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Introduction: This paper describes an experimental work using machine

learning (ML) as a “decoding for interpretation” to understand the brain’s

physiology better.

Methods: Multivariate pattern analysis (MVPA) was used to decode the patterns

of event-related potentials (ERPs, brain responses to stimuli) in a visual oddball

task. The ERPs were measured before (run 1) and after (30 min—run 2, 90 min—

run 3) a single dose of an energy dietary supplement with only a small amount

of caffeine.

Results: Its effect on ERPs was successfully decoded. Above-chance decoding

accuracies were obtained between ∼350 and 450 ms (corresponds to P3 peak)

after stimulus onset for both the placebo and study groups, whereas between

∼200 and 260 ms (corresponds to P2 waveform) only in the placebo group.

Moreover, the decoding accuracies were significantly higher in the placebo than

in the study group in the 200–250 ms and 450–500 ms time bins. Our previously

reported findings showed an increase in P3 amplitude among the runs only

in the placebo group, indicating a reduction of mental fatigue caused by the

supplementation.

Discussion: Thus, this paper extends these results, showing that the dietary

supplement affected the brain’s neural activity related to the attention-related

processing of the visual stimuli in the oddball task already at the early processing

stage. This implies that inhibiting the fatigue-related brain changes after only

a single dose of a dietary neurostimulant acts on early and late processing

stages. This emphasizes the value of decoding for interpretation in ERP research.

The results also point out the necessity of controlling the uptake of dietary

supplements before the neurophysiological examinations.

KEYWORDS

decoding brain’s function, EEG, event-related potentials, multivariate pattern analysis,
attention

1 Introduction

The high speed of life in these times increases the cognitive demands on our mind and
body. Therefore, seeking external psychostimulants that boost our energy level, vigilance,
and performance is natural. Probably the most studied one is caffeine, though other
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substances, such as taurine, vitamin B, guarana, yerba mate,
carnitine, and ginkgo biloba, have similar effects (Bäcker and
Jaitner, 2023; Buckenmeyer et al., 2015; Daou et al., 2019; Glade,
2010; Pradhan and Pal, 2020; Wassef et al., 2017). Many products
on the market are rich in these substances and easily accessible for
everyone, e.g., energy drinks. Therefore, the majority of the studies
focus on the adverse effects of such products, which, due to high
doses, possible toxic interactions, and/or long-term use, may result
in severe health issues. They became a significant concern for health
providers around the world (Cao et al., 2021; Costantino et al., 2023;
Higgins et al., 2010, 2015; Kaur et al., 2022; Mendoza et al., 2023;
Surma et al., 2023).

On the contrary, typical moderate caffeine intake is considered
safe, and smaller doses of neurostimulants have been shown to
improve cognitive performance (Hajsadeghi et al., 2016; Turnbull
et al., 2017). The reported beneficial effects of caffeine-based
and multi-ingredient supplements relate to increased wakefulness,
alertness, energetic arousal, mood, improved psychomotor and
mental performance (e.g., memory, attention, choice reaction, and
concentration), decreased mental fatigue and stress, and reduced
levels of amino acids linked to cognitive impairment, mental
disorders (Bäcker and Jaitner, 2023; Buckenmeyer et al., 2015; Daou
et al., 2019; Glade, 2010).

One of the most powerful techniques to study cognitive
processes is electroencephalography (EEG) due to its excellent
temporal resolution, allowing researchers and clinicians to
reveal neural processes in healthy and pathological conditions
(Cohen, 2014; Luck, 2014). In addition, when the participants
are presented with visual, auditory, or somatosensory stimuli
during EEG acquisition, the brain’s neural responses elicited
by these stimuli are analyzed through the specific EEG
signal patterns, time-locked to the stimulus (event-related
potentials, ERPs). The pattern of the recorded brain activity
is an estimate of the particular neurocognitive processes,
such as attention, working and long-term memory, or spatial
orientation, measured under experimental manipulation,
which can be used to study the impact of neurostimulants
(Cohen, 2014; Luck, 2014).

Attention is one of the most important cognitive mechanisms.
It acts at an early, perceptual, as well as at the later, post-
perceptual level. Thus, ERPs are a perfect method to study
attention, as they can dissociate the processing stages and
types of attentional processes. The early effects are related to
visuospatial attention, observed as a P1 wave suppression for
the stimuli at unattended locations (first positive ERP, beginning
70–100 ms after stimulus onset), followed by an N1 waveform
(first negative ERP) enhancement at attended locations. The P1
attention effect reflects a suppression of feedforward sensory
processing at unattended locations. On the other hand, the
N1 attention effect reflects the operation of a limited-capacity
discrimination process directed to the information presented
at the attended location. However, attentional mechanisms can
be modulated by features other than location. This type of
selection based on non-spatial features (featural attention) is
mostly observed as a broad posterior effect (selection negativity)
and the more temporally discrete anterior effect (anterior P2
attention effect, anterior selection positivity). Different non-spatial
dimensions have been shown to elicit feature-based attention,
like color, orientation, form, or direction of motion. When

perceptual systems are overloaded, attention operates at an
early stage and influences the early sensory ERP components.
However, selective attention may also operate on post-perceptual
processes when the stimuli overload memory encoding or response
selection systems. The P3 component is a typical late ERP
elicited in an oddball paradigm, where there are at least two
stimulus categories, of which one contains rare (targets) and
the other contains frequent stimuli (standards). P3 amplitude
is higher for the infrequent task-relevant events and can be
influenced by the amount of attention allocated to a stimulus,
whereas its latency represents the classification speed (Luck, 2014;
Luck and Kappenman, 2012).

However, studies investigating the impact of low-dose energy
boost supplements on objective measures of brain activity are
scarce. There are studies showing that even low doses of caffeine
and/or other neurostimulatory substances may improve cognitive
performance, but they are mostly based on behavioral data
(Haskell-Ramsay et al., 2018; Kennedy et al., 2008; Smit and Rogers,
2000). Only a few studies investigated the impact of lower doses
of caffeine on EEG or ERPs (Ajjimaporn et al., 2022; Meng et al.,
2017; White et al., 2017). Ajjimaporn et al. studied the acute effect
of a 50 mg caffeinated drink (CAF) on resting state EEG (rsEEG)
and other measures of cognitive and physical performance. The
authors observed diminished alpha wave activity and improvement
of cognitive function on working memory following caffeine
consumption. Meng et al. investigated the effects of soft drinks and
regular coffee on rsEEG and on the performance of motor imagery-
based brain-computer interface (BCI). The authors observed a
decrease in alpha and beta power after caffeine consumption
compared with control and sugar conditions. However, there are
several limitations of these studies, e.g., lack of proper control
conditions. In addition, White et al. (2017) studied the effect
of a single dose of multivitamin and mineral combinations
with and without guarana on functional brain activity during a
continuous performance task. The Authors concluded that their
results suggested that a single multivitamin/mineral dose was
sufficient to impact functional brain activity in task-related brain
regions.

Therefore, this work is a part of our project on the influence
of a single dose of a dietary supplement with a small amount of
caffeine (55 mg) on EEG and ERPs in healthy participants. Earlier,
we found an increase in P3 amplitude throughout the experimental
session only in the placebo group, whereas it remained at the
same level in the study group. This effect was related to the
increased number of attentional resources allocated to perform
the task due to increasing mental fatigue, which was inhibited
in the study group (Maciejewska and Grabowska, 2020). More
sophisticated approaches have extended the classical univariate
analysis due to their higher sensitivity, e.g., non-parametric cluster-
based permutation analysis (Maris and Oostenveld, 2007).

However, multivariate decoding methods may be even
more advantageous for studying brain functions (Hebart
and Baker, 2018). Using machine learning (ML) in data
analysis of time series has a rich history. However, it has
been mainly used to extract features of the signal in biofeedback
closed-loop applications like BCIs, e.g., to steer a wheelchair
or prosthesis. Other typical applications are classification
methods used in data mining in diagnostics and treatment for
automatic classifications of physiological and pathophysiological
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signals (Gao et al., 2018; Lopez-Garcia et al., 2018;
Salas-Gonzalez et al., 2010; Wall et al., 2012).

