
TYPE Original Research

PUBLISHED 27 June 2025

DOI 10.3389/fninf.2025.1583428

OPEN ACCESS

EDITED BY

Teresa P. L. Cheung,

Simon Fraser University, Canada

REVIEWED BY

Debadatta Dash,

Sonera, United States

Rocio Salazar Varas,

University of the Americas Puebla, Mexico

*CORRESPONDENCE

Javier M. Antelis

mauricio.antelis@tec.mx

RECEIVED 25 February 2025

ACCEPTED 30 May 2025

PUBLISHED 27 June 2025

CITATION

Alonso-Vázquez D, Mendoza-Montoya O,

Caraza R, Martinez HR and Antelis JM (2025)

From pronounced to imagined: improving

speech decoding with multi-condition EEG

data. Front. Neuroinform. 19:1583428.

doi: 10.3389/fninf.2025.1583428

COPYRIGHT

© 2025 Alonso-Vázquez, Mendoza-Montoya,

Caraza, Martinez and Antelis. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

From pronounced to imagined:
improving speech decoding with
multi-condition EEG data

Denise Alonso-Vázquez1, Omar Mendoza-Montoya1,

Ricardo Caraza2, Hector R. Martinez2 and Javier M. Antelis1*

1Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Mexico, 2Escuela de Medicina

y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico

Introduction: Imagined speech decoding using EEG holds promising

applications for individuals with motor neuron diseases, although its

performance remains limited due to small dataset sizes and the absence

of sensory feedback. Here, we investigated whether incorporating EEG data

from overt (pronounced) speech could enhance imagined speech classification.

Methods: Our approach systematically compares four classification scenarios

by modifying the training dataset: intra-subject (using only imagined speech,

combining overt and imagined speech, and using only overt speech) and

multi-subject (combining overt speech data from di�erent participants with

the imagined speech of the target participant). We implemented all scenarios

using the convolutional neural network EEGNet. To this end, twenty-four healthy

participants pronounced and imagined five Spanish words.

Results: In binary word-pair classifications, combining overt and imagined

speech data in the intra-subject scenario led to accuracy improvements of 3%–

5.17% in four out of 10 word pairs, compared to training with imagined speech

only. Although the highest individual accuracy (95%) was achieved with imagined

speech alone, the inclusion of overt speech data allowed more participants to

surpass 70% accuracy, increasing from 10 (imagined only) to 15 participants.

In the intra-subject multi-class scenario, combining overt and imagined speech

did not yield statistically significant improvements over using imagined speech

exclusively.

Discussion: Finally, we observed that features such as word length, phonological

complexity, and frequency of use contributed to higher discriminability between

certain imagined word pairs. These findings suggest that incorporating overt

speech data can improve imagined speech decoding in individualized models,

o�ering a feasible strategy to support the early adoption of brain-computer

interfaces before speech deterioration occurs in individuals with motor neuron

diseases.

KEYWORDS

imagined speech classification, EEG-based classification, overt speech, EEGNET,

brain-computer interfaces

1 Introduction

Speech is the primary mode of linguistic communication across all human cultures,

defined as a complex system of articulated vocalizations (Fitch, 2010). Various diseases and

medical conditions can lead to the progressive loss of speech, primarily due to upper and

lower motor neuron degeneration and the deterioration of the muscles involved in speech

production, even when some cognitive functions remain intact in many cases. Among

these conditions are amyotrophic lateral sclerosis (ALS), primary lateral sclerosis (PLS),
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spinal-bulbar muscular atrophy (SBMA), motor aphasia in

stroke, and pseudobulbar palsy (Tiryaki and Horak, 2014).

This progressive degeneration of motor neurons can lead to a

complete loss of the ability to be understood, profoundly affecting

social interaction and emotional well-being. As a result, patients

ultimately rely on assistive devices to facilitate communication

(Eshghi et al., 2022).

To address the impact on communication due to motor

difficulties present in these patients, speech and language therapists

are commonly employed (Leigh et al., 2003). In addition,

alternative and augmentative communication technologies, such

as eye-tracking devices and brain-computer interfaces (BCIs),

have been explored as potential solutions (Pugliese et al., 2022).

Brain activity recording techniques include functional magnetic

resonance imaging (fMRI), which offers excellent spatial resolution;

electroencephalography (EEG), characterized by high temporal

resolution;magnetoencephalography (MEG), which combines high

temporal and spatial resolution; and electrocorticography (ECoG),

an invasive method that provides both high temporal and spatial

resolution (Zhao et al., 2023). Although MEG and ECoG have

shown impressive performance in decoding neural representations

of speech (Dash et al., 2020b; Moses et al., 2021; Proix et al.,

2022), their high cost, limited accessibility, and invasive nature

restrict their application in assistive communication technologies

for everyday use. In contrast, EEG-based BCIs offer a non-invasive,

cost-effective, and portable alternative, making them particularly

promising for developing accessible communication systems (Lotte

et al., 2007).

Several EEG-based BCIs have been developed using evoked

potentials [e.g., P300, steady-state visual evoked potentials

(SSVEPs)] or cognitive paradigms such as motor imagery (MI)

(Aggarwal and Chugh, 2022). These approaches have enabled users

to communicate by selecting predefined options, which can then be

converted into text or auditory output. However, these paradigms,

as well as eye-tracking systems, have limitations for direct

communication through speech. While they facilitate indirect

interaction, they do not directly translate neural representations of

speech into a natural communication channel. As a result, there

is a growing interest in developing EEG-based BCIs capable of

decoding speech directly from brain signals, as this would enable

intuitive, real-time communication and provide a more natural and

direct alternative for individuals with severe speech impairments

who are currently limited to indirect selection-based systems.

Speech decoding from brain signals has been extensively

studied across different modalities, including overt speech (the

most common form of verbal communication with audible volume

and intonation), whispered speech (lower in volume and less

distinct than normal speech), silent speech (articulated without

sound), and imagined or covert speech (internally pronounced

without vocalization or facial movement) (Nieto et al., 2022).

Among these, imagined speech decoding has been proposed as a

potential solution for individuals with severe motor impairments,

as it does not require muscular engagement for communication.

While this approach is particularly relevant for clinical populations,

especially those affected by neurodegenerative diseases such as

amyotrophic lateral sclerosis (ALS), only a few studies have applied

speech decoding techniques in these contexts. For example, Dash

et al. (2020a) demonstrated the feasibility of decoding spoken

and imagined phrases in ALS patients using MEG. More recently,

Angrick et al. (2024) developed a real-time speech synthesis system

based on ECoG signals from a chronically implanted ALS patient,

achieving intelligible output while preserving the speaker voice

profile. Although this study relied on overt speech, it represents

an important step toward applications in more advanced stages of

ALS, where imagined speech decoding may become necessary. In

a related line of work, Dash et al. (2024) used imagined and overt

speech tasks with MEG to distinguish ALS patients from healthy

controls based on spectral and functional connectivity features.

