
TYPE Original Research

PUBLISHED 13 June 2025

DOI 10.3389/fninf.2025.1568116

OPEN ACCESS

EDITED BY

Pawel Oswiecimka,

Polish Academy of Sciences, Poland

REVIEWED BY

Ying Wang,

Harbin Medical University, China

Ayman Mostafa,

Jouf University, Saudi Arabia

*CORRESPONDENCE

Shailesh Appukuttan

shailesh.appukuttan@univ-amu.fr

RECEIVED 28 January 2025

ACCEPTED 15 May 2025

PUBLISHED 13 June 2025

CITATION

Appukuttan S, Grapperon A-M, El Mendili MM,

Dary H, Guye M, Verschueren A, Ranjeva J-P,

Attarian S, Zaaraoui W and Gilson M (2025)

Evaluating machine learning pipelines for

multimodal neuroimaging in small cohorts: an

ALS case study.

Front. Neuroinform. 19:1568116.

doi: 10.3389/fninf.2025.1568116

COPYRIGHT

© 2025 Appukuttan, Grapperon, El Mendili,

Dary, Guye, Verschueren, Ranjeva, Attarian,

Zaaraoui and Gilson. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in

other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication

in this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Evaluating machine learning
pipelines for multimodal
neuroimaging in small cohorts:
an ALS case study

Shailesh Appukuttan1,2*, Aude-Marie Grapperon1,3,

Mounir Mohamed El Mendili1, Hugo Dary1, Maxime Guye1,

Annie Verschueren3, Jean-Philippe Ranjeva1, Shahram Attarian3,

Wafaa Zaaraoui1 and Matthieu Gilson2

1Aix Marseille Univ, CNRS, CRMBM, Marseille, France, 2Aix Marseille Univ, CNRS, INT, Marseille, France,
3APHM, Hopital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France

Advancements in machine learning hold great promise for the analysis of

multimodal neuroimaging data. They can help identify biomarkers and improve

diagnosis for various neurological disorders. However, the application of such

techniques for rare and heterogeneous diseases remains challenging due to

small-cohorts available for acquiring data. E�orts are therefore commonly

directed toward improving the classification models, in an e�ort to optimize

outcomes given the limited data. In this study, we systematically evaluated the

impact of various machine learning pipeline configurations, including scaling

methods, feature selection, dimensionality reduction, and hyperparameter

optimization. The e�cacy of such components in the pipeline was evaluated

on classification performance using multimodal MRI data from a cohort of

16 ALS patients and 14 healthy controls. Our findings reveal that, while

certain pipeline components, such as subject-wise feature normalization, help

improve classification outcomes, the overall influence of pipeline refinements

on performance is modest. Feature selection and dimensionality reduction steps

were found to have limited utility, and the choice of hyperparameter optimization

strategies produced only marginal gains. Our results suggest that, for small-

cohort studies, the emphasis should shift from extensive tuning of these pipelines

to addressing data-related limitations, such as progressively expanding cohort

size, integrating additional modalities, and maximizing the information extracted

from existing datasets. This study provides a methodological framework to guide

future research and emphasizes the need for dataset enrichment to improve

clinical utility.

KEYWORDS

amyotrophic lateral sclerosis, machine learning, multimodal MRI, small cohort,
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1 Introduction

By allowing for the non-invasive visualization of anatomical and functional problems

in the brain, medical imaging has transformed our understanding of neurological illnesses.

Magnetic Resonance Imaging (MRI) is one such imaging technique that has become an

indispensable tool for understanding the structural and functional basis of neurological
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disorders (Elias-Jones et al., 1990; Weiner, 2024; Shevchenko et al.,

2025; Grapperon et al., 2025). They have been widely employed

in the detection of diseases and their diagnosis, as well as in

the monitoring of treatment plans. Brain imaging, in particular,

plays a crucial role as the brain is one of the most complex

organs in the human body and is involved in a wide range of

neuropathologies, including neurological and psychiatric disorders.

Despite these capabilities, the interpretation of MRI data remains

highly complex in the clinical context, especially for multifactorial

and heterogeneous conditions such as Multiple Sclerosis (MS),

Amyotrophic Lateral Sclerosis (ALS), Epilepsy and Parkinson’s

disease (Fox et al., 2011; Zejlon et al., 2022; El Mendili et al., 2023).

These diseases often remain undetected until they reach advanced

stages, leading to delayed interventions and suboptimal outcomes.

Advancements in Artificial Intelligence (AI) hold immense

possibilities for the field of medical imaging, offering the potential

to unravel subtle imaging patterns beyond human perception

(Yousefirizi et al., 2022). These technologies not only improve

diagnostic accuracy, but also significantly reduce the time required

for data analysis and interpretation. The integration of AI into

neuroimaging workflows is particularly promising in the context of

multimodal MRI data, where multiple complementary modalities

can be leveraged to improve prediction accuracy when combined

with clinical information. AI techniques, particularly Machine

Learning (ML) and Deep Learning (DL), hold immense promise

for effectively integrating suchmultimodal, multiparametric data to

identify novel biomarkers (Wang et al., 2018; Mirabnahrazam et al.,

2022). Such biomarkers can aid in early diagnosis, prognostication,

and treatment responsemonitoring for neurodegenerative diseases.

There still exist major challenges to the application and optimal

utilization of AI-based approaches for neuroimaging in a clinical

context. The need for access to large datasets to train these ML/DL

models is one such challenge. AI models require large, diverse

datasets to generalize effectively (Lin et al., 2021; Grollemund et al.,

2019). However, the study of neurodegenerative disorders through

medical imaging frequently involves datasets that are quite limited

and notably imbalanced. This can often be due to the nature of the

rare disease, such as ALS (Zhang et al., 2011; Tilsley et al., 2024), and

further amplified when they are very debilitating, thus restricting

the number of patients that are physically capable of participating

in these studies. Acquiring vast amounts of data in such scenarios

is often impossible, as the state of the patients often deteriorates

rapidly, contributing to significant dropout rates (Drory et al., 2001;

Ashworth et al., 2012). In such cases, significant efforts are often

directed toward optimization of the machine learning pipelines in

order to improve the overall outcomes.