Interestingly, in addition to this standard approach—“decoding
for predictions” in real-world applications (Hebart and Baker,
2018), there is another line of ML applications in signal analysis,
which is of special significance for neuroimaging. In recent
years, there has been growing attention to using multivariate
“decoding for interpretation” to understand the human brain better
(Grootswagers et al., 2017; Hebart and Baker, 2018). Due to its
higher sensitivity, using multivariate pattern analysis (MVPA) may
increase the statistical power of the study, which in turn results
in finding possible weaker effects that might not be captured by
the conventional methods. Conventional ERP analyses ask whether
the difference in voltage between the studied conditions (averaged
across participants) is large relative to the variability across
participants. Anything that causes variability across participants,
including differences in brain folding that cause differences in scalp
distribution, reduces the likelihood that the true difference in brain
activity between the two conditions is statistically significant. On
the other hand, decoding is done separately for each subject, and
then a t-test is used to ask whether decoding accuracy at each time
point is significantly better than chance. It does not matter whether
different subjects have different scalp potential distributions. This
tends to minimize the standard error, giving us larger t-values than
in the conventional analysis. Therefore, decoding is usually more
sensitive than the traditional approach (i.e., decoding gives greater
statistical power) (Carrasco et al., 2024; Luck, 2023). ML has been
used to decode ERPs in several cognitive processes, e.g., working
memory, attention, motion direction, face perception, expectation
violations, and even personality traits (Bae, 2021; Bae and Luck,
2018, 2019a; Jach et al., 2020; Lowe et al., 2023; Maciejewska and
Froelich, 2021; Turoman et al., 2024; Valeriani et al., 2001).

This work has three aims. The first one was to investigate
further the acute effect of energy boost supplementation on
processing visual stimuli in an oddball task. To this end, MVPA
was performed to better discriminate the ERPs recorded before
and after the digestion of a single dose of a caffeinated dietary
supplement. Second, the ML results were compared with the
results of univariate tests, as well as the non-parametric cluster-
based permutation analysis obtained by us earlier (Maciejewska
and Grabowska, 2020). Finally, to evaluate the influence of the
classification parameters setup, the classifier performance was
compared among three sets of decoding parameters: (1) the
minimal required - 10 trials per ERP average and 3 cross-validation
blocks, which resulted in including 31 participants, (2) 13 trials
per ERP average and 3 cross-validation blocks (24 participants
included), and (3) 10 trials per ERP average and 4 cross-validation
blocks (24 participants included).

Decoding offers greater sensitivity compared to conventional
methods. In the standard approach, the ERP measures are analyzed
using the classical univariate analysis, i.e., by statistical testing
significant differences in ERP amplitudes or latencies at the group
level (by comparing mean ERP amplitude calculated for a pre-
defined time window, averaged across all stimulus repetitions)
or time point by time point, as is done in the cluster-based
permutation analysis). Instead of comparing grand-averaged ERPs
(i.e., mean ERPs calculated across all the participants), decoding
works at the single-subject level. Since decoding is done separately
for each participant, no assumption of the same scalp distributions

is necessary. Therefore, in this work, MVPA is expected to reveal
subtle changes in neural processing underlying the studied brain
functions that more conventional methods have failed to detect.

The significance of this work lies in investigating the possible
beneficial effect of only a single dose of a dietary supplement with
much less caffeine than a cup of coffee on brain physiology in
mental fatigue. However, the studied problem is also important in
the neurophysiological examinations, where controlling the uptake
of such supplements might be crucial. In addition, the results allow
translation into clinical applications focused on pathophysiology
related to attention, anxiety, mood, and memory disorders.

2 Materials and methods

2.1 Participants

This work does not contain any data collection, as it presents
the results of an analysis performed on previously reported data
(Maciejewska and Grabowska, 2020). In the original experiment,
healthy volunteers were examined in a double-blind, placebo-
controlled study. Forty-seven young, healthy, physically active
students or university alumni (27 women, according to the
questionnaire) at the age of 26.1 ± 4.6 years were recruited for
the experiment. The sample size has been determined based on the
previous work and is typical in ERP research (Bae, 2021; Bae et al.,
2020; Bae and Luck, 2019b; Grootswagers et al., 2017; Michalkova
et al., 2022). All the participants were right-handed, moderate
caffeine users, had normal or corrected to normal visual acuity,
and had no history of neurological or psychological disorders.
None of the participants had consumed alcohol, coffee, intoxicants,
energizing beverages, or other such substances within at least 12 h
before the study. The study was conducted with the understanding
and written consent of each subject, following The Code of Ethics of
the World Medical Association, the Helsinki Declaration of 1975,
as revised in 2000, and has been approved by the Committee of
Ethics of the University of Silesia in Katowice on scientific studies
conducted on humans (number 2/2018) which could be provided
upon request.

In a typical ERP analysis, it is recommended to perform
the power calculation to ensure the sample size is sufficient to
reliably evaluate the studied effects. The expected effect size for this
study was medium (ηp

2 = 0.06). The post hoc power calculation,
performed using G∗Power v. 3.1 (Faul et al., 2007) for the alpha
level of 0.05, gave a power of 0.85 (which is considered strong
power, above the standard threshold of 0.80) for a total sample size
of 30, and a power of 0.75 for 24 participants, suggesting a good
chance (75%) of detecting a true effect. These calculations indicate
that our sample size (i.e., the number of participants) included in
the analyses is sufficient to detect the expected effects. However,
one must bear in mind that such calculations are performed for
standard statistical tests, where the measures of central tendency
(such as the mean or median of all data points in each group)
are compared among the conditions. On the other hand, decoding
benefits from operating at the single-subject level, which makes
it more sensitive than the conventional approach (Carrasco et al.,
2024). Therefore, an even smaller sample size might be sufficient to
find a true effect using decoding.
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2.2 Experimental procedure

The original study aimed at studying the effect of a single dose
of caffeinated energy boost dietary supplement dissolved in a cup of
water (with a total amount of 55 mg of caffeine, including caffeine
extract, guarana, yerba mate, cocoa powder, vitamin B and other
vitamins and minerals) on ERPs in a visual oddball paradigm.
A double-blind, placebo-controlled study was used, where neither
the participants nor the data collectors knew which group the
participant belonged to. Half of the participants (the study group)
received the active substance. The other half (the placebo group)
received a placebo designed to appear, as much as possible, like the
active substance. They drank one cup of water with dissolved one
effervescent tablet containing vitamin C in a similar dose as was in
the dietary supplement. The drinks in both groups had the same
taste, smell, and color.

EEG was recorded in three runs: before the supplementation
(run 1), 30 min after the supplementation (run 2), and 90 min after
the supplementation (run 3). The participants were instructed to
gaze at the center of the black screen during interstimulus intervals
and observe the stimuli (yellow font on a black background):
letters (frequent stimuli, standards) and digits (rare stimuli,
targets) presented in the center of the computer monitor. The
stimulus parameters were: 200 ms duration and 1,000 ± 200 ms
interstimulus interval. The stimuli were presented in random order
for each participant in each run. Their probabilities were: 20% for
the target and 80% for the standard stimuli. The overall number
of stimuli was 250 (200 standard and 50 target stimuli), and
participants were instructed to push a pad button after each target
stimulus. Details of the study design were previously described in
Maciejewska and Grabowska (2020).

2.3 EEG acquisition

The EEG signal was recorded from 32 Ag/AgCl electrodes
embedded in an elastic WaveguardTM EEG cap in the extended
10/20 EEG montage system with AFz electrode as the ground
electrode, common average reference, and 256 Hz sampling rate.
The EEG signal was converted to a digital time series and amplified
using an ANT Neuro amplifier (AMP-TRF40AB model) in DC with
a 20,000-amplification gain. The Advanced Source Analysis system,
ASA-Lab (ANT Neuro), with ASA v.4.8 software, was used for
acquisition. No filter was applied during data acquisition, except for
the anti-aliasing low-pass filter with cutoff frequency = 0.2∗ sample
frequency (51.2 Hz for the sampling frequency of 256 Hz).