However, this study focused on classifying clinical condition rather

than decoding the semantic content of imagined speech.

Most studies in this field, however, have been conducted on

young, healthy participants, namely individuals without diagnosed

speech disorders, using non-invasive EEG recordings (Lee et al.,

2020; Vorontsova et al., 2021; Datta and Boulgouris, 2021;

Sarmiento et al., 2021; Hossain et al., 2024). This participant

selection is largely influenced by the challenges inherent to EEG

data collection, particularly in imagined speech tasks. Unlike other

BCI paradigms, imagined speech lacks immediate sensory feedback,

making it difficult for participants to assess whether they are

correctly performing the task. Additionally, the extended duration

required for data collection, which arises from the necessity of

multiple repetitions and the cognitive effort involved, further limits

the feasibility of large-scale studies (Combrisson and Jerbi, 2015).

These constraints are exacerbated in clinical populations, where

factors such as fatigue and cognitive load must also be considered.

In the field of imagined speech word decoding, this translates to a

reduced dataset for training classification models. Therefore, it is

important to identify strategies that improve class differentiation

when classifying imagined speech words, even with limited data, to

subsequently develop methods that can be implemented online and

allow us to decode words in patients.

In light of this, and considering that motor neuron loss is

a progressive process, meaning that patients retain the ability to

speak in the early stages of the disease, we explored different

ways of using EEG signals from overt speech to train imagined

speech models. Previous studies have analyzed similarities between

different neural processes of speech in relation to imagined speech,

such as perceived speech (the hearing of spoken words) (Moon

et al., 2022) and visual imagery (mentally picturing a scene or

object in the mind without external stimuli) (Lee et al., 2020).

It has been shown that overt and imagined speech share certain

temporal and spatial characteristics (Nieto et al., 2022; Lee et al.,

2019; Martin et al., 2014). Overt speech has also been employed to

train imagined speechmodels using common spatial patterns (CSP)

alongside traditional classifiers (Rekrut et al., 2022), or through a

convolutional autoencoder to transfer features from overt speech

EEG to imagined speech classification (Lee et al., 2023).

To investigate how the combination of these two neural speech

processes (overt speech and imagined speech) affects imagined

speech classification, we designed and conducted an experiment

in which 24 healthy participants pronounced and imagined five

Spanish words used in assistive devices for individuals with

speech limitations. The words varied in connotation, number of

syllables, frequency of use, grammatical class, semantic meaning,
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and functional role within a sentence. We performed an event-

related potential (ERP) analysis for each condition: overt speech

and imagined speech. For classification, we used EEGNet, a

convolutional neural network designed for EEG-based brain-

computer interfaces (Lawhern et al., 2018). These methods were

evaluated in four classification scenarios designed to explore how

overt speech data could contribute to imagined speech classification:

three intra-subject scenarios (where the model is trained and

tested within the same participant) and one multi-subject scenario

(where the model is trained using data from multiple participants

combined with a portion of data from the target participant, and

tested on the remaining data from that same participant). Each

scenario involved different combinations of overt and imagined

speech data during training. Within each scenario, we performed

three classification tasks: (i) binary word vs. word, (ii) binary short

vs. long words, and (iii) five-class multi-class classification (all

words).

Throughout this work, we address various research questions

aimed at gaining deeper insight into the brain responses associated

with overt and imagined speech tasks. Specifically, we pose the

following research questions (RQs):

• RQ1. In which temporal window and under which ERP

components do overt and imagined speech responses show

the greatest similarity? Moreover, how can this information

guide the selection of the analysis window for subsequent

classification tasks?

• RQ2. Does including overt speech data during model training

significantly improve the classification of imagined speech

words?

• RQ3. Which data grouping strategy during model training

achieves the highest accuracy and robustness in imagined

speech word classification?

• RQ4. Based on RQ2, does this behavior hold in both binary

and multi-class classification scenarios?

• RQ5. Which characteristics or features (e.g., phonetic,

semantic, or articulatory complexity) facilitate the

discrimination of certain pairs of imagined speech words?

These questions guide our study and enable a systematic

evaluation of how combining both conditions impacts the

classification of imagined speech words. Through the analysis in

RQ1, we identify patterns of similarity between overt and imagined

speech responses, informing the selection of the analysis window.

Subsequently, via RQ2, we explore the effect of incorporating

overt speech data in model training and, with RQ4, verify whether

this effect persists across different classification scenarios. In

RQ3, we evaluate various data grouping strategies to optimize

classification accuracy and robustness. Finally, in RQ5, we analyze

which linguistic characteristics facilitate word discrimination in the

imagined speech task.

2 Materials and methods

The methods for data acquisition and preparation, analysis, as

well as the classification methods, are described below.

2.1 Participants

The experiment was conducted with 24 healthy participants

with an age range of 20–47 years (mean = 24, std = 6 years), 15 men

and nine women. All participants were native Spanish speakers,

with normal or corrected vision, right-handed, with no diagnosed

neurological conditions or speech disorders. Before the start of

the experiment, all participants provided written informed consent

allowing the use of their data, including audio and video files.

The experimental protocol was designed following the principles

of the Declaration of Helsinki and approved by the Institutional

Research Ethics Committee of the Instituto Tecnológico y de

Estudios Superiores de Monterrey under the ruling EHE-2023-9a.

2.2 Experimental protocol

The experiment involved overt and imagined pronunciation

(representing the two conditions: overt speech and imagined

speech) of five Spanish words: “si,” “no,” “agua,” “comida,” and

“dormir,” which translate to “yes,” “no,” “water,” “food,” and “sleep,”

respectively. This set of words was selected because they are basic

for communication, especially for individuals with motor and

language limitations. Additionally, these words vary in aspects such

as semantic meaning, grammatical class, connotation, and number

of syllables, which enriches the set of words and contributes to the

study of certain characteristics of speech production. Moreover,

the overt speech data were previously used in another study

for word decoding in different classification scenarios (Alonso-

Vázquez et al., 2023b). The recordings were conducted in a single

session. The participant sat in front of an 18.5-inch monitor, wore a

cap with EEG electrodes, and had two electromyography electrodes

placed on each side of the face, one on the major zygomatic muscle

and the other on the triangular muscle, while audio was recorded

with a microphone (see Figure 1). In this work, only the EEG data

will be analyzed.