In this study, we aim to systematically investigate the

design and optimization of machine learning pipelines for

analyzing multimodal neuroimaging data from a small

cohort of ALS patients. Specifically, we explore how various

preprocessing techniques, feature selection methods, and

model architectures affect performance under data-constrained

conditions. Furthermore, we compare the performance gains

achieved through fine-tuning of the ML pipeline with those

obtained by enriching the input dataset. We also highlight

the useful insights that ML can provide for small datasets, in

terms of guiding further data collection by capturing synergistic

effects between modalities. In doing so, we seek to establish a

methodological framework that balances computational rigor

with clinical applicability, ultimately contributing to the broader

understanding of ALS and the development of ML tools for rare

neurological conditions.

2 Materials and methods

2.1 Cohort description

The study included a total of 30 participants, comprising

16 individuals diagnosed with ALS (6 females, 10 males; mean

age: 61.7 years, SD: 13.1 years) and 14 healthy controls (8

females, 6 males; mean age: 55.1 years, SD: 6.9 years). Each

participant underwent multimodal imaging using a 7T MRI

scanner, generating 270 parametric datasets across all subjects. The

ALS cohort was recruited from the ALS reference center at our

university hospital, with diagnoses confirmed based on the revised

El Escorial criteria (Brooks et al., 2000). All participants in this

group were free of other neurological conditions and screened

to rule out frontotemporal dementia following international

consensus criteria (Rascovsky et al., 2011). Clinical assessments for

ALS patients were conducted immediately after their MRI scans,

including scoring on the Revised Amyotrophic Lateral Sclerosis

Functional Rating Scale (ALSFRS-R) (Cedarbaum et al., 1999).

Disease progression rates were quantified using the ALSFRS-

R slope, calculated as (48 - ALSFRS-R score) divided by the

disease duration (in months). Based on this metric, patients

were categorized into slow or fast progressors, with the median

ALSFRS-R slope value of 0.62/month chosen as the threshold for

classification (Labra et al., 2016).

The healthy control group consisted of individuals with no

prior history of neurological or psychiatric disorders and normal

findings during clinical examinations. The limited cohort size

is a reflection of various factors: the rarity of the disease, the

nature of the disease, and the complexity of acquiring high-quality

multimodal MRI data (Zhang et al., 2011; Tilsley et al., 2024).

This sample size is consistent with prior neuroimaging studies in

ALS (Zhang et al., 2011; Atassi et al., 2017; Barry et al., 2021;

El Mendili et al., 2023), which have similarly aimed to extract

biomarkers for ALS or evaluated group-level trends under data-

constrained conditions. While the small size of the cohort imposes

limitations on statistical power and generalizability, it provides a

realistic setting to assess the reliability and stability of ML pipeline

components in rare disease contexts.

Ethical approval for this study was granted by the Comité

de Protection des Personnes Sud-Méditerranée 1, in accordance

with the Declaration of Helsinki. All participants provided written

informed consent prior to enrollment.

2.2 Data acquisition and pre-processing

MRI data acquisition was performed using a 7 Tesla

Magnetom whole-body MR system (Siemens, Erlangen, Germany).

Proton imaging utilized a 32Rx/1Tx 1H head coil, and the
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protocol included a high-resolution 3DT1-weightedMagnetization

Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE)

sequence (TR = 5,000 ms, TE = 3 ms, TI1 = 900 ms, TI2 = 2750 ms,

256 slices, isotropic resolution of 0.6 mm, GRAPPA acceleration

factor = 3, acquisition time = 10 min 12 s), a 2D magnetization-

prepared turbo FLASH B+1 mapping sequence (TR = 2,000 ms,

TE = 14 ms, 14 transverse slices with a thickness of 5 mm, in-

plane resolution = 3.9 mm × 3.9 mm, acquisition time = 2 min

14 s) and two diffusion-weighted echo planar imaging sequences,

acquired with 80 diffusion encoding directions (anterior-posterior

and posterior-anterior) and 13 b0 volumes for diffusion tensor

imaging (DTI), with b-values of 0, 1,000, and 2,000 s/mm2 (TR =

6,000 ms, TE = 79.2 ms, 120 transverse slices, isotropic resolution

of 1.13 mm, MultiBand factor = 3, acquisition time = 10 min 42 s

for each encoding phase).

Sodium imaging was conducted with a dual-tuned 23Na/1H

1Tx/1Rx head coil (QED), using a multi-echo density-adapted 3D

projection reconstruction pulse sequence (TR = 120 ms, 5,000

spokes, 384 radial samples/spoke, isotropic resolution of 3 mm,

24 TEs spanning 0.20–70.78 ms in three sets of 8 echoes each,

acquisition time = 3 × 10 min). Six cylindrical tubes with sodium

concentrations ranging from 25 to 100 mM in 2% agar, were placed

within the field of view near the participant’s head, to serve as

external quantitative references.

TheMP2RAGE sequence provided a T1-weighted (UNI) image

with reduced reception bias fields and enabled the generation of

quantitative T1 (qT1) maps. These qT1 maps were corrected for

B+1 inhomogeneity, denoised, and skull-stripped before further

processing. Diffusion-weighted images underwent preprocessing

steps, including denoising, Gibbs-ringing artifact removal, and

corrections for B1 field inhomogeneity, susceptibility distortions,

eddy current effects, and head motion. From these data, maps

of Fractional Anisotropy (FA), Mean Diffusivity (MD), Axial

Diffusivity (AD), and Radial Diffusivity (RD) were derived. Sodium

imaging data were reconstructed and denoised using a multi-

echo approach, and motion correction was applied. Quantitative

maps were computed for total sodium concentration (TSC),

T2*short (T2s), T2*long (T2l), and the sodium signal fraction

(fNa), representing the short component of the biexponential signal

decay.

T1-weighted images (T1w) were bias field-corrected using the

N4 algorithm (Tustison et al., 2010) and aligned to the AC-PC

plane via rigid registration to the MNI152 template. These images

were parcellated using FreeSurfer (v7.4.1) (Fischl, 2012) with the

Destrieux atlas (Destrieux et al., 2010), generating two parcellation

schemes: (i) 187 regions of interest (ROIs), primarily cortical and

subcortical areas, along with fivemacroscopic white matter regions,

and (ii) 332 ROIs, which included 150 additional white matter-

specific regions. Volumetric ROI masks were initially produced

in FreeSurfer’s intrinsic fsaverage space (equivalent to MNI305)

and subsequently transformed into each subject’s native space. For

simplicity, the two parcellation schemes are referred to as GM (187

ROIs) and GM+WM (332 ROIs). The GM+WM parcellation was

adopted for all evaluations, unless indicated otherwise.