2.4 EEG pre-processing

EEG pre-processing and analysis were performed in MATLAB
R2021b (Mathworks) with open-source MATLAB packages for
M/EEG analysis: EEGLAB (Delorme and Makeig, 2004) and
ERPLAB 10.04 (Lopez-Calderon and Luck, 2014). During offline
pre-processing, the recorded EEG signal was filtered using a high-
pass non-causal Butterworth filter [with 0.1 Hz half-amplitude
cutoff and 12 dB/octave slope (second-order)]. Large artifacts,
seen as high-amplitude voltage deflections in many channels (not

specific to any particular channels but usually occurring in most of
them), other than typical eye or muscle artifacts, and mostly related
to the movement of the participants, were rejected manually during
visual inspection. The signal was re-referenced to the average of the
mastoids. Independent component analysis (ICA) using EEGLAB’s
runica algorithm was used for eye blink artifact correction based
on: the anterior scalp distribution, the location in the ERP image,
and the spectral histogram of independent components (ICs). This
resulted in identifying one or two components for each participant.
Continuous signal was then epoched into 1-s long time windows,
starting 200 ms before the stimulus (baseline). The choice of the
epoch length was made because the P3 waveform (the latest ERP
elicited in this paradigm) peaks around 400 ms, and this length is
commonly used to study this component, as well as to maintain
integrity with the results obtained before. The time points used
for the analysis were consistent across all trials for each subject.
Moreover, the fewer time points, the better for the MVPA. Trials
with incorrect behavioral responses or eye blinks occurring during
stimulus presentation (i.e., from −200 ms before to 200 ms after
the stimuli) were excluded from the averages. The mean number of
target stimuli after these steps of data processing was 48 ± 3. Data
acquisition and the first pre-processing steps described above were
done in our previous, original study (Maciejewska and Grabowska,
2020). The following preprocessing steps that were needed to
prepare the data for the upcoming decoding were done in this
work: renaming the trial types, merging the datasets, creating
new eventlist files, assigning the trials to the bins, re-epoching,
rejecting epochs that contained signal boundaries, and artifact
rejection using ERPLAB’s moving window peak-to-peak threshold
tool. Trials in which peak-to-peak voltage exceeded 100 µV in
200 ms time windows (with 50 ms window step) were detected
and excluded from the analysis. Then, the datasets were used in
the MVPA described below, which was entirely conducted in this
work. The pipeline presenting the pre-processing and analysis steps
is shown in Figure 1.

2.5 Multivariate pattern analysis of ERPs

The multivariate pattern analysis was performed using
ERPLAB’s Multivariate Pattern Classification Tool (Lopez-
Calderon and Luck, 2014), designed to perform decoding of the
ERPs. To this end, the classifier was trained to distinguish the
classes of stimuli based on the pattern of voltage scalp distribution
based on the EEG signal measured from scalp channels (Bae,
2021; Bae and Luck, 2018, 2019a; Grootswagers et al., 2017; Luck,
2023). The goal of this study was to determine whether the ERP
signal contains information about the experimental run it came
from, i.e., before the supplementation (run 1), 30 min after the
supplementation (run 2), and 90 min after the supplementation
(run 3), using above-chance decoding accuracy as the most
straightforward evidence that such information is present (Bae
and Luck, 2018). Since the goal of decoding was to find the
neurophysiological effect of the experimental manipulation
(supplementation) through the changes in the ERP patterns
recorded throughout the experimental session, elicited by the
task-relevant stimuli, the decoding was performed on the epochs
elicited by the target stimuli. Keeping in mind three facts: (1)
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FIGURE 1

ERP pre-processing and analysis pipeline. The ERP pre-processing included: high-pass filtering, visual inspection and removal of the artifactual
segments, re-referencing, ICA decomposition, blink artifact correction, data reorganization for MVPA, creating event lists and bins, epoching, and
artifact removal in the epoched data. The MVPA analysis included: creating Extract Bin-Based Single Trials (BEST) files (to convert the epoched
datasets into a format that is more convenient for pattern classification), decoding using MVPA (multivariate pattern classification), plotting the
decoding performance, and plotting the confusion matrices.

P3 is a robust, well-known ERP elicited in a variety of oddball
experiments, (2) knowing its parameters, and (3) having analyzed
the ERPs elicited in this experiment using standard ERP techniques
in our previous works, there was no reason to decode the ERPs
elicited by the standards from the ERPs elicited by the targets.
Moreover, the research question asked in this study was whether
the ERPs elicited by the task-relevant targets contain information
about the experimental run.

MVPA, also referred to as decoding or classification (Chadwick
et al., 2012; Weaverdyck et al., 2020), is a class of methods (a type
of analysis) that is used to distinguish the classes of stimuli based
on the pattern of voltage scalp distribution from the EEG signal
measured from scalp channels. Here, the classes were the three
runs of the experiment (run 1:3). The chosen decoding parameters
follow the recommendations of specialists in the field based on the
previous literature on the use of the ML approach in analyzing
ERPs, adapted to our data (Bae, 2021; Bae et al., 2020; Bae and Luck,
2018, 2019b, 2019a; Baiano and Zeppieri, 2023; Carrasco et al.,
2024; Grootswagers et al., 2017; Isik et al., 2014; Luck, 2023). Unlike
the standard decoding of the continuous EEG signal, ERPs are
specific due to the constraints of the paradigm (i.e., repetitions of
the presented stimuli during EEG recording) and their nature as the
brain’s responses to the upcoming stimuli. Therefore, since ERPs
are the time series of electrical potential measured within a time
window time-locked to the onset of the stimuli from the electrodes

on the scalp, MVPA allows to decode of the pattern of voltages
across the electrodes between the studied conditions. To this end,
a separate support vector machine (SVM) classifier, a powerful and
popular ML algorithm, was trained to discriminate between each
class (here: run of the experimental session) and the other two
runs based on the scalp distribution. Such an approach allowed the
SVM to learn how the scalp distribution for the ERP from one run
differed from the scalp distribution for ERP from the other runs at
a particular time point (for each participant separately).

To take advantage of the excellent temporal resolution of the
EEG signal, the classification was performed time point by time
point for the whole ERP epoch and then investigated where,
in time (relative to the stimulus onset), the decoding accuracy
exceeded the chance level. Such an approach allowed us to study
the dynamic brain activation pattern and compare the accuracies
among the conditions.

Thus, the decoding for each participant was performed on the
electric potential values measured at each variable: time (256 time
points, from −200 to 800 ms time-locked to the stimulus onset),
experimental run (run 1, run 2, run 3), trial (mean number of 48± 3
individual target trials, i.e., repetitions of the target stimuli, for each
run), and electrode site (30 electrode channels). The number of
time points resulted from the sampling frequency (256 Hz, i.e., 256
data points saved during EEG acquisition per second). Decoding
was performed on the means calculated across the trials to improve
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the signal quality. A separate SVM classifier was then trained for
each time point to discriminate between each run and the other
two runs based on the scalp distribution. Therefore, a decision
hyperplane (i.e., a hyperplane that separates two classes) through
the 30-dimensional space was drawn (because there were 30 scalp
channels) that separated the trials for each class. In other words,
the classifier distinguished conditions based on voltage patterns
across electrodes.

Therefore, each trial was a single point that represented the
voltage value from a set of 30 channels. The SVM algorithm was
used, as it tends to work well with a modest amount of data (Luck,
2023). The error-correcting output codes approach (ECOC) was
used for decoding the ERPs among three classes, as recommended
for multiclass decoding (Dietterich and Bakiri, 1995). One-versus-
all decoding was used, in which each decoder learned to distinguish
between one class and the other two classes. To test decoding
accuracy, the data for a test case were fed into all the decoders, and
the outputs of the decoders were combined into a single decision
that provided the best guess for that case.