Before starting the experiment, the participants were briefed

on the two conditions, overt speech was defined as the natural

pronunciation of the word at a normal volume and pitch. While

imagined speech involved pronouncing the word in their mind

without making any sound or gesturing any movement. The

experiment was conducted in eight experimental blocks, four

for each experimental condition. The order of the blocks was

random. At the beginning of each block, participants were duly

instructed whether the task would involve overt or imagined speech.

A graphical user interface (GUI) displayed on the monitor guided

the experiment by showing visual information. A trial (see Figure 2)

was divided into three intervals of 3 s each: attention, task, and rest.

In the attention interval, the instruction was to avoid movements

and stay attentive by looking at the fixation cross. Three seconds

later, one of the five words was randomly shown on the screen,

and the participant had to pronounce it once, either as imagined

speech or overt speech according to the type of block as instructed to

the participant. Finally, during the rest interval, participants were

advised to rest and blink, avoid sudden movements, and wait for

the next fixation cross. Eight blocks of 50 trials each were recorded,

totaling 200 trials for each condition and 40 trials for each word in
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FIGURE 1

Illustration of the experimental setup. The participant is seated in front of the monitor with the EEG cap, the EMG electrodes, and the microphone.

The monitor shows the word “agua,” (“water”) corresponding to the task stage.

each condition. Between the end and the beginning of each block,

the participant rested for∼3 min.

2.3 Data recording

EEG signals from 32 active electrodes (Ag/AgCl) were recorded,

uniformly distributed over the scalp according to the 10/10

standard. The ground electrode was placed at the AFz position and

the reference on the right earlobe. For recording and digitizing the

signals, the g.HIAMP bio-signal amplifier (g.tec) was used. The

data were recorded at a sampling rate of 1,200 Hz, applying a

Butterworth band-pass filter from 0.5 to 500 Hz and a Notch filter

at 60Hz.

2.4 Data processing and preparation

The data were trimmed from –1.5s to 1.5 s relative to the

stimulus onset (see Figure 2), were downsampled to 256Hz, and

had an eighth-order Butterworth digital filter applied from 1 to

30Hz to reduce most of the muscle-related activity (Goncharova

et al., 2003). Noisy channels were removed, eliminating between

0 and 4 channels per participant. Independent Component

Analysis (ICA) was used as a method to eliminate artifacts

from the EEG signals. First, we decomposed the data into

32 independent components. Then, we visually identified the

components associated with cardiac, ocular, and motor artifacts–

the latter mainly present during overt speech. Components

were considered artifactual if they exhibited characteristic spatial

patterns (e.g., frontal for eye blinks, central for heartbeat, temporal

for EMG) and irregular high-frequency activity in the time domain,

particularly in the case of muscle artifacts. We selected between

1 and 6 components per participant as artifacts. Finally, we

reconstructed the EEG signal excluding these selected components.

To ensure the quality of the EEG data, we implemented a

process for detecting noisy trials by calculating the probability

distribution functions of the peak-to-peak voltages and their

standard deviations across all channels. This allowed us to

determine appropriate thresholds for identifying noisy trials. A

trial was considered noisy and excluded from further analysis if,

in at least one of the electrodes, the peak-to-peak voltage exceeded

150 µV and the standard deviation surpassed 20 µV. As a result

of this preprocessing, the data structure for each subject has the

following form: x ∈ R
(NChannels·Nsamples·Ntrials), where NChannels = 32,

Nsamples = 769, Ntrials = 200 for overt and imagined speech in the

ideal case in a subject where no channels or trials were eliminated.

2.5 EEG analysis

To explore the temporal window in which overt speech and

imagined speech responses show the greatest similarity, and to

gain a deeper understanding of the underlying patterns in the

EEG signals (RQ1), we conducted various analyses. Specifically,
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FIGURE 2

Timeline illustration of trial events. The trial begins with a 3-s attention period marked by a fixation cross. Following this, the participant is presented

with one of the five words for 3 s, which they must pronounce only once (either imagined or overt speech). Finally, there is a 3-s rest period (palm).

Additionally, the lower section of the image displays the data segment from –1.5 to 1.5s, which represents the time window of interest.

we examined the temporal dynamics of brain activity during

task execution by calculating event-related potentials (ERPs). The

data were filtered from 4 to 20Hz using a Butterworth band-

pass filter. We applied baseline correction to each epoch using

the pre-stimulus period from –400 to –100 ms. The ERPs were

calculated by averaging the pre- and post-stimulus brain activity

of all epochs for each of the channels and participants. The grand

average was obtained by averaging the ERPs of all participants in

each of the channels. In the calculation of the ERPs, averaging the

responses at the individual level before calculating a group average

ensures that each participant contributes proportionally to the final

outcome, respecting individual variability and the dataset size of

each participant (Luck and Kappenman, 2013).

For each ERP, significant positive and negative peaks were

computed using a statistical test based on the non-parametric

kernel density estimation (KDE) method (Chen, 2017). Here, the

probability density function (PDF) of the ERP in the pre-stimulus

interval, specifically from –0.2 to 0 s where no overt or imagined

speech is performed, is estimated with KDE method. Then, it is

tested according to a confidence level α = 0.01 whether each

amplitude value of the ERP belongs to the left or right tails of the

estimated PDF, which represent ERP negative or positive values

significantly different from the ERP in the pre-stimulus interval,

respectively. This procedure was performed separately for each

channel and for each condition.

2.6 Classification scenarios

To compare different training strategies for imagined speech

decoding, we defined three intra-subject scenarios and one multi-

subject scenario, which incorporates data from other participants.

These four configurations were designed to examine the impact

of incorporating overt speech data into the model training for

classifying imagined speech words (RQ2), as well as to evaluate

which data grouping strategy yields the highest accuracy and

robustness (RQ3). The scenarios are illustrated in Figure 3 and in

Table 1.

• Intra-subject scenarios. The training and evaluation of the

model are performed exclusively with data from the same

participant.

1. Intra-subject imagined speech training: The model is

trained and tested using only imagined speech data, with

80% used for training and 20% for testing via cross-

validation.

2. Intra-subject mixed speech training: The model is trained

with both overt and imagined speech data (100 and 80%

respectively), and tested using 20% of the imagined speech

data via cross-validation.

3. Intra-subject overt speech training: The model is trained

exclusively with overt speech data and tested with imagined

speech data.

