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Introduction: Mathematical models serve as essential tools to investigate brain

aging, the onset of Alzheimer’s disease (AD) and its progression. By studying

the representation of the complex dynamics of brain aging processes, such as

amyloid beta (Aβ) deposition, tau tangles, neuro-inflammation, and neuronal

death. Sensitivity analyses provide a powerful framework for identifying the

underlying mechanisms that drive disease progression. In this study, we present

the first local sensitivity analysis of a recent and comprehensive multiscale ODE-

basedmodel of Alzheimer’s Disease (AD) that originates from our group. As such,

it is one of themost complexmodel that captures themultifactorial nature of AD,

incorporating neuronal, pathological, and inflammatory processes at the nano,

micro and macro scales. This detailed framework enables realistic simulation of

disease progression and identification of key biological parameters that influence

system behavior. Our analysis identifies the key drivers of disease progression

across patient profiles, providing insight into targeted therapeutic strategies.

Methods: We investigated a recent ODE-basedmodel composed of 19 variables

and 75 parameters, developed by our group, to study Alzheimer’s disease

dynamics. We performed single- and paired-parameter sensitivity analyses,

focusing on three key outcomes: neural density, amyloid beta plaques, and tau

proteins.

Results: Our findings suggest that the parameters related to glucose and insulin

regulation could play an important role in neurodegeneration and cognitive

decline. Second, the parameters that have the most important impact on

cognitive decline are not completely the same depending on sex and APOE

status.

Discussion: These results underscore the importance of incorporating

a multifactorial approach tailored to demographic characteristics when

considering strategies for AD treatment. This approach is essential to identify the

factors that contribute significantly to neural loss and AD progression.

KEYWORDS

Alzheimer’s disease, mathematical models, neural density, sensitivity analysis, amyloid

beta, tau proteins, APOE, synergy
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1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder characterized by the accumulation of amyloid beta (Aβ)
plaques and tau neurofibrils, leading to neuronal cell death and loss
of cognitive function. Recently approved Aβ antibody treatments,
while successful in removing Aβ , are not sufficient to stop the
progression of neurodegeneration. Hence, treatment for AD is
likely to require a more comprehensive approach combining
interventions that address not only Aβ and tau but also other
factors that contribute to decline, such as cardiovascular and
metabolic health.

To be effective, such a multifaceted strategy must rest on a
better understanding of the complex etiology and the roles of
each factor in its trajectory, along with a mechanism by which
interventions can be tailored to individual health profiles. This
requires a larger, more integrated perspective that encompasses
all of the various abnormalities that are present in AD, such
as aberrant production and accumulation of amyloid and tau
proteins; inflammation surge; neuronal dysfunction and death;
and, inevitably, cognitive and behavioral impairment. Although
these abnormalities are extensively researched individually, few
large-scale integrative efforts have been made. Experimentally,
assessing a global theory is logistically impossible because of the
substantial number of variables involved. In addition, the design
of multifactorial trials in preclinical models or clinical cohorts is
faced with ethical, practical, and financial problems due to the
long duration of neurodegeneration. In particular, we acknowledge
the role of high-throughput experimental platforms, longitudinal
cohort studies, and machine learning in (AD) research, which
have enabled the discovery of diagnostic biomarkers and disease-
stage classifiers. For instance, recent studies have successfully
applied machine learning techniques to classify stages of AD using
neuro-imaging data, highlighting their utility for stratification
and detection tasks (Khan et al., 2022, 2023). However, while
such data-driven techniques are invaluable for detection and
stratification, they are often limited in their ability to translate in
human studies (high-throughput experimental platforms), capture

the numerous changes occurring in both aging and pathological

aging (longitudinal cohort studies) or understand the various
causal mechanisms of disease progression (machine learning). In

contrast, our mechanistic ODE-based model allows hypothesis-
driven exploration of biological interactions, allowing the testing

of causal pathways through sensitivity analyses.
Computational models, on the other hand, are computer

programs that represent a complex nonlinear system, that are

based on domain knowledge but that are trained and validated
using real or simulated data. They can combine the description of