128 Hz effective sampling rate (i.e., every other time point) was
used to increase signal quality (to minimize random fluctuations),
which gave a temporal resolution of 8 ms. EEG (also ERPs) are
time series, i.e., they are the values of voltage measured from the
electrodes in time, using a pre-defined time step. This time step
comes from the sampling frequency, which defines how many
data points are being saved during data acquisition per time unit
and determines the temporal resolution. E.g., the sampling rate of
256 Hz means there are 256 samples saved per second. This, in
turn, means the time interval between the adjacent time points
is 1/256 Hz ≈ 0.004 s = 4 ms. Therefore, offline subsampling
to 128 Hz, by taking every other time point, results in having
an 8 ms time interval between data points, i.e., the temporal
resolution. Decoding was performed for the time range of the whole
ERP epoch, which lasted 1 s, starting 200 ms before the onset
of the stimulus, and ending 800 ms time-locked to the stimulus
presentation. This length is appropriate to investigate late ERPs,
such as P3. The details about the dataset’s structure are described
in the Supplementary materials.

The important part of the classification is the cross-validation,
i.e., training the algorithm on a subset of the data and then
testing it on the data that was left out. To increase the precision,
this procedure is usually repeated k times, each time leaving
out a different subset for testing, therefore called a k-fold
cross-validation. However, single-trial ERP data are noisy, which
introduces a trial-to-trial variation. Thus, averaging multiple ERP
trials is required. To fulfill these criteria, the data from each class
were randomly divided into multiple subsets of trials, and each
subset of trials was averaged separately. This led to having k folds
x n trials per ERP for each class (e.g., 30 trials per condition gives
3 folds × 10 trials per ERP). In a standard ERP analysis on the
subject level, all trials are averaged for each participant. However,
since decoding needs validation, some portion of the trials needs to
be left out. Therefore, all trials are divided into k folds (k averages),
where each fold is an average of n trials. For instance, if there is a
total number of 30 available trials (which is a typical number for
most ERPs), they need to be equally divided. Since the minimal
recommended number of trials per average is 10, this gives three-
folds, where each fold is an average of 10 trials. Then, the classifier
was trained on the k-1 averages (each having n trials) and tested on

the remaining average. To improve the resolution of the decoding
accuracy, this process was iterated, each time using a new random
assignment of trials to averages (Luck, 2023). Here, the decoding
was iterated 100 times, to balance between the calculation costs and
obtaining sufficient decoding accuracy. The ERP pre-processing
usually results in excluding a few trials that contain artifacts, so the
final number of trials differed among the participants. Therefore,
a common floor for the number of trials per ERP across all the
subjects was used.

However, there are some technical aspects to consider in ERP
research, e.g., the minimal number of trials (stimuli repetition)
per condition, with 20–30 trials being acceptable for achieving
satisfactory SNR in most cognitive ERPs (Luck, 2014). At the same
time, the ML model requires sufficient input examples for proper
cross-validation and generalization. Thus, the single-trial ERPs
from each class were divided into subsets of trials. Previous studies
have shown that the classifier performs well with 10 as the minimal
number of trials per ERP and 3 as the minimal number of blocks for
cross-validation (Bae, 2021; Grootswagers et al., 2017; Luck, 2023),
which corresponds well with the typical 30 trials per condition in
the ERP studies. However, there is still a decision to make when
more trials are available, i.e., whether to increase the number of
trials per ERP or the number of cross-validation blocks (where
both increase the SNR at the single-subject level but exclude more
subjects) or keep the minimal values of the decoding parameters
but include more subjects, which results in increasing the statistical
power at the group level.

Therefore, decoding was performed separately using three sets
of decoding parameters to evaluate the effect of choice criteria to
create the averaged ERPs (i.e., the number of trials averaged and
the number of cross-validation blocks). First, 10 trials per ERP
average and 3 cross-validation blocks were used, according to the
recommendations on the minimal number of trials per ERP (set
1). Then, two more strict criteria at the subject level were used.
One was focused on the number of trials per ERP average, i.e., 13
trials per average and 3 cross-validation blocks (set 2). The third set
emphasized the number of folds, i.e., 10 trials per ERP average and
4 cross-validation blocks (set 3). These two criteria were chosen to
use the available trials, considering the requirement of the common
floor (i.e., the same number of trials) across all the participants.
Therefore, from all 47 participants recruited, available were only
those whose number of ERP trials after rejection was at least 30 (10
trials per ERP x 3 cross-validation blocks), 39 (13 trials per ERP
x 3 cross-validation blocks), and 40 (10 trials per ERP x 4 cross-
validation blocks) for sets: 1, 2, and 3, respectively. This resulted
in including 31 participants for the MVPA using set 1, and 24
participants for the MVPA using sets 2 and 3.

2.6 Statistical analysis

2.6.1 Decoding performance
A statistical analysis was performed on the decoding

performance to evaluate whether the classifier successfully
discriminated the ERP patterns among the experimental runs
(classes) for each studied condition (placebo and study group).
In decoding for interpretation, one does not need to obtain
close to 1 decoding accuracy, as the goal is to increase the
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statistical power of the analysis and find differences between
the analyzed conditions. Therefore, the classifier performs well
if the decoding accuracy is significantly above the chance level.
To this end, the decoding accuracies were compared against the
chance level (0.33) for each condition separately (placebo and
study groups) within the whole epoch (from −200 to 800 ms
relative to the stimulus onset). In this study, the classes were
the runs of the experiment: before the supplementation (run
1), 30 min after the supplementation (run 2), and 90 min after
the supplementation (run 3). This gave a chance level of 0.33
because the classifier could classify the ERPs to one of the three
classes. This classification was performed for each participant
separately. Then, the decoding accuracies were averaged for the
participants who were in the placebo group and for the participants
who were in the study group, and the decoding averages were
statistically compared against the chance level for each group
separately using a one-sample permutation t-test with correction
for multiple comparisons using the mult_comp_perm_corr
function (Groppe, 2024), for each parameter set. This method
adjusts p-values in a way that controls the family-wise error
rate and is more powerful than the Bonferroni correction when
different variables in the test are correlated. If the voltage pattern
over the 30 electrodes contains information about the run,
then the decoding accuracy should be greater than the chance
level.

2.6.2 Inter-group comparison
The decoding accuracies between the studied conditions (study

and placebo groups) and parameter sets (set 1–3) were first
averaged across 50-ms time bins along the ERP epoch to compare
the decoding accuracies. Such a bin length allows to capture of
possible effects in the time course of the studied ERPs and is
often used in neurocognitive research to evaluate the studied effects
along the ERP epoch. Then, a repeated measures ANOVA was
used to compare these averaged accuracies (dependent variable)
among the following categorical factors: condition (placebo vs.
study group), parameter set (set 1, set 2, set 3), and time (200–
250 ms, 250–300 ms, 300–350 ms, 350–400 ms, 400–450 ms,
450–500 ms, 500–550 ms, 550–600 ms, 600–650 ms, 650–700 ms).
Shapiro-Wilk W test, Levene test, and Mauchley test were used
to test the normality, homogeneity of variance, and sphericity,
respectively. The data had a normal distribution and fulfilled
the homogeneity of variance criterion. A Greenhouse-Geisser
correction was used to correct violations of sphericity. P < 0.05
was regarded as statistically significant. Statistica v. 14.1 was used
for this analysis.

2.6.3 Comparison of the MVPA results with the
previous standard and non-parametric
cluster-based permutation analysis

A trend analysis was performed to compare the results obtained
by the MVPA decoding with our results from the standard and non-
parametric cluster-based analysis reported earlier.

Therefore, the hypothesis of this work is that the
supplementation influences ERPs, which can be detected through
decoding accuracy above the chance level. In addition, the effects
that were not captured by the previously applied methods are
expected to be observed using decoding.

3 Results

The dataset used for this study contained single-trial pre-
processed ERPs elicited by targets from run 1, run 2, and run
3 of the visual P3 oddball task from the placebo and control
groups. Figure 2 presents a representative grand-averaged ERP (i.e.,
averaged across all the participants) from runs 1 to 3 of the placebo
and study groups, measured at channel Pz (parietal electrode at the
midline).