• Multi-subject overt augmented mixed-speech training: The

model is trained using 80% of the imagined speech data

from the target participant, augmented with 100% of the

overt speech data from all participants, and tested with the

remaining imagined speech data from the target participant via

cross-validation. This configuration mirrors the intra-subject

mixed speech training, with the addition of overt data from

other participants to assess whether it improves classification

performance for the target individual.

All scenarios described above were subject-dependent: in all

cases, the test data came exclusively from the same participant

whose data were partially included in the training set.

To explore whether the effect of including overt speech

data during training holds in both binary and multiclass

classification scenarios (RQ4), we evaluated two settings within
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FIGURE 3

Classification scenarios. Each block shows the distribution of imagined speech and spoken speech data for training and testing, according to each of

the intra-subject scenarios and the multi-subject scenario.

each configuration. Word vs. word: to determine which word pairs

are most effectively discriminated and to examine how linguistic

properties may influence classification (RQ5), we performed ten

binary classifications covering all possible pairwise combinations

among the five words. All words: In this setting, we study the

recognition among the five words, which corresponds to a five-

classmulticlass classification. For participants without any removed

trials, each class consisted of 40 trials.

2.7 Classification method: EEGNet

EEGNet is a compact convolutional neural network

architecture designed for EEG-based brain-computer interfaces

(BCIs). It is adaptable to various BCI paradigms and can be trained

with a minimal amount of data, capturing temporal and spatial

patterns in EEG signals (Lawhern et al., 2018).

2.7.1 Network architecture and hyperparameters
The time segment used for classification was from 0 to 0.5s for

each epoch, which represents 129 samples. Thus, the input matrix

to the network has the following form: x ∈ R
(NChannels·Nsamples), where

NChannels = 32, and Nsamples = 129, for overt and imagined speech

in the ideal case in a subject where no channels were eliminated.

The time window selected for classification (from 0 to 0.5 s after

stimulus onset) was defined based on a prior analysis of event-

related potentials (ERPs), as described in Section 3.1. This analysis

identified an interval in which both conditions (overt and imagined

speech) exhibited comparable brain dynamics. This allowed us to

select a segment in which similarities between conditions were

maximized, with the aim of using overt speech data to train models

for classifying imagined speech.

Figure 4 shows the architecture of EEGNet, which consists

of three main blocks: The first block begins with a sequence

of two convolutional stages. The first stage performs a temporal

convolution to learn frequency filters. Different parameters were

used in this stage depending on the classification scenario (see

Supplementary material). The parameter F1 is the number of

temporal filters with a kernel size of (1, 128), corresponding to

half of the sampling rate. The second stage of the first block

involves a depthwise convolution that learns spatial filters specific

to each temporal filter, with a size of (C, 1), where C is the number

of channels, being C = 32 for participants where all channels

were retained. The depth parameter D indicates the number of

spatial filters to be learned within each temporal convolution,

set to different values depending on the classification scenario

(see Supplementary material). This combination of temporal and

spatial filtering is inspired by the Filter Bank Common Spatial

Pattern (FBCSP) algorithm (Ang et al., 2008). FBCSP addresses the

limitations of the Common Spatial Pattern (CSP) algorithm, whose

effectiveness depends on the EEG’s operational frequency band.
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TABLE 1 Summary of the training scenarios evaluated in this study.

Scenario Subject
level

Training
data

Test data

1. Intra-subject

imagined speech

training

Intra-subject Imagined

speech from

the target

participant

(80%)

Imagined speech

from the target

participant (20%)

2. Intra-subject

mixed speech

training

Intra-subject Imagined

(80%) + overt

(100%) speech

from the target

participant

Imagined speech

from the target

participant (20%)

3. Intra-subject

overt speech

training

Intra-subject Overt speech

from the target

participant

(100%)

Imagined speech

from the target

participant (100%)

4. Multi-subject

overt augmented

mixed-speech

training

Multi-subject Imagined

speech (80%)

from the target

participant +

overt speech

(100%) from

all other

participants

Imagined speech

from the target

participant (20%)

All evaluations were subject-dependent, using only imagined speech data for testing.

Batch normalization is then applied before using the Exponential

Linear Unit (ELU) activation function and a dropout layer to

regularize the model, with a probability of 0.65. The block

concludes with an average pooling layer of size (1, 4) to reduce the

sampling rate of the signal to 64 Hz.

The second block consists of a separable convolution that

combines a depthwise convolution of size (1, 16) with a pointwise

convolution. In this case, F2 = F1 ∗ D, where F2 is the number

of pointwise filters to be learned. As in the first block, batch

normalization is applied, followed by ELU activation and a dropout

layer with a probability of 0.65 for regularization. This block

also includes an average pooling layer of size (1, 8) to reduce the

dimensions. Finally, the third block is responsible for classification

using the softmax function. Additional information about the

network can be found in Lawhern et al. (2018).

2.8 Validation procedure and performance
metrics

In the first two intra-subject scenarios (imagined speech and

mixed speech training) and the multi-subject overt augmented

mixed-speech training scenario, EEGNet was trained and tested

using five-fold cross-validation on imagined speech data. The

imagined speech dataset was divided into five groups. Four of these

groups, along with the entire set of spoken speech data (depending

on the scenario), were used to train the model, while the remaining

group was used for evaluation. This process was repeated five times,

ensuring that the training and testing datasets were alwaysmutually

exclusive. During each iteration, two metrics were calculated:

overall accuracy and recall per class. Overall accuracy represents the

fraction of test instances correctly classified (Japkowicz and Shah,

2011). It is defined as follows:

AccT(f ) =
1

|T|

|T|
∑

i=1

I(f (xi) = yi), (1)

where |T| denotes the total number of samples in the test dataset

T. The indicator function I(a) outputs 1 if the predicted class a

is correct and 0 otherwise, f (xi) represents the label predicted by

the model f for the i-th sample, while yi is the actual label for

that sample. This metric indicates the quality of the classification

but is heavily affected by imbalanced classes, favoring the majority

class. To provide information on class-specific performance, recall

per class is proposed. Recall is defined as the number of correctly

classified elements of a class divided by the total number of

elements that should have been classified in that class, i.e.,

performance of the model in correctly identifying positive cases

(Foody, 2023). This is defined as follows:

Recallclassc =

∑|T|
i=1 I(yi = c ∧ f (xi) = c)

∑|T|
i=1 I(yi = c)

(2)

where c is the specific class for which the recall or precision is

computed.