Quantitative imaging maps (qT1, FA, MD, AD, RD, TSC, T2s,

T2l, and fNa) were coregistered with the denoised T1w images

using the ANTs library (Avants et al., 2009). The ROI masks, now

aligned to each subject’s native space, were applied to all imaging

maps. Mean voxel values were calculated within each ROI for each

quantitative map, producing matrices of dimensions: (i) 187 ROIs

× 30 subjects, and (ii) 332 ROIs× 30 subjects. Multimodal analyses

were performed by concatenating the individual quantitative maps.

2.3 Machine learning workflow

In view of the limited size of the ALS dataset, traditional

ML approaches were adopted in this study, as opposed to more

advanced and powerful DL techniques that require large amounts

of data for model training. Several studies have reported that

traditional ML techniques can perform as well as, or even better

than, DL approaches when dealing with small datasets (Nanni

et al., 2020; Islam and Khanam, 2024). To rigorously evaluate

model performance and tuning, we adopted a nested cross-

validation approach. The outer loop employed Leave-One-Out

Cross-Validation (LOOCV), where each subject was iteratively held

out for testing. Within each outer fold, hyperparameter tuning

(when included in the pipeline) and preprocessing were carried out

using 5-fold stratified cross-validation on the remaining subjects.

All preprocessing steps—including scaling, feature selection, and

dimensionality reduction—were confined to the training folds to

prevent data leakage. This nested strategy ensures an unbiased

estimation of model performance by separating model evaluation

from model selection. It is particularly valuable in settings with

limited or imbalanced data, as it reduces the risk of overfitting to

the training data and provides a more reliable estimate of how the

model will generalize to unseen subjects.

For the first round of evaluations, the pipeline began with row-

wise (i.e., subject-wise) scaling for each imaging map, followed by

column-wise (i.e., feature-wise) scaling within each map; in both

cases by removing the mean and scaling to unit variance using

the StandardScaler module of the sklearn library. The

column-wise scaling was performed separately within the training

and validation folds to prevent data leakage and ensure that scaling

was based solely on the training data. This approach preserved

the integrity of the cross-validation procedure by ensuring the

model did not inadvertently gain access to any information from

the validation set, thereby avoiding overfitting and ensuring a

more reliable assessment of model performance. A large number

of classifiers were initially explored, largely in their default

configurations. Those that demonstrated promising outcomes were

shortlisted for further evaluation.

In the second stage, the classifiers were kept constant

while various other steps were systematically varied to assess

their individual and combined impact on model performance.

Specifically, we evaluated different configurations of data scaling,

feature selection, and dimensionality reduction.

For scaling, we tested three options: no scaling, standardization

(using StandardScaler, which centers features to zero mean

and unit variance), and normalization [using MinMaxScaler,

which rescales features to a (0, 1) range]. These choices

were motivated by the fact that many ML algorithms are

sensitive to feature magnitude and distribution. By comparing

performance across these variations, we aimed to understand how
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such preprocessing decisions influence downstream classification

accuracy.

When applied, feature selection was performed using either

SelectKBest or Recursive Feature Elimination (RFE). For

SelectKBest, features were scored using the ANOVA F-

value (f_classif) as the scoring function, which evaluates

the relationship between each feature and the target class in

a univariate manner. RFE, which iteratively removes the least

important features, was implemented using a linear-kernel Support

Vector Regressor (SVR) as the estimator. This model was chosen

for its ability to rank features based on the magnitude of regression

weights, allowing recursive elimination of the least informative

features. We explored a range of feature counts for both these

methods, and also assessed the performance when no feature

selection was involved.

Dimensionality reduction was conducted using either Principal

Component Analysis (PCA) or Linear Discriminant Analysis

(LDA). PCA was applied in an unsupervised fashion to retain the

main components explaining the variance within the training fold.

Linear Discriminant Analysis (LDA) was applied as a supervised

dimensionality reduction technique that seeks to maximize class

separability by projecting the data onto a lower-dimensional space.

The final stage of evaluations involved keeping the above

components of the pipeline constant, chosen based on the best

performers, while tuning the hyperparameters of the classifiers.

Hyperparameter optimization was explored using three distinct

techniques: (i) grid search, (ii) random search, and (iii) Bayesian

optimization. All three were implemented within the inner loop of a

nested cross-validation framework, using their respective modules

in the sklearn library. The details of the search spaces employed

for the various classifiers are specified in Supplementary Table S1

of the Supplementary material. These ranges were selected based

on commonly used defaults and prior experience in similar

neuroimaging ML studies, and were intended to provide a

balanced search space broad enough to capture performance-

relevant variability, yet constrained to avoid overfitting, in view of

the small sample size. Furthermore, to ensure a fair comparison,

the search spaces were matched across all three methods and

the total number of parameter combinations tested was kept

constant. The latter was achieved by evaluating the total number

of possible combinations for the grid search space, and then

enforcing this value as the maximum permissible iterations for

both random and Bayesian searches. A schematic representation

of the ML pipeline is provided in Supplementary Figure S1 of the

Supplementary material.

All code was implemented in Python, with the machine

learning experiments executed on the computing nodes of

the institute’s HPC infrastructure (Mesocentre). The jobs were

run on Dell PowerEdge C6420 nodes, each equipped with 32

CPU cores, powered by Intel R© Xeon R© Gold 6142 (Sky Lake)

processors running at 2.6 GHz. Each job was allocated one node,

utilizing all 32 CPU cores, and the multiprocessing functionality

was implemented in Python using the multiprocessing module

to efficiently parallelize the workload. Jobs were submitted

using the SLURM job scheduler. Jobs typically took 3x longer

when run locally on a workstation, as compared to the

HPC system; see section 4 of the Supplementary material for

more information.

2.4 Performance evaluation

A variety of metrics are available for evaluating ML model

performance for classification tasks. These include accuracy,

precision, recall, F1 score and AUC-ROC. For multi-class

classification, there exist many more related metrics. In this study,

we opted to employ the classification metric as the principal metric

for comparing between various configuration of the ML pipeline.

This was largely driven by the intuitive and straightforward

measurement of this statistic, and applies easily for both the 2-

class and 3-class evaluations undertaken here. Also, the primary

aim of this study was to compare the effects of various changes

to the ML pipeline, rather than to focus on specific class-

level performance. Classification accuracy effectively captures the

aggregate performance of the model across all classes, making

it a suitable choice for high-level evaluation and comparison.

Furthermore, the LOOCV approach adopted in the pipeline

evaluates the model’s ability to generalize by iteratively training on

all but one sample and testing on the held-out sample. Accuracy

aligns naturally with this validation method by providing a single

aggregate score that summarizes performance across all cross-

validation folds.