The visual inspection of the ERPs shows a typical time course
and characteristics of the waveforms, i.e., early sensory potentials,
which seem not to change throughout the experiment in either
condition, and much higher P3 for targets than for standards. This
broad positive component is observed between around 300–700 ms
after stimulus presentation, related to the attention process elicited
as a result of the stimulus classification process (i.e., the participants
had to evaluate whether each of the presented stimuli is a standard
or a target, before deciding to push the button in reaction to the
targets). P3 reaches a maximum around 350–550 ms after stimulus
onset and is maximal over the central and parietal scalp areas. Its
amplitude is related to attentional resource allocation and latency
to the classification speed (Luck, 2014; Luck et al., 2000; Polich,
2007). More attentional resources directed to the target stimuli
elicited a stronger P3 than the standard stimuli. In addition, smaller
components (N1, P1, N2, and P2) are present and related to the
sensory processing performed at the earlier stage.

To better visualize the scalp distribution of the broad
P3 waveform in the studied conditions, the grand averaged
topographical ERP distribution images that represent the ERP
amplitudes averaged between 350 and 550 ms post-stimulus are
presented in Figure 3. A posterior, midline distribution, typical for
P3 component, is well seen (slightly higher in the left hemisphere)
only in the trials time-locked to the targets, in both study and
placebo conditions. Moreover, there is a slight tendency to increase
its amplitude when going from run 1 to run 3 only in the placebo
group.

3.1 Decoding performance

The pre-processed ERP datasets from each participant were
decoded at the subject level among the three runs (i.e., three classes)
for the placebo and study groups separately. This gave the chance
level = 0.33 (1 over 3 runs). First, the classification was performed
using the minimal values of the decoding parameters (set 1), i.e., 10
trials per ERP average and 3 cross-validation blocks. The decoding
accuracies calculated separately for each participant were then
grand-averaged across all the participants from the placebo and the
study group. Grand averaged decoding accuracies for the placebo
and the study groups using set 1 are presented in Figure 4A.

Decoding accuracy for the ERP activity in the placebo group
began to rise above chance around 200 ms after the stimulus
onset, maintained at the highest level around 450–550 ms, with
the maximal peak around 500 ms, and decreased as time after
the stimulus increased. Time intervals for which the accuracies
were significantly above chance level were: from around 200 to
260 ms and from 280 to 770 ms. These two intervals likely reflect
the P2 (ERP component arising 200 ms after the stimulus onset,
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FIGURE 2

Grand averaged ERPs from the placebo group: run 1 (A), run 2 (B), run 3 (C), and study group: run 1 (D), run 2 (E), and run 3 (F), elicited by the
standard (black) and target (red) stimuli, measured at channel Pz. The vertical line at time 0 ms represents the onset of the stimulus.

FIGURE 3

Grand averaged topographical distributions of the ERPs averaged between 350 and 550 ms from the placebo group: run 1 (A), run 2 (B), run 3 (C),
and study group: run 1 (D), run 2 (E), and run 3 (F), for the standard (rows 1 and 3) and target (rows 2 and 4) stimuli.

Frontiers in Neuroinformatics 08 frontiersin.org

https://doi.org/10.3389/fninf.2025.1563893
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-19-1563893 July 3, 2025 Time: 19:1 # 9

Maciejewska 10.3389/fninf.2025.1563893

FIGURE 4

(A–C) Mean accuracy of ERP-based decoding performed using MVPA with the use of set 1–3 of decoding parameters among three classes (run 1,
run 2, and run 3) for the placebo (red) and the study (blue) groups within the ERP epoch (-200 to 800 ms): (A) set 1 (10 trials per ERP average and 3
cross-validation blocks), (B) set 2 (13 trials per ERP average and 3 cross-validation blocks), (C) set 3 (10 trials per ERP average and 4 cross-validation
blocks). (D) Decoding accuracies from the placebo group among run 1, run 2, and run 3, using all three decoding parameter sets: set 1 (red), set 2
(blue), and set 3 (green). The dashed black line is the chance level (0.33). Stimulus onset is at 0 ms. Time intervals for which the accuracies were
significantly above the chance level after correction for multiple comparisons are marked in bold lines.

related to registration and early input classification) and P3 ERP
components, respectively. Decoding accuracy for the ERP activity
in the study group began to rise above chance later (around 260 ms).
The maximal value was achieved around 400 ms, then dropped and
remained at a similar level (lower than the placebo group) until
700 ms and then decreased again. Time intervals with decoding
accuracy significantly above chance were from around 260 to
310 ms, from 335 to 370 ms, and from 380 to 780 ms.

In addition to the time course of the ERP-based decoding
accuracies, confusion matrices were calculated. Figure 5 presents
confusion matrices for set 1 (10 trials per ERP average and 3 cross-
validation blocks) for placebo and study groups, averaged over
two time windows: 210–260 ms and 450–550 ms. Since decoding
was performed for each time point within the ERP epoch, the
confusion matrices have been constructed based on the average
values within these two time windows, which represent the peaks
of the two ERP components: P2 and P3. The confusion matrix
is calculated at each time point, and it gives more information
about the nature of the errors the decoder made. It shows the
likelihood that a true class was classified as each of the alternative
classes. For the purpose of this work, the confusion matrices were

averaged over a time range that corresponded to the two ERPs of
interest: P2 (210–260 ms) and P3 (450–550 ms). This was done
to better visualize the decoding performance that yielded the best
accuracy and was previously observed in Figure 4. Each cell shows
the probability of a given classification outcome (y-axis, predicted
labels) for a given class (x-axis, true labels), averaged over the two
time intervals and across participants. The decoding showed a high
probability of classification responses at the true values, as the
classification responses were aligned around the central diagonal
for both placebo and study groups. However, higher classification
probabilities were achieved for the placebo group, especially for the
450–550 ms interval.

Figure 4B presents the time course of the decoding accuracies
when the classification was performed using more strict criterion
at the single subject level (set 2), i.e., the inclusion of 13 trials per
ERP average, keeping the same number of cross-validation blocks
(i.e., 3 blocks), which resulted in including 24 participants (12
in the placebo and 12 in the study group). Decoding accuracies
had a similar time course as when set 1 was used. However, the
difference between the placebo and study groups was much more
pronounced here. The decoding accuracy in the placebo group rose
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FIGURE 5

Confusion matrices calculated using parameter set 1 (10 trials per ERP average and 3 cross-validation blocks) for placebo (upper row) and study
(lower row) groups, averaged over two time windows: 210–260 ms (first column) and 450–550 ms (second column). The units are proportion
correct.

above the chance level from around 210 ms after the stimulus onset,
was maximal around 450–550 ms, and peaked around 500 ms,
achieving almost 60%. Time intervals for which the accuracies were
significantly above chance level were: from around 210 to 260 ms,
from 280 to 340 ms, from 360 to 530 ms, from 550 to 600 ms, and
from 630 to 670 ms. On the contrary, in the study group, it was
significantly above chance only from around 380–470 ms and from
520 to 740 ms. It dropped considerably with the time interval of
450–500 ms (maximal value in the placebo group).

These differences between the placebo and study groups were
further emphasized in the confusion matrices (Figure 6). The
decoding performance was again better for the placebo than for
the study group. However, the differences between the groups were
higher than when set 1 was used. Moreover, whereas the decoding
accuracies in the study group were similar for all three runs (around
40% for the 210–260 ms and around 50% for the 450–550 ms
interval), in the placebo group, it was the highest for decoding run
1 (50% for the 210–260 ms and 59% for the 450–550 ms interval).

Figure 4C presents the decoding accuracies calculated using the
last set of decoding parameters (set 3), i.e., 10 trials per ERP average
and 4 cross-validation blocks. This resulted in 24 participants
(12 in the placebo group and 12 in the study group). Here, the

results were very similar to those obtained using set 2. Similarly,
decoding accuracies above the chance level started around 210 ms
after stimulus presentation for the placebo group and 270 ms after
stimulus presentation for the study group. Time intervals for which
the accuracies were significantly above the chance level in the
placebo group were: from around 210 to 260 ms and from 280
to 670 ms. In the study group, it was mainly from around 370 to
470 ms and from 520 to 730 ms for the study group.

The confusion matrices calculated using parameter set 3
(Figure 7) had the same characteristics (and similar probabilities)
as the ones for set 2. The decoding performance was again better
for the placebo group than the study group, with larger differences
than when set 1 was used. Again, the decoding accuracies in the
study group were similar for all three runs, whereas they were the
highest for decoding run 1 in the placebo group.