In the multi-subject overt augmented mixed-speech training

scenario, data from different subjects were combined, resulting in

different voltage ranges depending on the subject. These variations

in voltage ranges are due to individual variability in brain activity

and factors such as electrode placement and scalp conductivity,

which can vary between subjects. Similarly, data from for overt

and imagined speech showed differences in voltage ranges for some

subjects. To ensure uniform contribution from all features and

maintain a consistent scale for each specific channel across epochs,

we applied a z-score normalization. This process standardized the

data so that each channel had a mean of zero and a standard

deviation of one. For spoken speech data, standardization was

performed only once, as this set remained constant during cross-

validation. However, for imagined speech data, the parameters

(mean and standard deviation) were calculated on the training set

for each cross-validation fold, and these same parameters were then

used to transform the test set in each iteration.

2.8.1 Statistical significance of classification
In the classification of small datasets, as is often the case with

brain signals, it is necessary to consider that the chance level

depends on the number of available data points, and the theoretical

behavior (e.g., a 50% chance level for two classes) only holds

in large sample sets (Combrisson and Jerbi, 2015). To calculate

the statistical significance thresholds for binary classification word

vs. word and multiclass classification (five classes), we assume

that classification errors follow a cumulative binomial distribution,

where for n samples and c classes, the probability of correctly

predicting the class at least z times by chance is given by:

P(z) =

n
∑

i=z

(

n

i

) (

1

c

)i ( c− 1

c

)n−i

(3)
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FIGURE 4

Architecture of the convolutional neural network EEGNet.

Therefore, using the Matlab function X = binoinv(Y, n, P),

which returns the smallest integer X such that the binomial

cumulative distribution function evaluated at X is equal to or

exceeds Y, we calculated the statistical significance threshold with α

= 0.05. The parameters used were Y = 1-α, which is the cumulative

probability complement of the significance level, n is the sample

size, i.e., the number of observations (80 for two classes and 200

for five classes), and P is the probability of success in each trial,

i.e., 1/c. By multiplying X by 100/n, we converted this number of

successes into a percentage of the total sample size. The thresholds

we obtained were 58.75% for binaryword vs. word classification and

24.50% for multiclass classification.

In addition to the analytical estimation, we empirically validated

the chance levels using a bootstrapping approach. Specifically,

for each classification case, we permuted the class labels of

the training set 500 times and trained a new model on each

permuted dataset using the same architecture and parameters.

The classification accuracy was then evaluated on the true test

labels, building a null distribution of accuracies under random

labeling. The 95th percentile of this distribution was used as

an empirical threshold to determine statistical significance. This

empirical bootstrapping analysis yielded thresholds of 64.10% for

binary word vs. word classification, and 26.05% for multiclass

classification. These empirically derived thresholds are more

conservative than the analytically estimated ones, and will

therefore be used throughout the manuscript to assess statistical

significance.

Additionally, we performed the Wilcoxon signed-rank test

(Wilcoxon, 1945), which is a non-parametric test used to compare

two samples or to compare a sample with a specific value. It

evaluates whether the medians of the distributions are significantly

different from each other.

To evaluate the significance of the results, we use the Wilcoxon

signed-rank test to compare our results to the baselines. The test

was conducted with a significance level of α = 0.01 and compared

the distributions of the results against the calculated statistical

significance threshold for each case.

3 Results

The results found in both the analysis of the EEG signals and

the classification experiments are shown below.

3.1 EEG analysis

Figures 5A, B show the ERPs calculated across all

participants in each condition. These potentials indicate a

typical brain response to the presented visual stimuli. In

both conditions, we observed a latency difference of ∼50

ms between parietal/occipital and frontal channels. This

difference suggests a sequential activation pattern, where

information is initially processed in posterior sensory regions

and subsequently transferred to anterior areas associated with

higher-order linguistic and cognitive functions. This observation

is consistent with cascade processing models described in

previous studies on visual word recognition (Hauk et al.,

2006) and rapid categorization of visual stimuli (Thorpe et al.,

1996).
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FIGURE 5

Event-related potentials and the statistical significance of the peaks. ERPs calculated across all participants in all channels for (A) overt speech, and

(B) imagined speech. Representative statistically significant peaks (P8 channel) α = 0.01, color green for positive peaks and color orange for negative

peaks, (C) overt speech, and (D) imagined speech. Distribution of significant peaks (α = 0.01) over time across the 32 channel (E) overt speech, and

(F) imagined speech.

In Figures 5C, D, statistically significant peaks in the P8

channel of each task can be seen, while Figures 5E, F illustrate the

distribution of significant peaks over time across the 32 channels.

A similar behavior regarding the spatial and temporal distribution

of significant peaks in the evoked response between overt and

imagined speech is observed up to 500 ms, where after this time

in the overt condition, significant peaks are concentrated between

600ms and 800ms.

The waveform of these ERPs and their statistical analysis reveal

the possible presence of five components. The first corresponds

to the P100, which is a positive peak found around 100 ms and

is related to basic visual processing. The second component is
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negative, close to 200 ms, corresponding to the N200, characterized

by a prolonged negativity between 100 and 300ms after the

stimulus, especially over frontocentral areas (Schmitt et al., 2000).

The third is a positive peak between 250 and 300 ms, known

as P300. This component corresponds to the unpredictable

response to any stimulus (Van Petten and Luka, 2012). The fourth

component is a negative peak between 330ms and 410ms, known

as N400, which reflects the additional work the brain must do

to process an unrelated word to the active concept when the

word is presented (Swaab et al., 2012). The fifth is a positive

peak observed around 450ms, mainly in electrodes located in

frontal and frontocentral areas of the brain, corresponding to the

P450, a component related to cognitive inhibition (Mercado et al.,

2013).

Observing the period of time in the ERPs where the brain

response is similar during both tasks and verifying the statistical

significance of the observed peaks determined the time segment

taken for classification. This is because the data from the two

conditions will be mixed, and it is sought to be during the period

of time in which they have the greatest similarity. Although the

early ERP components include visual and cognitive responses, this

time window also encompasses the onset of linguistic processing.

Therefore, it is not only the segment where both modalities

are comparable, but also the period where the brain begins to

encode speech-related information–making it a reliable window

for classification. Previous work has shown that this early interval

also contains semantic and speech-related information, both in

imagined speech classification tasks (Alonso-Vázquez et al., 2023a)

and in comparisons against non-linguistic visual stimuli such as

fixation crosses (Alonso-Vázquez et al., 2023b).

3.2 Classification

Below are the results of the bi-class and multiclass classification

under the different classification scenarios.