several entities of interest into a complete theoretical framework,

allowing for the generation and testing of numerous numerically

verifiable hypotheses. Therefore, mechanistic computer models of
the aging brain can handle many factors at different levels of

abstraction, circumventing many of the limitations of preclinical

and clinical trials, while offering an in-silico environment for testing

interventions and proposing personalized therapeutic regimens.
In a previous paper (Chamberland et al., 2024), we created

such a model at two levels of abstraction, the nanoscale (proteins,

genes) and microscale (cells, tissues) Figure 1. We used ordinary
differential equations (ODE) to describe the connections between
different cell types (e.g., neurons, astrocytes, macrophages, and
microglia) and concentrations of proteins and protein aggregates
that were pathological in nature (such as Aβ monomers, oligomers,
plaques; tau filaments and tangles), or related to inflammatory
processes (such as anti-inflammatory cytokines and chemokines).

Missing from this previous study was a robust analysis of model
sensitivity. In the context of ODE models, sensitivity analysis can
identify themost influential parameters related to specific outcomes
of interest, such as Aβ and tau concentrations or neuronal loss.
It can also help investigate how simultaneous changes in several
parameters interact and may impact outcomes of interest in a
non-linear manner. Furthermore, sensitivity analysis may reveal
whether a model is well-constructed or not, as parameters with no
impact on outcomes can be considered superfluous.

In our earlier scoping review of mathematical models of AD
(Moravveji et al., 2024), we discussed the importance of conducting
such sensitivity analyses in general, and in particular, to uncover
key processes related to AD. Among the examples from the
literature, we mentioned a study by Proctor et al. (2013) that
used sensitivity analysis to investigate the impact of parameters
associated with Aβ oligomers formation and tau aggregation on
neuronal density dynamics. The researchers found strong links
between these parameters and the neuronal density data. However,
the analysis performed by Kyrtsos and Baras (2015) in their system
biology model highlighted the importance of parameters related
to neuro inflammation, oxidative stress, and synaptic dysfunction
in shaping the path of neuronal density. Similarly, the findings of
the sensitivity analysis by Bertsch et al. (2020) provided valuable
information on key biological processes that drive the pathogenesis
of AD, such as Aβ and tau production, clearance, and propagation.
The authors also used the results of the sensitivity analysis to
fine-tune their model and explore different scenarios of disease
progression, accounting for the variability in parameter values and
their impact on model output.

In this work, we propose a quantitative sensitivity analysis
of the (Chamberland et al., 2024) model. We examined how
changes in parameters affect important outcomes such as neuronal
count (N) and Aβ / τ protein concentrations over adult lifespan
(30 to 80 years). We first performed single-parameter and then
paired-parameter variations and determined their influence on
the outcomes.

2 Methods

2.1 Overview

To better understand how model parameters influence
biomarker dynamics on the aging trajectory, we performed a first
local sensitivity analysis on the (Chamberland et al., 2024) model;
as such no other studies on this model are available for a direct
comparison, including based on the previous (Hao and Friedman,
2016) model. Our present work focuses on local sensitivity analysis,
which, in contrast to global sensitivity analysis, does not require
sampling parameters from a distribution but instead relies on local
perturbations around a default parameter set. This approach was
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chosen to enable a detailed investigation of the individual and
synergistic effects of parameters on specific outputs. This includes
one-at-a-time variations, relative change assessments and synergy
analysis. These approaches allowed us to quantify the individual
and interactive effects of parameters on neuronal count and Aβ ,
tau concentrations.