For all decoding parameters, decoding accuracies were at the
chance level for the whole baseline time window, until around
200 ms after stimulus presentation (Figure 4). Time intervals for
which the accuracies were significantly above the chance level for
both the placebo and study groups are marked in Figure 4 in
bold lines. Decoding accuracy was higher for the placebo than for
the study group within around 450–590 ms post-stimulus, with
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FIGURE 6

Confusion matrices calculated using parameter set 2 (13 trials per ERP average and 3 cross-validation blocks) for placebo (upper row) and study
(lower row) groups, averaged over two time windows: 210–260 ms (first column) and 450–550 ms (second column). The units are proportion
correct.

maximum values of 0.57, 0.61, and 0.62 for parameters set 1, 2, and
3, respectively. This maximal decoding accuracy was achieved at
508 ms after stimulus onset for all parameter sets. In addition, for
sets 2 and 3, decoding accuracy was higher in the placebo than in
the study group, also within around 210 to 375 ms.

Figure 4D presents the decoding accuracies among all three
parameter sets only for the placebo group. The above-chance
decoding accuracy was achieved for all parameter sets within
around 210–260 ms after stimulus onset, and then from around
280 to 770 ms for parameter set 1, and from around 280 to 670 ms
for parameter sets 2 and 3. In addition, for both the placebo and
the study groups, slightly higher decoding accuracies within these
time ranges were obtained with parameter sets 2 and 3, compared
to set 1.

3.2 Comparison of the decoding
accuracies among the conditions and
parameter sets

To directly evaluate the differences in the decoding accuracies
between the placebo and study groups and among the three

parameter sets, the accuracies were averaged across 50-ms time
bins between 200 and 700 ms and compared among the conditions.
Such a time range was chosen because this analysis was targeted
at the meaningful time range, so only the time bins that had a
neurophysiological meaning were compared. Main effect TIME
(F9, 657 = 20.2, Pcorr < 0.001, partial eta-squared = 0.22) and
interaction effect TIMExCONDITION (F9, 657 = 3.7, Pcorr = 0.0037,
partial eta-squared = 0.05) were significant. Post hoc tests revealed
significant differences between the placebo and study groups for the
following time bins: 200–250 ms (P = 0.035, Cohen’s d = 0.3) and
450–500 ms (P = 0.001, Cohen’s d = 0.7). Figure 8 presents mean
decoding accuracies for placebo and study groups in the analyzed
time bins.

3.3 Trend analysis of the results obtained using
standard methods, non-parametric cluster-based
analysis, and MVPA decoding

A trend analysis has been performed to compare the results
obtained in this work with our previously reported findings. Table 1
presents the effects studied using four methods: (1) evaluating the
decoding performance against the chance level for the placebo and
study groups, (2) comparison of the decoding accuracies between
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FIGURE 7

Confusion matrices calculated using parameter set 3 (10 trials per ERP average and 4 cross-validation blocks) for placebo (upper row) and study
(lower row) groups, averaged over two time windows: 210–260 ms (first column) and 450–550 ms (second column). The units are proportion
correct.

the studied conditions, (3) standard statistical testing, and (4) non-
parametric cluster-based analysis. Methods 1 and 2 were performed
in this work, whereas methods 3 and 4 have been described in
Maciejewska and Grabowska (2020). Using the standard analysis,
we found the main effect run, interaction effects RUNxGROUP
(post hoc significant differences only in the placebo group),
SESSIONxAREA (post-hoc significant differences over central and
parietal areas) for the mean ERP amplitude averaged between
350 and 550 ms (i.e., related to the P3). The non-parametric
cluster-based permutation analysis revealed one significant cluster
(P = 0.003), which extended from approximately 400 to 520 ms
over the centro-parietal area (Maciejewska and Grabowska, 2020).
For clarity, among the ML results, only set 3 was included, as this
set achieved the best performance. The comparison of the results
using trend analysis was performed for three time intervals within
the ERP epoch, which are neurophysiologically relevant: (1) early
stimulus processing, related to the P2 component (∼200–260 ms),
(3) post-processing related to the P3 peak (∼350–450 ms), and
post-processing associated with the late part of the P3 component
(450–550 ms).

Analyzing the data in Table 1, we can see that the experimental
effect in the early time window (∼210–260 ms) was obtained

only when ML was used. First, the above-chance decoding in this
time window was observed only in the placebo group. Further
ANOVA analysis confirmed a significant difference in the decoding
accuracy between the placebo and study groups in this time bin.
The standard univariate analysis could not test the studied effect in
this time window because it used a different time window chosen
a priori. Non-parametric cluster-based analysis did not reveal a
cluster corresponding to this time window.

Within the time window related to the P3 peak (∼350–450 ms),
the decoding was above chance for both the placebo and study
groups, and there was no significant difference in the decoding
accuracies in this time window. The standard analysis revealed
a significant difference in the P3 amplitude between the placebo
and study groups. However, this difference was calculated for the
a priori time window of 350–550 ms, so it is impossible to conclude
about only a part of such a window.

All methods revealed a significant effect within the time
window related to the later part of the P3 component (∼450–
550 ms). The decoding accuracy was above chance only in the
placebo group, and the ANOVA analysis confirmed this difference.
The standard analysis revealed a significant difference in the
decoding accuracies between the placebo and study groups within
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FIGURE 8

Mean group-level decoding accuracies performed using MVPA for placebo and study groups along the ERP epoch averaged across 50-ms time
bins. Vertical bars represent 0.95 CI. Asterisks represent significant differences between the placebo and study groups.

TABLE 1 The results of trend analysis comparing the results between MVPA, standard analysis, and non-parametric cluster-based analysis.

ERP effect MVPA Standard
analysis

Non-
parametric

cluster-
based

permutation
analysis

Placebo
against
chance

Study
against
chance

Significant difference
in decoding accuracy
between placebo and

study group

main effect
run,

interaction
effects

RUNxGROUP

one
significant

cluster
(P = 0.003)

Time window related to early processing:
P2 component (∼200–260 ms)

↑↑ n.s. ↑↑ n.a. n.s.

Time window related to post-perceptual
processing: maximum of P3 component
(∼350–450 ms)

↑↑ ↑↑ n.s. ↑↑ ↑↑

Time window related to post-perceptual
processing: late part of the P3 component
(∼450–550 ms)

↑↑ n.s. ↑↑

↑↑means statistically significant (P < 0.05), n.s. means non-significant, n.a. means not applicable.

the 350–550 ms. Finally, non-parametric cluster-based analysis
showed a significant cluster corresponding to the 400–520 ms.

4 Discussion

The goal of this study was to decode the acute effect of energy
supplementation on the ERPs elicited in a visual oddball paradigm,
i.e., a cognitive task engaging attentional resources. MVPA was used
to dissociate the ERPs among three runs: (1) before, (2) 30 min

after, and (3) 90 min after digestion of a single dose of an energy
dietary supplement with a small amount of caffeine (study group)
or a placebo (placebo group) among young, healthy volunteers.

4.1 Decoding the impact of energy boost
supplementation

In our previous work (Maciejewska and Grabowska, 2020), we
found a significant increase in P3 amplitude, defined as a mean
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amplitude between 350 and 550 ms, throughout the experiment
(run 1 - > run 2 - > run 3) only in the placebo group, over
central and parietal areas. However, the standard univariate testing
has several limitations, such as high data dimensionality, selection
of the range of time and channels included in the analysis, and
MCP. Such an approach may lead to the loss of effects that
have not been found yet or that are too small (Cohen, 2014).
Therefore, to overcome this problem, in the next step of the same
work, we used non-parametric cluster-based permutation analysis,
where the univariate tests are performed point-by-point, corrected
for MCP, and spatiotemporal clusters are created (Maris and
Oostenveld, 2007). In the analysis, all time points (i.e., the whole
epoch) and all 30 electrodes were included in the permutation test.
The analysis revealed one significant cluster (P = 0.003, cluster
corrected), which corresponded to a broad positive spatiotemporal
cluster from around 400 to 520 ms over the centro-parietal area
(Maciejewska and Grabowska, 2020). However, this approach is
based on each subject’s averaged ERPs, which don’t consider the
intra-trial variability across the single recording.