In addition to the accuracy of the model, the robustness

and reliability of its predictions is also an important factor. This

is often assessed by comparing the classification accuracy to a

baseline or chance-level distribution obtained through permutation

testing. In our study, each classification task was repeated 50 times

with randomly shuffled labels, effectively breaking the association

between the input data and their corresponding labels, to generate

a distribution of chance-level accuracies. Since this distribution

was approximately normal, we were able to calculate a Z-score to

quantify how much the model’s actual accuracy deviated from the

chance-level performance.

Furthermore, to assess the statistical significance of

performance differences between our various ML pipeline

configurations, we conducted Wilcoxon signed-rank tests by

comparing them to their respective baseline counterparts,

while discarding all zero-differences (i.e. wilcox method). These

analyses confirmed that while some improvements are statistically

significant, many configurations are not. Moreover, in several cases

with statistical significance, the effect size indicated a deterioration

in the performance.

3 Results

Below, we shall discuss the impact of the various components

of the ML pipeline on the classification outcomes. This is presented

in three stages as outlined earlier. We then also present an overview

of how the nature of the input dataset influences the performance.

Each evaluation of theML pipeline was executed as a single SLURM

job with three classification sub-tasks:

• 2-class (controls vs. patients): the model is required to

differentiate between healthy controls and patients with ALS.

• 3-class (controls vs. slow ALS vs. fast ALS): the model is

required to differentiate between healthy controls and patients

with slow and fast progressing ALS.
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• slow ALS vs. fast ALS (SvF): the model is required to

differentiate between patients with slow and fast progressing

ALS.

With an eye on their clinical relevance, we prioritize the 3-class

classification outcomes, as they provide themost actionable insights

for patient care. This is followed by the Slow vs. Fast classification,

which enables distinguishing between clinical states that determine

prognosis. While less informative for clinical actions, the 2-class

performance holds value in understanding the underlying brain

alterations associated with pathology, thereby offering a broader

understanding of disease mechanisms.

3.1 Preliminary evaluation of classifiers

The field of machine learning (ML) offers a vast array of

classifiers, each with unique strengths and limitations. Most

classifiers offer access to various internal parameters that allow

us to customize their operation. Given this diversity, it is not

practical to evaluate each such classifier, and their innumerable

variants, comprehensively. In an effort to quickly identify

which classifiers are promising for our study, we focused on

12 widely employed and popular classifiers. The classifiers

chosen were: K-Nearest Neighbors (KNN), Light Gradient

Boosting Machine (LGBM), Multinomial Logistic Regression with

Elastic Net Regularization (MLR_ENET), Multinomial Logistic

Regression with L1 Regularization (MLR_L1), Multinomial

Logistic Regression with L2 Regularization (MLR_L2), Multi-

Layer Perceptron (MLP), Polynomial Kernel Support Vector

Machine (SVM_POLY), Radial Basis Function Support Vector

Machine (SVM_RBF), Sigmoid Kernel Support Vector Machine

(SVM_SIG), Linear Support Vector Machine (SVM_LIN),

Random Forest (RF), and Extreme Gradient Boosting (XGB).

For the initial phase of evaluation, these classifiers were

used primarily in their default configurations, i.e., without any

attempts to optimize their hyperparameters, to establish a baseline

performance. As mentioned earlier, each evaluation consisted

of three classification tasks (i.e., 3-class, 2-class, SvF). The

performance for each task was evaluated by means of the accuracy

score and the corresponding Z-score value, thereby comparing the

reported accuracy against chance level predictions. Figure 1 shows

the comparison of the classification performance of the various

models across the three tasks. The SVM_LIN and SVM_SIG

classifiers performed well across all classification tasks, alongside

the three MLR-based classifiers. We notice that certain classifiers

such as LGBM and SVM_POLY performed very poorly in general,

while some of the other classifiers show lower accuracies on one

or more of the other tasks. In addition, Figure 1c, using log-scale,

shows that LGBM,MLP and XGB classifiers took significantly more

time, and thereby computational resources, to complete these tasks.

In order to shortlist a subset of these classifiers for further

evaluations, we applied a threshold of 60% classification accuracy

across the three tasks. This is indicated by the red dashed line in

Figure 1a. Based on this criterion, the following classifiers met the

threshold: MLP, MLR_ENET, MLR_L1, MLR_L2, SVM_LIN and

SVM_SIG. However, due to the significant computational demands

of the MLP classifier, it was deemed difficult to accommodate it in

the next stage, which included extensive ML pipeline configuration

explorations. The MLP classifier was therefore dropped from this

next stage, but was reintroduced in the third stage focused on

hyperparameter optimization, where other pipeline components

were kept constant. In its place, we selected the RF classifier in

view of its versatility across various datasets, and its suitability as

a benchmark for tree-based ensemble methods.

3.2 Pipeline refinement

Here, we explored the effects of modifying the ML pipeline

on classification outcomes by systematically varying key pipeline

components. This included altering the row and column scaling

methods, and incorporating additional steps in the pipeline, such

as performing feature selection and dimensionality reduction. This

involved evaluating 297 combinations for each of the six classifiers

we shortlisted from the previous stage, for a total of 1,782 trials.

The objective was to optimize the performance of the pipeline by

identifying the most promising configurations for our classification

tasks.

Figures 2, 3 illustrate the performance of the MLR_L2

classifier for 3-class classification under the various explored

pipeline configurations. Through visualization of the distributions,

variance, and top-performing configurations, the plots help

highlight how the various pipeline design choices affect

performance consistency. The inclusion of Z-scores further

emphasizes model stability across different preprocessing

approaches. Similar trends were demonstrated for the other

classifiers as well. We have chosen to highlight the MLR_L2

classifier, as an example, in light of this model being a strong

performer based on preliminary investigations.

3.2.1 Impact of scaling methods
Figure 2 illustrates the performance of the MLR_L2 classifier

under different scaling approaches. The top panels (a, b) assess

the effect of row (subject-wise) scaling, while the bottom panels

(c, d) focus on column (feature-wise) scaling. We evaluated three

scaling methods: no scaling (None), StandardScaler, and

MinMaxScaler.

3.2.1.1 Row scaling

Classification accuracy (Figure 2a) showed certain

notable differences across the three scaling methods, with

StandardScaler generally performing better (mean

accuracy = 0.55) than no scaling (mean accuracy = 0.46) and

MinMaxScaler (mean accuracy = 0.48). However, these

effects are more pronounced for the Z-scores (Figure 2b) with

StandardScaler providing markedly more robust predictions

(mean Z-score = 2.40), compared to the absence of scaling (mean

Z-score = 1.78) and MinMaxScaler (mean Z-score = 1.52).