2.2 Model description

The model of Chamberland et al. (2024) consists of an ODE
system of 19 variables that describes the temporal evolution
of entities important in brain health in aging. These include
the number of neurons, astrocytes, microglia, as well as the
concentrations of amyloid beta plaques and tau neurofibrillary
tangles. The relations between the entities of the model were
established according to expert opinion, and the parameter values
were chosen according to published experimental data from several
sources. Hence, for this work we used the same equations, initial
conditions, and parameters as those published in the work of
Chamberland et al. (2024), with the only modification relating
to the strength of the effect of APOE4 on Aβ plaque formation,
now in line with data from Yamazaki et al. (2019). Sex (Ferretti
et al., 2018) and the status of the APOE4 allele (Liu et al., 2013)
are factors known to influence the risk and progression of AD,
and are taken into account in the model through either their
impact on the structure of the equations specifying the ODE system
or on the values of parameters used in these equations. As in
Chamberland et al. (2024), we therefore examined four distinct
cases: women and men, both with and without the APOE4 allele.
This stratification enabled us to investigate potential sex-specific
and genetic differences in the model’s sensitivity to parameter
perturbations. The solutions of our standard model are illustrated
in Figure 1. The equations specifying the model are given in
Appendix A. The model and all analyses were implemented in
Python, and our code is available online. The code is available at
https://git.valeria.science/medics/models/sensitivity-analysis.

2.3 One-at-a-time sensitivity analysis
(basic sensitivity analysis)

To evaluate the sensitivity of our model outcomes to individual
parameter variations, we performed a One-at-a-Time (OAT) to
assess how the value of each parameter affected model outcomes.
We first performed an analysis where each of the 75 parameters was
independentlymodified by +5%, +10%, and –10% from the baseline
values. For each parameter, we generated a separate figure that
shows the results corresponding to these perturbations, illustrating
the impact on key biomarkers. This approach allows us to observe
the direct influence of each parameter on the outcomes of interest.

2.4 Single parameter sensitivity analysis
(relative change)

We computed the sensitivity of outcomes of interest at 80
years of age in response to changes in the value of a single

parameter. Our outcome measures were the neuronal count
(N) and Aβ/τ protein concentrations. The parameters were
individually modified by +/–10%, and the mean relative change
in outcome served as a measure of sensitivity. The value of
10% was chosen to reflect realistic biological variability. The
sensitivity results were classified to identify the most influential
parameters affecting the level of Aβ , N, and τ . The most
important parameters identified by this approach were thus
different depending on the outcome considered. We considered
sensitivity results in absolute values because we wanted to
identify the important parameters independently of whether they
have a positive or negative impact on outcomes. Specifically,
we computed:

Relative Change =
|Modified Outcome−Original Outcome|

|Original Outcome|
.

Dividing by the original output value yielded relative
sensitivities that made the results insensitive to the absolute value
of the standard outcome. As our model contains 75 distinct
parameters, we conducted 300 sensitivity computations, one for
each APOE/Sex conformation.

2.5 Parameter-pair sensitivity analysis

In our second series of experiments, we grouped parameters
according to their pathways of action. We perturbed pairs of
parameters belonging to different groups, simultaneously changing
their values by 10%. We evaluated the outcomes changes resulting
from this combined parameter change compared to the sum of
the outcome changes resulting from the individual parameter
change; in other words, their synergy. Suppose that we consider
two parameters A and B, we define the synergy of A and B

as follows:

Synergy(A,B)

=

[(

Outcome(A+ 1A,B+ 1B)−Outcome(A,B)

)

−

(

Outcome(A+ 1A,B)−Outcome(A,B)

)

−

(

Outcome(A,B+ 1B)−Outcome(A,B)

)]

/Outcome(A,B)

A positive synergy (synergy > 0) implied a combined effect
greater than individual effects, while a negative synergy (synergy
< 0) suggested antagonism. It should be noted that synergy analysis
requires Npar × (Npar − 1)/2 synergy calculations, where Npar is
the number of model parameters for each population. Since we
considered 75 parameters in 4 APOE/ Sex experimental conditions,
we had to compute 11 100 distinct synergy values. The large
amount of data generated by these analyses required a selection
for graphical display. We chose, for any two groups of parameters,
to display the largest synergy in absolute value for any pairs of
parameters belonging to these groups. Our figures thus illustrate
the strength of interactions between different pathways of action in
the model.
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FIGURE 1

Age-dependent evolution of variable concentrations for di�erent sex and APOE4 status combinations, as simulated by our standard model. This

figure is adapted from Chamberland et al. (2024), with permission.