Therefore, in the current work, an alternative method was used,
MVPA, to better discriminate the voltage pattern across electrode
sites. First of all, the ERPs were successfully decoded among
three runs of the experiment for both the placebo and the study
group (observed as the above-chance decoding accuracies marked
in bold in Figures 4A–D). To interpret the neurophysiological
underpinnings of these results, the time course of the decoding
performance within the ERP epoch will be discussed within the
three time intervals, each related to different brain processing
stages.

First, the decoding accuracies were at the chance level (i.e.,
0.33) for the whole baseline time window, i.e., between −200 to
0 ms, for both the placebo and the study group, regardless of the
parameter set used (P > 0.18 for both groups and all sets). This
is physiologically valid since the baseline time window represents
the time before the stimulus presentation, i.e., without task-related
brain activity. This information is crucial because it serves as an
additional validation of the decoding performance in terms of the
physiological signal. Since the pre-stimulus period is related to
the ongoing brain activity unrelated to the task, we should not
expect decoding accuracy above the chance level in the baseline
time window. This confirms that there are no differences in the
analyzed ERPs among the classes that are not physiological.

The second time interval is between the onset of the stimulus
(i.e., 0 ms) and around 200 ms. This interval represents the
time when the visual stimulus is processed by the visual pathway
from the retina (which is not captured by EEG) to the primary
visual cortex (calcarine cortex) (Luck and Kappenman, 2012).
Visual evoked potentials (VEPs) are the first early sensory
potentials elicited in the visual modality. They are related to the
physical parameters of the stimulus but are independent of the
consciousness and attention state of the participant. The most
stable VEP is P1, a positive component with a maximal amplitude
of around 100 ms, preceded by N1 at around 75 ms and followed
by N2 at around 140 ms (Baiano and Zeppieri, 2023). The decoding
accuracies within this time window were higher than from the
baseline (especially when sets 2 and 3 were used). However, they did
not reach a significance level above chance for either the placebo or
the study group (with the lowest P within the 0-200 ms of: 0.32,
0.49, 0.27, 0.45, 0.36, and 0.47 for: placebo group from set 1, study

group from set 1, placebo group from set 1, study group from set
1, placebo group from set 1, study group from set 1, respectively).
This means that the classifier failed to distinguish the ERPs in this
time interval among the three classes (runs). These components are
related to the physical characteristics of the stimuli. In this study,
the physical parameters of the stimuli were kept the same across
the compared runs and conditions. Thus, these results confirm that
the early neural processing of the visual stimuli (from around 100 to
200 ms) is not influenced by the increasing mental fatigue elicited
in this paradigm, nor affected by the single dose of caffeinated
energy boost dietary supplement. In some paradigms that focus on
the early attentional processes, there are early attentional processes
that are manifested in the ERPs as the P1 suppression for the
stimuli at unattended locations (i.e., a location on a screen where
the participant is not paying attention to) and N1 enhancement at
attended locations (i.e., a location on a screen where the participant
is focusing, e.g., the location where the target stimuli are presented).
These effects are related to visuospatial attention, i.e., when the
stimuli that the participants observe are presented in different
locations of the visual field. Here, however, all the stimuli were
presented in the center of the screen, so there was no competition
between spatially distinct information streams.

The decoding accuracy started to rise above the chance level
around 200 ms post-stimulus. However, at this stage, differences
between the placebo and study groups became apparent. In the
placebo group, the accuracy was significantly above the chance
level as early as around 200–260 ms after stimulus presentation
(with the lowest P < 0.001 for all sets), whereas only after 260 ms
in the study group (with the lowest P of: < 0.001, 0.014, and
0.014, for sets 1–3, respectively). This discrimination between the
conditions is especially well observed where sets 2 and 3 of the
decoding parameters were used (Figures 4B,C). In those cases, the
above-chance decoding accuracies in the study group were achieved
only after around 370 ms (with the lowest P of: < 0.001 for both
sets), except for a short time interval of less than 10 ms, which,
considering the decoding accuracy of 8 ms, is not physiologically
relevant. The statistical comparison of the decoding accuracies
for 50-ms time bins between the conditions confirmed that it is
significantly higher in the placebo than the study group in this time
window with P = 0.035 and Cohen’s d = 0.3 (200–250 ms time
bin, Figure 8). This time window is related to the P2 component
which is present later than the fast, purely sensory components, but
earlier than higher cognitive waveforms, such as P3 (Figure 2). It
is generated around 200–260 ms and represents, among others, the
registration and early input classification, early selective attention,
and detection of stimulus features (Dunn et al., 1998; Michalkova
et al., 2022; Xia et al., 2018). The fact that the classifier successfully
distinguished the ERPs in this time interval among the runs only
in the placebo group means that the P2 amplitude significantly
changed from run 1 to run 3 in this condition. On the other
hand, it remained at a similar level in the study group. Indeed,
in Figure 2, one may observe an increasing P2 amplitude time-
locked to the target when going from run 1 to run 3 in the placebo
group. Whereas in the study group, it remains at a similar level
and is not distinguishable from the standard-related trials. This
pattern of results is also visible when looking at the confusion
matrices (Figures 5–7). Mean decoding accuracies averaged across
210–260 ms (corresponding to the P2 component) tend to be higher
in the placebo than in the study group for all parameter sets.
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Moreover, the highest values were obtained for run 1, which can
be interpreted as the easiest to decode, i.e., differing more from the
other two runs. This is in line with the ERP traces, which show
a higher increase between run 1 and run 2 than between run 2
and run 3 (Figures 1, 2 from Maciejewska and Grabowska, 2020).
Indeed, ERP literature has shown that featural attention may be
manifested as an anterior P2 attention effect (anterior selection
positivity) (Luck, 2014; Luck and Kappenman, 2012). This type of
attention effect is related to the processing of non-spatial features.
The fact that the decoding accuracies were higher for the placebo
than for the study group in this time interval suggests that the
dietary supplement affected the early classification, attention, and
detection of stimulus features processes.

Finally, the decoding performance was the highest within the
last, broad, and late time window. It was higher for the placebo
than for the study group within around 450–590 ms post-stimulus
(regardless of the decoding parameters). It was maximal (62%)
when parameter set 3 was used. In this time window, a P3 is
observed, originating from temporal-parietal activity associated
with attention (Luck, 2014; Polich, 2007). In an oddball paradigm,
P2 and P3 are larger for targets than standards, but the P2 effect
occurs only when simple stimulus features define the target. At the
same time, the P3 effect can also be observed for complex target
categories (Luck, 2014). Interestingly, the decoding accuracy in
the study group did not achieve above-chance performance within
the P3 time window, i.e., from around 470 to around 520 ms,
when sets 2 and 3 were used (P > 0.069 and P > 0.057 for
set 2 and 3, respectively, Figure 4). This discrimination between
the conditions was confirmed by the statistical comparison of the
decoding accuracies for 50-ms time bins between the conditions.
The decoding accuracy was significantly higher in the placebo
than in the study group in the 450–500 ms time bin (P = 0.001,
Cohen’s d = 0.7). The interpretation is the same as in the P2
component, i.e., the classifier successfully distinguished the ERPs
in this time interval among the runs only in the placebo group
because the P3 amplitude significantly changed from run 1 to run
3 in this condition, whereas it stayed at a similar level in the
study group. This pattern of results is also visible when looking at
the confusion matrices (Figures 5–7). Mean decoding accuracies,
averaged across 450–550 ms, i.e., the time corresponding to P3
with the highest accuracy, tend to be higher in the placebo than
the study group for all parameter sets. The highest values were
obtained for run 1 for sets 2 and 3 (59%), like the results in the P2
time interval. These results support the ones reported by us earlier
(Maciejewska and Grabowska, 2020). The differences in the time
intervals for which the significant results were obtained using the
three analysis methods result from the methodological differences
of these analyses. The standard analysis uses an a priori time
window, so if the time window was specified at 350–550 ms, one
cannot infer when exactly the difference occurred within this time
interval. On the other hand, non-parametric cluster-based analysis
allows only for testing whether or not there was a significant
difference within the analyzed epoch and to relate the effect to a
spatiotemporal cluster (Maris and Oostenveld, 2007). Therefore,
the time interval that corresponds to the effect is approximate.