3.2.1.2 Column scaling

The trends did not vary significantly between the different

column scaling approaches (Figures 2c, d) with mean accuracies

of 0.51, 0.50 and 0.47 for StandardScaler, MinMaxScaler,
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FIGURE 1

Comparison of classification performance for various classifiers. The panels compare (a) classification accuracy, (b) Z-scores indicating robustness of

predictions, and (c) time required for execution (in seconds), using log scale. The dashed red-line in (a) indicates 60% accuracy and was used as a

threshold to shortlist classifiers for further evaluations.

and (None) methods, respectively. In regard to robustness of the

predictions, StandardScaler again show relatively superior

outcomes (mean Z-score = 1.92), compared to MinMaxScaler

(mean Z-score = 1.76) and no scaling (mean Z-score = 1.42).

Notably, the absence of scaling (i.e., None) resulted in wider

variability in outcomes.

Figures 4a, c, e, composed of data integrated across all

classifiers, shows the effect of such scaling approaches across the

three classification tasks. The most notable trend is that row-wise

scaling—particularly using StandardScaler—consistently

leads to higher classification accuracies across all three tasks.

Overall, these results suggest that applying StandardScaler

for both row and column scaling can help enhance the accuracy of

predictions.

The Wilcoxon signed-rank test results for these configurations

are presented in Table 1 when the MLR_L2 classifier was employed

for the 3-class classification task. The analysis confirmed that

the use of row-wise StandardScaler yielded consistent

improvements in classification accuracy (p < 0.001; median:

+10%). Column scaling also was found to be statistically significant,

but with a much lower effect size (p < 0.001; median: +3.3%).

3.2.2 Influence of feature selection and
dimensionality reduction

The impact of feature selection and dimensionality reduction

on 3-class classification performance is detailed in Figure 3. Panels

(a, b) explore different feature selection techniques, panels (c,

d) vary the target feature count, and panels (e, f) evaluate

dimensionality reduction approaches.

3.2.2.1 Feature selection

As shown in Figures 3a, b, there didn’t appear to be a

significant improvement in the outcomes with the incorporation of

feature selection techniques in the ML pipeline. The performance

with SelectKBest (mean accuracy = 0.52) was comparable

to that with no feature selection (mean accuracy = 0.53).

RFE was found to perform most poorly for our classification

task, in terms of both accuracy (mean accuracy = 0.47)

and Z-scores.

3.2.2.2 Number of features

Figures 3c, d illustrates the effect of various target

feature counts, when feature selection is employed in the

ML pipeline. The results reveal that selecting 50 features

provided a good balance between accuracy and robustness, with

increasing feature spaces providing only slight improvements in

the outcomes.

3.2.2.3 Dimensionality reduction

Figures 3e, f compares LDA and PCA with the absence of

dimensionality reduction. Here again, we find that the classification

outcomes did not benefit from the incorporation of this step in

the ML pipeline. Both methods, LDA (mean accuracy = 0.48,

mean Z-score = 1.47) and PCA (mean accuracy = 0.51, mean Z-

score = 1.80), performed similar to pipelines without them (mean

accuracy = 0.51, mean Z-score = 1.83). Dimensionality reduction,

therefore, did not appear to have a notable improvement on the

accuracy or robustness of the predictions, with LDA often yielding

worse outcomes.

Figures 4b, d, f illustrate that the influence of feature

selection and dimensionality reduction techniques varies across

classification tasks and is generally limited in magnitude.

In particular, RFE consistently underperforms compared to

other configurations, suggesting that recursive elimination

may discard informative features when applied to high-

dimensional, small-sample datasets. Pipelines that exclude feature

selection altogether or use simpler univariate methods such as
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FIGURE 2

3-class classification performance observed for the MLR_L2 classifier under di�erent combinations of row and column scaling approaches

employed in the ML pipeline. (a, c) indicate the classification accuracy, and (b, d) show the Z-scores as indicators of robustness of the model’s

predictions. The top row (a, b) indicates the impact of di�erent row (i.e., subject-wise) scaling approaches, namely: the absence of any scaling

(None), StandardScaler and MinMaxScaler. The bottom row (c, d) indicates the impact of di�erent column (i.e. feature-wise) scaling using the

same techniques. The dots correspond to one for each combination of pipeline configuration evaluated for the classifier, i.e., 297 combinations per

classifier in our study. Red dots highlight the top 10% of all configurations in terms of classification accuracy, and indicates the robustness of these

predictions.

SelectKBest tend to yield more stable results. Dimensionality

reduction via PCA provides marginal improvements in some

scenarios, though its contribution is often comparable to

pipelines without any dimensionality reduction, indicating

that extensive reduction of the feature space may not

be necessary.

Table 1 lists the Wilcoxon signed-rank test results for

these pipeline configurations. This shows with consistently high

statistical signficance (p < 0.01), the unsuitability of performing

feature selection on our dataset with a low number of target features

(< 50). Dimensionality reduction techniques, similarly, were found

to yield no consistent benefit and in several cases significantly

degraded performance. There is some improvement when a larger

number of features are accommodated, suggesting the need of

retaining sufficient feature dimensionality for the model to benefit

from the rich, complementary information present in multimodal

MRI data.

3.2.3 Evaluating top performers
Figure 5 summarizes the distribution of parameter choices

across pipeline configurations that achieved at least 60%

classification accuracy for the 3-class and SvF tasks, with associated

Z-scores of 2.0 or higher. It further highlights configurations that

exhibited an even higher accuracy (≥ 70%). The key observations

are: (i) StandardScaler emerged as a consistently effective

choice for row scaling, (ii) column scaling appeared to have less

influence on model performance, with MinMaxScaler notably

absent among the top-performing configurations, (iii) there is a

notable preponderance of SelectKBest as a feature selection

method, often combined with 50 selected features, amongst the top

performers. However, its prominence diminished when focusing on

the highest-performing pipelines, where the absence of any feature

selection stage proved to be equally effective, (iv) dimensionality

reduction techniques did not demonstrate a clear benefit to the

pipeline, with contribution of PCA to the best performers generally
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FIGURE 3

3-class classification performance observed for the MLR_L2 classifier under di�erent combinations of feature selection and dimensionality reduction

approaches employed in the ML pipeline. (a, c, e) indicate the classification accuracy, and (b, d, f) show the Z-scores as indicators of robustness of the

model’s predictions. The top row (a, b) indicates the impact of di�erent feature selection approaches, namely: the absence of any feature selection

(None), SelectKBest and RFE. The middle row (c, d) indicates the impact of di�erent target feature counts when feature selection is part of the ML

pipeline. The bottom row (e, f) indicates the impact of incorporating dimensionality reduction in the ML pipeline, via techniques such as LDA and

PCA. The dots correspond to one for each combination of pipeline configuration evaluated for the classifier, i.e., 297 combinations per classifier in

our study. Red dots highlight the top 10% of all configurations in terms of classification accuracy, and indicates the robustness of these predictions.

comparable to pipelines without any dimensionality reduction.