3 Results

3.1 One-at-a-time sensitivity analysis

To assess the impact of parameters on key biomarkers, we
analyzed the effects of perturbations on each parameter (for
example dFi the rate of intracellular degradation of NFT or
lambdaGtau for the rate of tau creation by GSK3) on amyloid
beta (Aβ), neuron count (N) and tau protein (τ ). While
similar computations were performed for all parameters, we
chose to illustrate the impact of dFi and lambdaGtau because of
their importance in the model. Figure 2 presents the temporal
evolution of biomarkers of interest under different perturbations
of the chosen parameters, demonstrating how variations in
these parameters influence the progression of the disease in
women with APOE-. Figure 2 shows the effect of increasing and
decreasing dFi on (Aβ), N, and Tau concentrations over time.
The results indicate that an increase in dFi (+5%, +10%) leads
to a higher Aβ concentration, suggesting a positive effect on
Aβ accumulation. Meanwhile, the neuron count (N) decreased
more rapidly for higher values of dFi, indicating a negative
effect on neuronal survival. Tau protein levels increase with
increasing dFi, further supporting a positive effect on Tau
concentration. Conversely, decreasing dFi by -5% results in lower
levels of (Aβ) and Tau, with a slower decline in N, indicating
a protective effect. These findings suggest that dFi plays a
crucial role in accelerating disease progression by enhancing

amyloid-beta accumulation and tau pathology while reducing
neuronal viability.

On the other hand, Figure 3 illustrates the effects of perturbing
lambdaGtau on Aβ , tau, and neuron(N) levels. Unlike dFi, changes
in lambdaGtau do not lead to a straightforward increase in Aβ

accumulation. Instead, a higher lambdaGtau (+5%, +10%) results
in a complex nonlinear response in Aβ , where the increase is
not as pronounced or consistent as with dFi. Although both
parameters impact neuronal decline, as we increase dFi neuron
decline slows down, while if we increase parameter lambdaGtau
values neuron decline increases rapidly. Although we show results
for the women APOE negative population, similar trends were
observed for other groups.

3.2 Single-parameter sensitivity analysis

The results of the impact of the changes in a single parameter
on our three results are shown in Figure 4.

The most important factor identified by this analysis relating
to neuronal density and τ concentration is dTa. This parameter
corresponds to the decay rate of the tumor necrosis factor alpha.
Increasing this factor leads to a decrease in the concentration
of tumor necrosis alpha, which is in turn beneficial for neuron
survival. As the role of metabolism is often neglected in
mathematical models of AD, it is interesting to observe that
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FIGURE 2

E�ect of dFi perturbations on Alzheimer’s-related biomarkers amyloid-beta (Aβ), neuron count (N), and tau protein (τ ) over time for women with

APOE-. The perturbations include 0% (baseline), +5%, +10%, and -5% changes in dFi. (a) Amyloid-beta (Aβ) response to dFi perturbations. (b) Neuron

Count (N) response to dFi perturbations. (c) Tau (τ ) response to dFi perturbations.
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FIGURE 3

E�ect of lambdaGtau perturbations on Alzheimer’s-related biomarkers amyloid-beta (Aβ), neuron count (N), and tau protein (τ ) over time for women

with APOE-. The perturbations include 0% (baseline), +5%, +10%, and -5% changes in lambdaGtau. (a) Amyloid-beta (Aβ) response to lambdaGtau
perturbations. (b) Neuron Count (N) response to lambdaGtau perturbations. (c) Tau (τ ) response to lambdaGtau perturbations.
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parameters related to insulin and glucose regulation, such as Ins0,
the baseline insulin concentration, λInsG, the glycogen synthase
kinase 3 (GSK-3) dynamics G0, the baseline concentration of
GSK-3 and dG, the autonomous decay rate of GSK-3, have
significant impacts with respect to both neuronal density and tau
concentration.

