., 2023), they fail to reveal

the microscopic structural changes within the corpus callosum,

particularly those affecting myelinated axons. By employing high-

resolution electronmicroscopy, our study bridges this gap, enabling

the observation and quantification of changes in myelinated axons

at the nanoscale. Metrics such as G-ratio, myelin thickness, and

total axon count allow for a precise understanding of microscopic

pathological changes and their impact on neural transmission

efficiency.

One significant finding of our study is the global nature of

structural abnormalities in the myelinated axons of the Shank3B

mouse. Unlike previous microscopic studies that have mainly

highlighted localized differences, our data demonstrate pervasive

changes across all subregions of the corpus callosum. These

alterations, such as reduced myelin thickness, maybe directly affect

nerve conduction velocity and, consequently, the efficiency of

information transfer between the brain hemispheres. These insights

suggest that myelin abnormalities may play a critical role in the

neurobiological basis of ASD, potentially influencing the cognitive

and behavioral symptoms observed in affected individuals.

Despite these contributions, our study has limitations that

future research should address. First, our analysis is based on

2D SEM images. While this provides valuable insights, it falls

short of capturing the complex 3D structure of the corpus

callosum. Full 3D reconstruction, though posing significant

challenges from sample preparation to data acquisition and

processing, would allow for a more comprehensive understanding

of spatial relationships and structural complexities within the

corpus callosum. Second, while our study focuses on structural

features, integrating behavioral assessments and functional analyses

can further elucidate how these microstructural changes relate to

ASD-associated behaviors. Future research might incorporate in

vivo imaging techniques to explore the functional consequences

of these structural differences, providing deeper insights into

how corpus callosum alterations affect cognitive and behavioral

outcomes. Third, due to the technical constraints of our lab in

large-scale high-resolution serial EM imaging and computational

capacity, the sample size in this study was relatively limited. While

the observed structural differences were statistically significant,

larger sample sizes will be essential to better assess their

biological relevance, thereby enhancing the generalizability of our

findings. Additionally, although automated quantification methods
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provided efficient and reproducible analyses, inherent limitations

in segmentation accuracy may introduce minor discrepancies.

Continued refinement of computational approaches and validation

against ground truth datasets will enhance the precision and

reliability of future analyses. By addressing these limitations, future

research can expand on our findings to gain deeper insights into the

role of corpus callosum microstructure and connectivity in ASD.

5 Conclusion

In this paper, we present a comprehensive analysis of

microstructural changes in the corpus callosum of the Shank3B

mouse model of autism, with a focus on the properties of

myelinated axons. Using high-resolution scanning electron

microscopy combined with deep learning-based image

segmentation techniques, we quantified critical metrics such

as axon area, myelin area, G-ratio, myelin thickness and axon

diameter. Our results reveal significant structural differences

between the Shank3B and the wild-type mouse, particularly in

G-ratio, myelin thickness and axon diameter. These findings

underscore the potential role of impaired myelination in the

neural connectivity deficits associated with autism spectrum

disorder (ASD). Specifically, the oberserved alterations in myelin

thickness and G-ratio likely impair the speed and fidelity of neural

signal transmission between the left and right brain hemispheres,

functions critical for higher cognitive processes. Importantly, these

changes are not restricted to specific subregions of the corpus

callosum but are pervasive across the entire corpus callosum,

indicating systemic disruptions of myelination within the Shank3B

mouse model. Beyond these findings, our study contributes a

valuable EM dataset of corpus callosum cross-sections, addressing

the scarcity of large-scale, high-resolution EM datasets of white

matter regions. This dataset not only facilitates further algorithm

development but also provides a critical resource for advancing

our understanding of white matter pathology in ASD and related

neurodevelopmental disorders.
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