3.2.1 Word vs. word
In Figure 6, boxplots illustrate the accuracies obtained in each

of the four binary Word vs. word classification scenarios for

all participants. The scenarios that had word pairs exceeding

the statistical significance threshold of 64.10% Wilcoxon signed-

rank test (p <0.05) were the intra-subject imagined speech

training and the intra-subject mixed speech training scenarios (see

Figures 6A, B), with the first having two word pairs above the

threshold and the second having five. In intra-subject overt speech

training (Figure 6C) and the multi-subject overt augmentedmixed-

speech training scenario (Figure 6D), no word pairs exceeded the

threshold.

The pairs “si” vs. “comida,” and “no” vs. “dormir,” were the

only ones that exceeded the statistical significance threshold in two

scenarios. In contrast, the pairs “si” vs. “no,” “agua” vs. “comida,”

“agua” vs. “dormir,” and “comida” vs. “dormir,” did not reach

this threshold in any scenario. Figure 7 shows the classification

results per participant for the word pairs “si” vs. “comida” and

“no” vs. “dormir,” considering the first two intra-subject scenarios

(imagined speech training and mixed speech training). Each graph

displays the average accuracy obtained through cross-validation,

along with its error bars, for each of the 24 participants. In the

intra-subject imagined speech training scenario (left panels), for

“si” vs. “comida,” 16 participants exceed the statistical significance

threshold. Notably, participant 22 achieves the highest accuracy

(95%). Regarding those who surpass 70% accuracy, there are 10

in “si” vs. “comida” and 6 in “no” vs. “dormir.” Additionally, for

“no” vs. “dormir,” ten participants exceed the significance threshold,

while the rest present accuracy values below it. In the intra-

subject mixed speech training scenario (right panels), only one

participant falls below the significance threshold in the pair “si”

vs. “comida,” and four in the pair “no” vs. “dormir.” Participant 22

again stands out with the highest accuracy, reaching 88.75% in “si”

vs. “comida.” In this scenario, 15 participants exceed 70% accuracy

in “si” vs. “comida” and 11 do so in “no” vs. “dormir.” Overall,

the intra-subject mixed speech training scenario shows superior

performance, with a greater number of participants surpassing

70% accuracy in both tasks. The Supplementary material contains

the participant-by-participant results for each of the remaining

word pairs.

The intra-subject mixed speech training scenario recorded, on

average, the highest accuracies per word pair: “si” vs. “comida,”

reached 74.16% compared to 68.99% in the intra-subject imagined

speech training scenario; “no” vs. “comida,” 71.46% vs. 67.40%;

“no” vs. “dormir,” 70.69% vs. 66.02%; “si” vs. “agua,” 67.94% vs.

64.92%; “si” vs. “dormir,” 67.53% vs. 65.00%; and “no” vs. “agua”

64.74% vs. 62.53%. According to the Wilcoxon signed-rank test

(p<0.05), these differences were statistically significant in four of

the five pairs that exceeded the significance threshold, highlighting

the superiority of the intra-subject mixed speech training scenario

in “si” vs. “agua,” “si” vs. “comida,” “no” vs. “comida,” and “no” vs.

“dormir.”

Figure 8 shows the confusion matrices calculated with one

participant close to the average in each scenario and with the

best-performing participant in the pair “sí” vs. “comida.” It

can be observed that in the intra-subject mixed speech training

scenario for participant 22, the classes are balanced, while in the

other confusion matrices there is a slight tendency toward better

recognition of the word “comida.” Finally, to verify that the intra-

subject mixed speech training scenario does not exhibit bias toward

either of the two classes, Supplementary Figure S2 shows the recall

for both classes in each word pair. The statistical analysis (Wilcoxon

signed-rank, p<0.05) revealed no significant differences between

the recall values of the two classes in any of the pairs, suggesting

balanced performance under this scenario.

In addition to the scenarios included in the main analysis,

two additional configurations were explored: (5) Multi-subject

imagined augmented imagined-speech training: training using

only imagined speech data from all participants. (6) Multi-

subject mixed augmented mixed-speech training: training using all

types of speech data (imagined and overt) from all participants.

However, in both cases, the model showed difficulties in training

effectively. Even when using the best-performing participant (22)

and the most discriminable word pair (“si” vs. “comida”), the test

accuracy remained unstable and did not show a clear improvement

trend over the epochs. For this reason, these scenarios were
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FIGURE 6

Distribution of classification accuracy for each word pair obtained in the di�erent scenarios in the case word vs. word. The asterisk (*) indicates the

word pair in which the results are statistically significant, i.e., they exceed the statistical significance threshold (Wilcoxon signed-rank test, p<0.05),

marked by the dashed line located at 64.10%. (A) Intra-subject imagined speech training. (B) Intra-subject mixed speech training. (C) Intra-subject

overt speech training. (D) Multi-subject overt augmented mixed-speech training.

not included in the comparative analysis, but representative

training and validation accuracy curves can be found in the

Supplementary Figures S3, S4.

3.2.2 Short words vs. long words
As a consequence of the findings reported in Section 3.2.1,

where one-syllable words were classified with better performance

compared to multi-syllable words, the classification of short words

vs. long words was proposed. The short words group includes “si”

and “no” (one syllable), while the long words group contains “agua”

and “dormir” (two syllables). Each group consists of 80 trials (40

per word). The results of this classification were computed under

the intra-subject imagined speech training and intra-subject mixed

speech training scenarios, which performed best in Section 3.2.1. In

all cases (accuracy and recall per class), the statistical significance

level of 58.29% (95th percentile of the permutation test, α=0.05)

was surpassed. Additionally, the distribution of accuracy in the

intra-subject mixed speech training scenario is higher than in the

intra-subject imagined speech training scenario.

The average accuracy in the intra-subject imagined speech

training scenario was 67.58%, whereas in the intra-subject

mixed speech training scenario it reached 70.80%. According

to the Wilcoxon signed-rank test (p <0.05), this difference

is statistically significant, indicating that the intra-subject

mixed speech training scenario achieved superior performance

in the binary classification of short words vs. long words.

Additionally, the recalls of both classes were evaluated in

the intra-subject mixed speech training scenario, and once

again, the Wilcoxon signed-rank test (p <0.05) revealed no

significant differences, indicating the absence of bias toward

either class.

Figure 9 shows the classification accuracy values per participant

for the intra-subject imagined speech training and intra-subject

mixed speech training scenarios. In both cases, only one participant

fails to reach the statistical significance threshold. Moreover, the
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FIGURE 7

Classification accuracies per participant for the word pairs “si” vs. “comida” and “no” vs. “dormir” using intra-subject imagined speech training and

intra-subject mixed speech training. The error bar represents the standard deviation obtained by averaging values from five-fold cross-validation. The

statistical significance threshold is indicated by the dashed line located at 64.10%.