Regarding Aβ plaque concentration, the most important
important parameter is dTb, which corresponds to the decay
rate of the transforming growth factor beta (Tβ ). This factor is
involved in the activation of microglia and macrophages. A higher
concentration of Tβ will lead to a higher proportion of anti-
inflammatory microglia and macrophages, which in turn play a
role in increasing amyloid beta plaque clearance. It is somewhat
surprising that the parameter that has the greatest impact on
amyloid beta concentration does so through an indirect pathway.
Through its influence on Aβ , the parameter dTb has an even
more indirect impact on neuronal density. Note that this effect is
still important as dTb ranks third with respect to neural density
sensitivity. This first investigation also revealed that Aβ sensitivity
is larger than neuronal density or the tau concentration. This
implies that relatively small perturbations of the model can lead to
significant Aβ accumulation.

We observe furthermore that this single-parameter sensitivity
is affected by sex and APOE status, and that this is true for
all parameters. Due to the way the model is constructed, the
parameters that quantify the effect of the APOE gene, such
as deltaAPdP and deltaAPmo had an effect only for the positive
populations of APOE. For each outcome, the parameters are ranked
according to their average effect on the four investigated groups
(men, women, positive, and negative APOE).

3.3 Parameter-pair sensitivity analysis

Parameter-pair synergy analyzes with respect to neural count
at 80 years of age unveiled significant interactions between the
effect of parameters, suggesting that the effect of combination
therapy could bemore important than the sum of individual effects.
In particular, strong synergies were observed between parameters
that act directly on neural survival and those that affect cytokine
concentrations Figure 5. Interactions were also observed between
parameters that affect the density of astrocytes and those involved
in the density of cytokines or directly impact the survival of
the neuron. When considered group-wise, parameters involved in
astrocytes, neurons, and cytokines have the strongest interactions
with the parameters of other groups with a strength of interactions
reaching 20%.

We identified case-specific differences in synergy patterns
across the four APOE/Sex conformations. Although similar trends
were observed in the analysis of these different populations,
subtle differences were also observed Table 1. In particular,
absolute strength of interactions slightly stronger in APOE
positive men. These differences show that the status of APOE4
has an effect on how the disease factors that work together
cause AD to worsen (Yamazaki et al., 2019). This observation
underscores the complexity of AD and the need for nuanced,
personalized approaches.

FIGURE 4

Sensitivity of outcomes of interest to individual parameters for

biomarkers. (a) N, (b) Aβ, (c) Tau at age 80 years in response to a

10% change in individual parameter values. These plots illustrate the

sensitivity of each outcome to parameter perturbations, highlighting

their potential impact on disease progression.
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FIGURE 5

Synergy analysis of group-wise parameter interactions for Alzheimer’s disease biomarker across di�erent demographic groups. Each subfigure

represents a demographic group: (a) Women (APOE-), (b) Women (APOE+), (c) Men (APOE-), and (d) Men (APOE+). Synergy values are calculated as

the di�erence between the combined e�ect of interacting parameters and the sum of their individual e�ects. Maximal synergies between parameters

belonging to given groups are shown. Arc color indicates interaction magnitude, with darker colors representing higher magnitudes.

4 Discussion

Mathematical models of AD frequently focus on the

accumulation of harmful proteins such as τ and Aβ . Some
employ sophisticated mathematical techniques to forecast the

patterns of spread in brain geometries peculiar to individual

patients (Corti, 2024), while others examine the interaction

between various proteins and neuronal dynamics (Moravveji et al.,
2024; Bertsch et al., 2020). However, without a comprehensive

analysis of how the various inputs of a model influence its outcome,

mathematical models are of little use. Thus, sensitivity analysis is
essential to understand the influence of different parameters on the
model output (Corti, 2024; Sysoev, 2023; Moravveji et al., 2024).

Our goal here was to identify the most important parameters
of the multifactorial knowledge-based AD model developed by
Chamberland et al. (2024).

4.1 Identification of critical parameters

The sensitivity analysis revealed which parameters play an
important role with respect to specific outcomes of interest (Aβ ,
N, and τ ). It is interesting to observe that some parameters have
an important impact on Aβ (λAβmo, AP, dAβoo, kappaAβmoAβoo)
but not on neuronal count. This suggests that treatments targeting
Aβ specifically, even if they succeeded in preventing Aβ plaque
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TABLE 1 Synergy values (%) by sex, APOE status, and interaction type.