By systematically evaluating these pipeline configurations, we

identified the impact of the various steps and their configurations

in optimizing classification outcomes, and also demonstrated the

consistency of the findings with respect to specific choices for

pipeline design.
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FIGURE 4

Heatmaps illustrating the average classification accuracy across various combinations of preprocessing components. Each cell represents the mean

classification accuracy obtained across all 6 shortlisted classifiers for a given pipeline configuration. (a, c, e) compare row (subject-wise) vs. column

(feature-wise) scaling approaches, while (b, d, f) compare feature selection methods vs. dimensionality reduction techniques. Panels correspond to

the three classification tasks: (a, b): 3-class (Controls vs. Slow ALS vs. Fast ALS), (c, d): Slow vs. Fast ALS, (e, f): 2-class (Controls vs. ALS).

3.3 Hyperparameter optimization

Based on the above findings, we proceeded with the design

of the pipeline with a focus on optimizing the classifier

hyperparameters. The pipeline employed StandardScaler to

perform both row and column scaling. The feature selection

and dimensionality reduction steps were excluded in view of

their limited observed utility for our classification tasks. This
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TABLE 1 Wilcoxon signed-rank test results for MLR_L2 classifier with the various pipeline steps and their di�erent configurations.

Pipeline step Configuration p-value Median % Significance n

Row scaler Standard 1.87e-13 +10.0% *** 99

Row scaler MinMax 1.37e-02 +0.0% * 99

Col scaler MinMax 1.81e-04 +3.3% *** 99

Col scaler Standard 3.60e-05 +3.3% *** 99

FeatSel-numfeats RFE-10 2.23e-05 -16.7% *** 27

FeatSel-numfeats RFE-25 1.17e-05 -13.3% *** 27

FeatSel-numfeats RFE-50 3.66e-03 -6.7% ** 27

FeatSel-numfeats RFE-100 6.87e-01 +0.0% 27

FeatSel-numfeats RFE-150 3.13e-01 +3.3% 27

FeatSel-numfeats SelectKBest-10 4.75e-05 -10.0% *** 27

FeatSel-numfeats SelectKBest-25 3.80e-03 -6.7% ** 27

FeatSel-numfeats SelectKBest-50 9.46e-02 +3.3% 27

FeatSel-numfeats SelectKBest-100 9.44e-01 +0.0% 27

FeatSel-numfeats SelectKBest-150 3.13e-02 +6.7% * 27

Dim reduction PCA 5.29e-02 +0.0% 99

Dim reduction LDA 2.11e-04 -3.3% *** 99

Each configuration was compared against the absence of that step in the pipeline, for the 3-class classification task. The p-value indicates the level of significance while the Median % is used to

indicate the effect size. n refers to the number of paired configurations; *: p < 0.05, **: p < 0.01, ***: p < 0.001.

FIGURE 5

Distribution of various configurations of ML pipeline components. The colored bars represent those configurations where the 3-class and

slow-vs.-fast accuracies ≥ 60%, along with their associated Z-scores ≥ 2.0. This corresponded to 132 out of the total of 1,782 combinations that

were evaluated. The textured parts of the plots indicate the proportion of configurations where these classification accuracies were ≥ 70%; these

accounted for only 13 combinations. Note that the parameter Num Features applies only when a feature selection method is involved (i.e., not None).

allows us to isolate the impact of classifier settings on model

performance, ensuring that we retain the most relevant features for

the classification task without introducing unnecessary complexity.

As outlined earlier, we compared three different

hyperparameter optimization approaches: (i) Grid Search, (ii)

Random Search, and (iii) Bayesian Optimization. Figure 6 provides
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a comparison of the performance of these three approaches across

the various classifiers we had shortlisted for both the 3-class and

SvF classification tasks. It is observed that the classifiers exhibit

a range of accuracies, but that these typically do not vary much

based on the specific optimization strategy adopted in the pipeline,

particularly for the 3-class classification task. Similarly, Z-score

analysis does not point to a generally superior tuning procedure for

achieving optimal outcomes. However, certain classifiers appear to

benefit more from specific optimization strategies. For example,

MLR_ENET was found to consistently yield better performances

when optimized using the random search approach.

What is most notable is the differences in the execution time,

with Bayesian optimization consistently requiring the longest time

to complete. Grid search and random search were found to perform

similarly in terms of computational efficiency. This pattern held

across all classifier types.

3.4 E�ect of dataset enrichment

Having explored various adjustments to the classification

pipeline, we next examine potential benefits of dataset enrichment

to compare the change in performance with respect to the fine-

tuning of the ML pipeline. This can be achieved through several

approaches, two of which are outlined below for evaluation. In view

of their superior classification performance, as demonstrated in the

previous sections, we decided to employ theMLR_L2 classifier with

the grid search optimization strategy for the assessments ahead.

3.4.1 Impact of multimodal data
Here, we examined the impact of integrating multiple MRI

modalities on classification accuracy. Multimodal integration was

tested to evaluate whether combining complementary sources of

information—such as structural features from qT1, microstructural

changes captured by DTI, and metabolic insights from 23Na

imaging—could improve the model’s ability to distinguish between

subject groups. The rationale is that each modality provides

unique and potentially non-redundant information about the

underlying neuropathology, and their combination may enhance

discriminative power (Cerasa et al., 2011).

The results are summarized in Figure 7, which compares

performance across our three classification tasks: 3-class, SvF, and

2-class. It can be observed that combining all three modalities

(i.e. qT1 + DTI + 23Na) yields the best classification performance

across all tasks. The red markers representing model accuracy are

consistently above the chance-level predictions, thereby indicating

robustness of the model’s predictions. The combination of qT1

+ DTI is found to perform relatively poorly for all three tasks,

while the combination of qT1 + 23Na shows more promise, with

a notably high model accuracy for the SvF task. These findings

underscore the utility of integrating multiple MRI modalities to

improve classification accuracy.