FIGURE 8

Confusion matrices using intra-subject imagined speech training and intra-subject mixed speech training for the word pair “si” vs. “comida,” showing

results from participants with performance close to the average and from the participant with the highest accuracy.

previously noted trend is confirmed: in the intra-subject imagined

speech training scenario 6 participants exceed 70% accuracy, while

in the intra-subject mixed speech training scenario, 12 participants

do so. Likewise, the participant with the highest accuracy was found

in the intra-subject imagined speech training scenario (86.30%),

coinciding with the same individual who obtained the best score

in the previous section.

The confusion matrices reveal that (see Figure 10) although

both classes were generally well distinguished, errors tended to

occur more frequently in short words being misclassified as long

words. This suggests that longer words might elicit more distinctive

EEG patterns, facilitating their correct classification.

3.2.3 All words
In Figure 11, the accuracies obtained for all participants in

the four multi-class classification scenarios, as well as the recalls

corresponding to each class, are illustrated using boxplots. In

intra-subject imagined speech training and intra-subject mixed

speech training scenarios, and in themulti-subject overt augmented
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FIGURE 9

Classification accuracies per participant for short word vs. long word using intra-subject imagined speech training and intra-subject mixed speech

training. The error bar represents the standard deviation obtained by averaging the values from five-fold cross-validation. The statistical significance

threshold is indicated by the dashed line located at 58.29%.

mixed-speech training scenario, the accuracy exceeded the

statistical significance threshold with p<0.05 (Wilcoxon signed-

rank test), set at 26.05% for a five-class problem. The best results

were observed in the intra-subject mixed speech training scenario

(Figure 11C), with an average accuracy of 31.68%, followed by

the intra-subject imagined speech training scenario (Figure 11A)

with 30.40%. In contrast, the intra-subject overt speech training

scenario and the multi-subject overt augmented mixed-speech

training scenario, (see Figures 11C, D) reached values of 26.95%

and 28.47%, respectively. According to the Wilcoxon signed-rank

test, the comparison between the intra-subject imagined speech

training and intra-subject mixed speech training scenarios yielded

no statistically significant differences (p > 0.05). However,

both scenarios showed significant differences when compared

to the intra-subject overt speech training scenario (p < 0.05).

Class 1, corresponding to the word “si,” was the only one

whose recall exceeded the statistical significance threshold in

three out of the four scenarios, indicating that the proportion

of true positives identified by the model (relative to all actual

positives) surpasses that benchmark. It was followed by class

5 corresponding to the word “dormir,” where the threshold

was exceeded in two out of the four scenarios. The class

with the lowest performance in identifying true positives was

the one corresponding to the word “comida.” The participant-

specific results, illustrated in Figure 12, indicate that, although the

differences between the intra-subject imagined speech training and

intra-subject mixed speech training scenarios were not statistically

significant (p > 0.05, Wilcoxon signed-rank test), the trend

observed in previous sections persists: the highest accuracy (45%)

is recorded in the intra-subject imagined speech training scenario

and again corresponds to participant 22. However, the intra-

subject mixed speech training scenario shows a greater number

of participants (4) exceeding 40% accuracy, compared to just one

participant in the intra-subject imagined speech training scenario.

Furthermore, in in the latter, 3 participants do not reach the

significance threshold, while in the former, 2 participants fail

to do so.

Figure 13 presents the confusion matrices calculated for one

participant near the mean accuracy and for the best-performing

participant in each scenario. For almost all subjects, the word “si”

exhibited the highest proportion of correct predictions (diagonal

values). Overall, the word “agua” was the most frequently confused

with other words.

4 Discussion

In this study, we explored different ways of incorporating EEG

signals recorded during overt speech tasks to enhance the decoding

of imagined speech words. Initially, a time-domain analysis was

carried out by computing ERPs for each condition and identifying

statistically significant peaks. Our results indicate that, during

the first 500 ms following stimulus presentation, the spatial and

temporal distribution of these peaks is very similar for both overt

and imagined speech. In particular, a sequential activation pattern

was observed, characterized by an initial response in parietal and

occipital regions followed by activation in frontal areas, consistent

with cascade models of visual and linguistic processing (Hauk

et al., 2006; Thorpe et al., 1996). This similarity, combined with the

presence of early semantic and cognitive ERP components, enabled

us to define a temporal interval in which both conditions exhibit

a comparable evolution while capturing meaningful linguistic

representations.

To assess the usefulness of overt speech data for imagined

speech classification, we proposed four classification scenarios

(three intra-subject and onemulti-subject), each involving different

combinations of data in the training set. Likewise, a trend was

observed in individual participant behavior: in the word pairs

where the intra-subject mixed speech training scenario performed

better, most participants exceeded the statistical significance

threshold, and the number of participants above 70% accuracy

was higher compared with the intra-subject imagined speech

training scenario. Although a higher individual accuracy was

observed in the intra-subject imagined speech training scenario,

the broader success across participants in the intra-subject mixed

speech training scenario suggests that the classification method

used in the latter may be more robust or better adapted to

the individual characteristics. Nevertheless, the consistently high
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FIGURE 10

Confusion matrices using intra-subject imagined speech training and intra-subject mixed speech training for short words vs. long words showing

results from participants with performance close to the average and from the participant with the highest accuracy.

FIGURE 11

Distribution of the average accuracy and recall by class for multiclass classification obtained in the di�erent scenarios. The asterisk (*) indicates the

metric for which the results are statistically significant, meaning they exceed the statistical significance threshold for 5 classes set at 26.05%

(Wilcoxon signed-rank test, p < 0.05). The white dot in the center of each boxplot represents the mean. (A) Intra-subject imagined speech training.

(B) Intra-subject mixed speech training. (C) Intra-subject overt speech training. (D) Multi-subject overt augmented mixed-speech training.
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FIGURE 12

Classification accuracies per participant in the multi-class classification task, using intra-subject imagined speech training and intra-subject mixed

speech training. The error bar represents the standard deviation obtained by averaging the values from 5-fold cross-validation. The statistical

significance threshold is indicated by the dashed line located at 26.05%.

FIGURE 13

Confusion matrices using intra-subject imagined speech training and intra-subject mixed speech training in the multiclass classification showing

results from participants with performance close to the average and from the participant with the highest accuracy.

performance of participant 22 in both scenarios illustrates inter-

subject variability and suggests that certain individuals exhibit

more distinguishable brain activity patterns for the words studied

Samek et al. (2013).