Importantly, the output from all the analyzed methods shows a
significant difference in how the P3 changed throughout the runs
between the placebo and study groups, which started probably
after 400 ms and lasted around 100 ms. These results indicate

that a single dose of energy supplementation with a small amount
of caffeine inhibited an increase in the P3 amplitude throughout
the experimental session. P3 amplitude depends on uncertainty,
probability, and resource allocation (Luck, 2014). However, the
uncertainty and probability did not change between the runs
and conditions in our experiment. Therefore, the increase in P3
amplitude among the runs in the placebo group seems to be
an effect of increased resources allocated to perform the task.
This increase in P3 probably results from increasing mental
fatigue caused by having to complete many tasks during a long
experimental time. This interpretation is consistent with our results
on resting-state EEG from the same experiment, where we observed
an inhibition of an increase in low-frequency brain oscillations
caused by the supplementation (Maciejewska and Moczarska,
2023). Clinical data suggest that attention-related ERPs are linked
to dopaminergic, norepinephrine, and catecholaminergic activity,
with the involvement of the locus coeruleus–norepinephrine
(LC-NE) system and acetylcholine (Ach) receptors (Burk et al.,
2018). The energy-boost supplements impact the CNS by
blocking the adenosine receptors A1 and A2, which prevents
adenosine metabolism and results in increased dopamine and
norepinephrine activity through releasing catecholamines. This
mechanism explains how such supplementation may influence
ERPs as the neurophysiological representation of attention
processes. These results point out the necessity of controlling
the uptake of dietary supplements before the neurophysiological
examinations.

Overall, this part of our data showed higher decoding
accuracies in the placebo than in the study group, in time intervals
related to P2 and P3 ERPs. Our results indicate that the ERPs in
participants who drank the supplementation changed throughout
the experimental session considerably less than those from the
placebo group. This pattern of results suggests that the dietary
supplement inhibited the increasing changes in the ERPs, related
probably to the progressive mental fatigue in the participants,
as described by us earlier (Maciejewska and Grabowska, 2020;
Maciejewska and Moczarska, 2023), and as suggested by previous
findings (White et al., 2017).

Such a neurophysiological state of mental fatigue was purposely
induced by us to simulate a real-world situation in which someone
needs an energy boost when feeling tired and mentally exhausted.
Noteworthy, the current work shows that such a supplementation-
elicited inhibition affected not only the post-perceptual attention
process, but also the early classification, attention, and detection of
stimulus features processes already at the early processing stage.
It is worth noting that, while using the traditional ERP analysis,
the individual differences considerably impact the ERPs, decoding
is performed on a single-subject level. This makes decoding more
sensitive and allows detection of effects that may not be visible in
the standard analysis.

4.2 Comparison of the decoding criteria

In the next part of the analysis, the decoding accuracies were
compared among the three choices of decoding criteria. Previous
research on ERP decoding suggests that the minimal requirements
for a good classification performance of ERPs are 10–20 trials per
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ERP average and three-fold cross-validation. This considers the
limitation of the total number of trials discussed in the Materials
section. Averaging single-epoch ERPs is necessary for analyzing
ERPs because it enhances brain responses to the stimulus while
reducing random fluctuations of the ongoing activity not related
to the stimulus processing. It reduces random variability and the
overlap between the set of points for each class. The benefit of
decoding is that it is done at the single-subject level. Thus, it masks
the potential individual differences to a lesser extent. That is why
this method is more sensitive. However, the important step is to
choose the optimal number of folds and trials per fold. A higher
number of folds increases the number of training cases but also
reduces the SNR of the ERPs, as fewer trials are being averaged.
Another thing is that including more trials results in excluding
more participants at the group level of the analysis, since a different
number of trials per subject survives the pre-processing of the
EEG signal. In addition, when the decoding accuracy is compared
between different groups, the number of trials needs to be floored
(i.e., equate to the dataset with the smaller number of trials per
ERP), as its differences may introduce differences in decoding
accuracy. This issue was the goal of the second part of this work.

The comparison of the decoding accuracies among the three
sets of decoding parameters did not reveal significant differences
(F2, 73 = 2.0, P = 0.15, partial eta-squared = 0.051). However,
even though there was no SET effect when comparing the three
parameter sets, sets 2 and 3 tend to perform better within 210–
400 ms and 450–650 ms time intervals (Figure 4D). The confusion
matrices also suggest higher performance when sets 2 and 3 were
used compared to set 1 (Figures 5–7). This trend suggests the
greater importance of having a better SNR at the subject level
(i.e., more total number of trials per subject) than having more
participants included at the group level. In addition, since the
decoding accuracies were comparable between sets 2 and 3, it
doesn’t matter whether there are more trials per condition or more
folds. Such a pattern of results agrees with the fact that decoding is
more sensitive than the traditional approach because it operates at
the single-subject level.

However, since these results show only trends with no
significant differences, the impact of the number of trials per
ERP vs. the number of cross-validation blocks vs. the number of
participants needs further investigation.

To sum up the overall discussion, this work shows that
even a single dose of a dietary supplement that has much less
caffeine than a cup of coffee changes brain physiology in mental
fatigue. In cognitive neuroscience, when the studies are performed
with human participants or patients, there are usually several
instructions provided to the participants regarding what should or
should not be done before the examination, such as not consuming
alcohol or other substances that might influence the activity of the
brain. However, these procedures are not uniform and depend on
the research laboratory. The current study shows that even products
that contain only a small amount of caffeine may change the brain’s
activity, manifested in the early and later stages of processing visual
stimuli. This points out the necessity of controlling the uptake of
such supplements before the neurophysiological examinations.

Moreover, the significance of this study for a general
audience lies in its applications to cognitive enhancement and
public health. First, it shows the potential benefit of such
multi-ingredient supplements for healthy users in increasing

alertness and energetic arousal, improving psychomotor and
mental performance, including memory and attention, and
decreasing mental fatigue and stress. However, it might also be
a valuable tool for patients suffering from cognitive impairment
and mental disorders, such as Alzheimer’s disease, Parkinson’s
disease, depression, and anxiety. In such cases, multi-ingredient
supplementation might aid traditional treatment protocols related
to attention, anxiety, mood, and memory disorders.

5 Conclusion

Our results show several key points. First, the ERPs were
successfully decoded among three classes, i.e., three runs of EEG
recorded before (run 1), 30 min after (run 2), and 90 min after
(run 3) acute energy boost dietary supplementation with a small
amount of caffeine. The above-chance decoding accuracy was
significantly higher for the placebo than the study group within
the time window of P2 and P3 components (200–250 ms and 450–
500 ms time bins), showing that ERP amplitudes increased more
in the placebo than in the study group. This indicates the change
of the attentional resources toward the target stimuli throughout
the experiment and that this change was higher for the placebo
than for the study group, which reveals the effect of single-dose
supplementation on ERPs elicited in a cognitive task engaging
attentional resources. Although the supplement had a much smaller
amount of caffeine than in a cup of coffee, it inhibited the increase
of mental fatigue throughout the experimental session. Observing
the effects in P2 and P3 time windows indicates that the studied
effect impacts both the early and late stages of attention. These
results extend our previously reported findings, which showed this
effect only in the P3 time window. This emphasizes the value
of decoding for interpretation in ERP research. A comparison
among three sets of decoding parameters, though it did not
reveal significant results, suggests the greater importance of
having a better signal-to-noise ratio at the subject level (i.e.,
more trials per ERP average or more folds) than having more
participants included at the group level. The issue of the optimal
number of trials per ERP/folds/participants, however, needs further
investigation. The significance of this work lies in showing that
only a single dose of a dietary supplement that has much less
caffeine than a cup of coffee changes brain physiology in mental
fatigue. This points out the necessity of controlling the uptake
of such supplements before the neurophysiological examinations.
In addition, the results allow translation into clinical applications
focused on pathophysiology related to attention, anxiety, mood,
and memory disorders.
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