3.4.2 Impact of alternative parcellation strategies
ALS is known to involve both cortical and subcortical

degeneration, with white matter alterations, particularly along

corticospinal tracts and frontotemporal connections, emerging as

key imaging biomarkers (Bede and Hardiman, 2018; Grapperon

et al., 2019). A broader anatomical coverage, comprising of

both the gray and white matter regions, could better reflect the

underlying pathophysiology of ALS, and potentially help improve

classification accuracy. We therefore investigated the impact of

different brain parcellation strategies on classification accuracy for

our tasks. Specifically, we compared results obtained using GM

(gray matter) parcellation (containing 187 ROIs) to those using

combined GM+WM (gray matter + white matter) parcellation

(containing 332 ROIs).

The results are presented in Figure 8 for the three classification

tasks. We see that incorporating WM data alongside GM yields a

notable improvement in classification accuracy across all tasks. For

the 3-class task, the model achieves significantly higher accuracy

with GM+WM, as compared to GM alone, indicating that the more

comprehensive parcellation helps the model capture additional

discriminative features crucial for distinguishing between the

classes. Similarly, for the SvF and 2-class tasks, the inclusion of

WM data results in a marked boost in performance, with the

model accuracy consistently positioned higher than chance-level

predictions.

4 Discussion

This study systematically evaluated the design and performance

of machine learning pipelines for small-cohort multimodal

neuroimaging data, using ALS as a case study. By focusing on the

effects of pipeline configurations, such as scaling, feature selection,

dimensionality reduction, and hyperparameter optimization, we

aimed to understand the extent to which these elements impact

classification outcomes, and compare their influence to the

enrichment of the datasets. Our findings highlight several key

insights, while also underscoring the limitations of such small-

cohort studies and the importance of dataset enrichment.

The primary conclusion of this study is that the choice

of ML pipeline configurations had only modest effects on

classification performance. Despite evaluating a comprehensive

range of approaches, the differences in performance were

limited. We observed that row scaling (subject-wise) using

StandardScaler consistently improved classification

outcomes, while column scaling (feature-wise) had less noticeable

impact. This suggests that, when measurements vary across

subjects, the critical information may lie in the relative ranking

of values—such as identifying regions with the highest or lowest

intensities, in line with previous findings on within-session

normalization for effective connectivity estimated from fMRI

data for decoding (Pallarés et al., 2018; Gravel et al., 2020).

Feature selection and dimensionality reduction steps did not

significantly enhance performance. In many cases, omitting these

steps altogether produced results comparable to, or better than,

their inclusion in the ML pipeline. Hyperparameter optimization

provided some performance gains, but the choice of optimization

strategy (grid search, random search, or Bayesian optimization)

typically had limited impact on the overall accuracy. Based

on our results, the choice of hyperparameter tuning strategy

should consider the trade-offs between accuracy, robustness, and
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FIGURE 6

Comparison of di�erent hyperparameter optimization approaches for the various shortlisted classifiers. The panels compare (a) classification

accuracy, (b) Z-scores indicating robustness of predictions, and (c) time required for execution (in seconds), using log scale. To enable a fair

comparison of the tuning methods for each classifier, the search spaces were standardized and the total number of parameter combinations tested

was kept equal across all three methods.

computational efficiency. For instance, Bayesian Optimization

may be more suitable for scenarios where achieving optimal

performance is critical and computational resources are not a

constraint, whereas Random Search or Grid Search may suffice for

applications with tighter time or resource limitations.

To design an efficient machine learning workflow, it is advisable

to start by evaluating classifiers in their default configurations to

establish a performance baseline. Data preprocessing techniques

should be systematically evaluated (e.g., scaling, feature selection,

dimensionality reduction) to determine their effectiveness for

the given dataset. Once the different pipeline components are

selected, various hyperparameters can be optimized to assess

generalizability. Such a staged approach to pipeline design enables

informed decisions aimed at performance improvements while

minimizing the computational costs.

While pipeline refinement is essential for maximizing

performance, its impact is inherently constrained when the dataset

is small and limited in its ability to generalize. This suggests that,

for small-cohort studies, significant efforts devoted to refining ML

pipelines may not yield proportional improvements in outcomes.

Unconventional approaches to deal with limited patient datasets

may also enable us to readily improve the model performance, such

as hybrid model training wherein larger control groups have been

employed in the training phase, but combined with another class

(e.g. slow ALS) in the validation phase for stratification of patients

based on disease progression (e.g. slow vs. fast ALS). This approach

has been found effective in an ongoing study involving the same

datasets employed here, wherein this hybrid approach enabled

us to attain a classification accuracy of 88% for the SvF task. It

should be borne in mind that class labels can frequently involve a

degree of uncertainty in clinical studies, and therefore classification

studies often do not yield very high accuracies. For instance, the

slow and fast progressors were evaluated here based on a single

cross-sectional ALSFRS-R slope. However, ALS progression is

heterogeneous, and such snapshot metrics may not capture the full

clinical trajectory. While longitudinal imaging could help address

this limitation to some extent, it is often challenging to obtain this

for ALS studies, leaving us reliant on cross-sectional data.

Greater emphasis might be placed on addressing the limitations

inherent to the dataset itself. There are several approaches to

tackling this problem. The emergence of ultra-high-field MRI

systems, such as 7T MRI, has dramatically improved spatial and

temporal resolution, enabling the detection of microstructural

and metabolic changes with unparalleled precision. For example,

studies have reported that 7T MRI enhances the contrast and

visibility of brain tumors compared to those acquired at 3T

(Noebauer-Huhmann et al., 2015). This suggests that, even with

limited data cohorts, scans obtained at 7T might be more

informative than those obtained at 3T and 1.5T. The scope

of multimodal neuroimaging can be extended by combining

neuroimaging data with other data types, such as clinical,

genetic, and biochemical data. These additional data sources can

provide complementary insights into disease mechanisms that

are not evident from imaging data alone (Menke et al., 2017;

Iturria-Medina et al., 2021). Efforts should also be made at

progressively increasing the size of the cohorts wherever possible.