In two out of the four scenarios, the word pairs “si”

vs. “comida” and “no” vs. “dormir” surpassed the statistical

significance threshold. These words differ in length, phonetic

complexity, grammatical class, type of concept, semantic meaning,

and frequency of use. The words “si” and “no” are very short

(one syllable), whereas “comida” (three syllables) and “dormir”

(two syllables) have a more extensive phonetic structure. These

differences may give rise to more contrasting brain activity patterns

when pronouncing or imagining the words. Furthermore, “si”

and “no” are frequently used and serve grammatical functions

(affirmation/negation), while “comida” is a noun and “dormir” is

a verb, evoking different semantic networks (objects vs. actions).

Meanwhile, pairs such as “si” vs. “no,” “agua” vs. “comida,” “agua”

vs. “dormir,” and “comida” vs. “dormir” did not reach the statistical

significance threshold in any scenario, which may reflect smaller

linguistic contrasts and more overlapping cognitive processing.

These results are consistent with previous studies on imagined

speech (Datta and Boulgouris, 2021) that have grouped words

according to their grammatical class (verbs and nouns), showing

that it is possible to classify between these groups and that there

are consistent neural patterns within each class. Additionally, based

on the confusion matrices obtained in the binary classification, we

observed that long words are decoded with higher accuracy. This

finding aligns with the results reported by Nguyen et al. (2017),

who performed a binary classification between the words in and

cooperate, finding that long words are easier to classify. However,

the results obtained in the multiclass classification indicate that the

word “si” was the most discriminable among the others.

Given this trend, in which words with different durations

were classified with higher accuracy (see Figure 6), it is considered

relevant to evaluate the performance of the different classification

scenarios using a time window corresponding to the duration

of the shortest word (262 ms, in our case for the word “si”).

Although lower performance would be expected due to the partial

loss of information in longer words, this analysis would help

determine whether the improvement in classification is solely

due to the length of the signal or if there are informative

components related to linguistic processing. However, this analysis

requires further exploration and is proposed as a direction for

future work.
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Since the one-syllable words showed better performance

compared to those with more than one syllable, the classification

short words vs. long words was proposed. In this case, the

intra-subject mixed speech training scenario achieved an

improvement of 3.22% over the intra-subject imagined speech

training scenario, with statistical significance. Furthermore,

the classification results did not show a systematic bias

toward either class (short or long words), indicating that the

performance improvements were not driven by class imbalance

but rather by genuine neural discriminability. Additionally,

the trend observed in the word vs. word classification was

repeated: a greater number of participants exceeded 70%

accuracy in the intra-subject mixed speech training scenario,

although the highest accuracy value (86.30%) was recorded

in the intra-subject imagined speech training scenario, still by

participant 22.

In the multi-class classification, three out four scenarios

exceeded the statistical significance threshold (26.05%). The highest

average accuracy was 31.68% in the intra-subject mixed speech

training scenario, followed by 30.40% in the intra-subject imagined

speech training scenario, however, the difference between them

was not statistically significant, except when compared to the

intra-subject overt speech training scenario. Although the overall

accuracy values may appear modest, they are consistent with recent

studies addressing imagined speech decoding challenges using EEG

(e.g., Carvalho et al., 2024), where multiclass accuracies of ∼33%–

36% (for 5 and 6 classes) have been reported. These results reflect

the inherent complexity of multiclass imagined speech decoding,

which is limited by factors such as low signal-to-noise ratio,

overlapping neural patterns, and the subtle nature of internal

speech representations. Furthermore, it was observed that the

highest individual accuracy (45%) was achieved in the intra-subject

imagined speech training scenario, whereas the intra-subject mixed

speech training scenario outperformed it in terms of the number

of participants who exceeded both the statistical significance

threshold and 40% accuracy. Together, these findings suggest that

while multiclass decoding remains challenging, combining overt

and imagined speech data may contribute to more robust and

generalizable models across participants.

The scenario that uses only overt speech data to train

the model and imagined speech data for testing, showed the

lowest performance in both binary and multi-class classification.

Regarding multi-subject over augmented mixed-speech training

scenario, where overt speech data from all participants is mixed

with a portion of imagined speech data from the participant

to be evaluated, no improvements were observed compared to

training exclusively with imagined speech or with mixed speech

in the intra-subject configuration. Therefore, the standard method

(the intra-subject imagined speech training) outperforms those

proposed in the intra-subject overt speech training scenario

and the multi-subject overt augmented mixed-speech training

scenario. These results are consistent with those reported in

Rekrut et al. (2022), where no significant improvements were

found when using only overt speech data for training to classify

imagined speech, employing CSP-based features and a random

forest classifier. In Lee et al. (2023), a convolutional autoencoder

was proposed to transfer overt speech EEG features to imagined

speech classification, comparing it with two methods (CSP+LDA

and EEGNet). No improvements were found when including

overt speech data in those two latter methods either, achieving

a 7.42% increase only when using the proposed model. One

possible explanation for not finding improvements solely by

using a model as complex as the one mentioned in Lee et al.

(2023) could be that, in both studies, no portion of imagined

speech data was included in the training, which may have

limited the model’s ability to generalize to imagined speech

signals.

In summary, our findings suggest that combining overt

and imagined speech data from the same participant for model

training provides relevant and consistent features for classification,

while the inter-subject approach or the exclusive use of overt

speech did not perform as strongly with this dataset. The main

limitations of this work lie in the need for more data to

improve classification and the fact that acquiring overt and

imagined speech without visual stimuli could provide purer

speech-related signals. Nevertheless, although including imagined

speech data in the training goes against the goal of reducing

time and complexity in data acquisition, this approach offers

a method to improve classification and capitalize on the early

stages of the disease in patients, facilitating BCI training with

intuitive tasks such as use overt speech before speech production

is compromised.

5 Conclusions

These findings indicate that overt and imagined speech share

similar neural responses within the first 500 ms, providing

a reliable temporal window for classification. Moreover,

combining data from overt and imagined speech for the same

participant significantly improves imagined speech classification,

even though the highest individual accuracy was obtained

using only imagined speech. Nonetheless, incorporating overt

speech data led to a greater number of participants surpassing

statistical thresholds. The multi-class classification setting

also benefited from mixing overt and imagined speech data,

albeit with improvements that were not statistically significant.

Expanding the dataset and removing visual stimuli during the

period of interest could further refine this approach, while

incorporating imagined speech data into training strategies may

facilitate the transition to BCIs for individuals with progressive

speech loss.
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