Data augmentation is often a useful step in expanding datasets,

especially in scenarios where acquiring additional samples is

challenging. There exists a variety of techniques by which this

can be achieved, such as via geometric/intensity transformations

or synthetic data generation (Garcea et al., 2023; Chintapalli

et al., 2024), such as generative models (e.g., GANs, VAEs), to
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FIGURE 7

Classification performance observed using MLR_L2 classifier with di�erent combinations of multimodal data. The top row (a–c) shows the outcomes

when employing the complete dataset (qT1+DTI+23Na), the middle row (d–f) corresponds to the combination of qT1 and DTI modalities, and the

bottom row (g–i) shows those for the combination of qT1 and 23Na modalities. The first column (a, d, g) show the classification accuracy for 3-class,

the second column (b, e, h) for SvF, and the third column (c, f, i) for the 2-class task. The red markers indicate the classification accuracy of the

model to the actual data. The black markers, and the green bounding region, indicate the accuracy of chance-level predictions observed via

permutation testing.

simulate realistic variability and enhance representation of under-

sampled phenotypes (Chadebec et al., 2022; Kebaili et al., 2023).

Multi-centric approaches offer another option for pooling together

datasets to obtain larger cohorts, though this is often accompanied

by significant data harmonization issues (Stamoulou et al., 2022).

While subsets of modalities can provide improved

performance, as compared to single modality outcomes,

the combined use of all available modalities helps capture

complementary features and potential synergistic effects that

enhance model performance. This was evident in our results,

wherein the best outcomes were observed under multimodal

analysis of all modalities. This highlights the importance of

acquiring and merging as many relevant modalities as possible

for comprehensive analysis, thereby helping orient the data

collection process. Further, our findings regarding variations in

the parcellation strategy highlights the importance of adopting

techniques to maximize the information extracted from already

available datasets. While GM parcellation alone provides

meaningful insights, the addition of WM data enhances the

model’s ability to differentiate between classes. These underscore

the value of employing more comprehensive methods in clinical

analyses to improve classification outcomes and better exploit the

full potential of existing datasets (Kobeleva et al., 2022). The above

findings, taken together, emphasize the critical role of dataset

quality over ML pipeline complexity in small-cohort studies.

Our findings concur with the conclusions drawn by Dadi

et al. (2019) who systematically benchmarked machine learning

pipelines for resting-state functional MRI (fMRI) on larger

datasets. Similarly to our study, they highlighted the sensitivity of

prediction outcomes to various choices in the pipeline design. Both
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FIGURE 8

Classification performance observed via multimodal analysis using MLR_L2 classifier with di�erent brain parcellations. The top row (a–c) shows the

outcomes when employing the GM parcellation, and the bottom row (d–f) shows those for GM+WM parcellation. The first column (a, d) show the

classification accuracy for 3-class, the second column (b, e) for SvF, and the third column (c, f) for the 2-class task. The red markers indicate the

classification accuracy of the model to the actual data. The black markers, and the green bounding region, indicate the accuracy of chance-level

predictions observed via permutation testing.

studies underscore that careful optimization of preprocessing and

analytical steps is essential, particularly when dealing with small

or heterogeneous datasets. Both studies stress the importance of

computational simplicity and robustness. For instance, Dadi et al.

(2019) demonstrated that linear models (e.g., logistic regression)

performed consistently well across datasets; our study similarly

found these group of classifiers effective and also that simpler

pipelines often yield comparable performance to more complex

configurations. This consistency suggests that general trends in

pipeline optimization can apply across neuroimaging modalities.

While classification accuracy alone does not determine clinical

usability, our findings offer preliminary insights into how

imaging-based biomarkers can contribute to future diagnostic

or prognostic tools in ALS. It is important to emphasize that

MRI is not currently a standard tool for ALS diagnosis, which

still relies heavily on clinical examination and electrophysiological

assessments. However, as imaging techniques and ultra-high-field

MRI become more effective in capturing microstructural and

metabolic alterations, there is growing interest in incorporating

MRI-derived biomarkers to complement traditional techniques. In

this context, our study provides a methodological foundation by

systematically evaluating the robustness of different ML pipeline

components under realistic, small-cohort conditions. In this light,

a 70%–80% accuracy in distinguishing among controls, slow,

and fast ALS patients is not proposed as a definitive diagnostic

tool, but rather as a proof-of-concept suggesting that quantitative

multimodal MRI contains clinically relevant information about

disease state and progression rate.

Another critical factor for the clinical integration of MLmodels

is related to model interpretability. While the primary focus of

our study was on benchmarking pipeline configurations, it is

worth noting that several classifiers we employed (e.g., MLR_L2,

MLR_L1, MLR_ENET, SVM_LIN) offer inherent interpretability

through feature weight analysis. Interpretability methods are best

used in conjunction with classifiers that exhibit a sufficiently good

level of accuracy, and our focus here has been on evaluating

pipeline design to enable this. In a future study, we intend to

extend this work by incorporating post hoc explainability methods,

such as SHAP or LIME (Thibeau-Sutre et al., 2023), to further

elucidate the biological relevance of the identified imaging-based

biomarkers, and to identify which brain regions or modalities drive

classification decisions. Enhancements to the models presented

here, such as through implementation of intrepretbility of model

outcomes, could assist neurologists in prioritizing follow-up

assessments, identifying atypical progression patterns, or selecting

patients for trials. Also, even moderate accuracies can have value

when used as a decision support tool rather than a diagnostic

replacement.

While our study focuses specifically on ALS, the challenges

and methodological considerations discussed here are broadly

shared across many rare neurological conditions, including

Huntington’s disease (Andica et al., 2020), Multiple System

Atrophy (Wan et al., 2023) and Creutzfeldt-Jakob Disease (Baiardi

et al., 2023). In such contexts, patient recruitment, imaging

harmonization, and phenotypic heterogeneity often result in small,

heterogeneous datasets. The general conclusion that pipeline
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refinement yields modest gains when data are limited, and

that dataset enrichment or multimodal integration has greater

impact, is expected to extend beyond ALS. Conversely, some

effects observed here—such as minimal improvements from

model tuning—may diminish as dataset sizes increase and model

generalization improves.

In conclusion, while optimizing the ML pipeline remains

an important aspect of AI-driven neuroimaging research, our

findings indicate that, in small-cohort studies, extensive pipeline

tuning may often yield only modest improvements in performance.

Efforts should also focus on dataset enrichment through larger

cohorts, multimodal data integration, and improved preprocessing

techniques. These steps are likely to have a more substantial

impact on advancing the clinical utility of ML-based approaches in

neuroimaging. This work may serve as a reference for researchers

developing ML frameworks in similarly constrained domains,

while highlighting the need for larger, more diverse datasets and

integrative modeling approaches.
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