Sex APOE status Synergy
value (%)

Interaction

Women APOE- 18.84 Microglia–Cytokines

Women APOE+ 19.87 Microglia–Cytokines

Men APOE+ 20.32 Microglia–Cytokines

Men APOE- 19.00 Microglia–Cytokines

Synergy values shown are for the interaction between microglia and cytokines. Among the

different groups analyzed, this interaction consistently exhibits the highest synergy across all

sex and APOE status categories. Bold values indicate the highest synergy values (%) within

each subgroup (sex, APOE status, and interaction type).

accumulation, are likely to fail to prevent neuronal loss. Sensitivity
analysis also revealed that some of the parameters involved in the
insulin pathway have a significant impact on neurodegeneration.
This suggests paying more attention to metabolic-related issues,
which have been neglected in many experimental and model
studies. The one-at-a-time sensitivity analysis and the relative
change analysis showed that the concentration ofAβ at 80 years old
is much more sensitive to parameter variations than the neuronal
count or tau concentration. This implies that, in the (Chamberland
et al., 2024) model, limited (e.g., 10%) changes in parameter values
can have a huge impact on the presence of Aβ at the end of life; and
that the relationships between Aβ concentration and parameters
are strongly nonlinear. In other words, Aβ does not vary smoothly
in response to changes in parameter values, but rather exhibits
sharp monotonic transitions.

This can be explained by the observation that while under
standard parameter values the model leads to a very small Aβ

concentration, some parameter configurations corresponding to
biologically pathological situations lead to large Aβ accumulation.

This suggests a non-linear response, where small variations in
key parameters can drastically influence Aβ levels. An explanation
might be that when the amyloid plaque starts accumulating, this
triggers a positive feedback loop that accelerates further deposition.
This would create a kind of all-or-nothing scenario in which either
very little or a large quantity of amyloid beta plaques are present at
the end of life.

The observed differences in the sensitivity results by sex
and APOE4 status emphasize the importance of personalized
approaches in AD treatment. Our findings indicate that tailoring
therapies based on these factors could enhance efficacy and shift
away from a universal approach to AD management.

4.2 APOE4 impact on Aβ dynamics

The parameter δAPdp describes the impact of the APOE4 allele
on the rate of degradation of amyloid beta42 plaques by anti-
inflammatory macrophages and microglia. Although Gonneaud
et al. (2016) and Mishra et al. (2018) reported an annual increase
in amyloid deposition 5%, this refers to the general accumulation
rate rather than the specific degradation rate by glial cells in carriers
of APOE4. Furthermore, Xia et al. (2024) suggest that APOE4
primarily influences the aggregation of monomers and oligomers
rather than directly affecting plaque degradation.

In our main model, we initially set δAPdp = −0.75
(Chamberland et al., 2024), meaning that non-APOE4 carriers were
more likely to have plaque removed by a factor (4:1) (see Figure 1).
However, our sensitivity analysis showed that the levels of Aβ were
100 times higher in the APOE group than in the APOE + group
(10E-14 mol/L vs. 10E-16 mol/L; see Figure 4a).

This substantial variability in Aβ levels can be attributed
to parameter uncertainties and underscores potential differences
between the negative and positive groups of APOE, which could
contribute to different risk profiles for AD. To further investigate
this, we tested the impact of modifying δAPdp. In particular,
reducing it from –0.75 to –0.5 resulted in approximately a 10-fold
decrease in plaque concentration at 80 years of age.

Given these considerations, the precise quantification of δAPdp

remains a challenge. However, the association between APOE4
and increased amyloid accumulation (Liu et al., 2013) suggests
a potential reduction in plaque clearance efficiency. The effect is
likely more subtle than a reduction in the degradation rate 50% or
75%. A more conservative estimate might range from –0.2 to –0.3,
representing a 20% to 30% reduction in the degradation rate for
APOE4 carriers. However, this estimate requires validation against
the experimental data.

These findings present us with an intriguing dichotomy in
interpretation. On the one hand, we must consider the possibility
that our model may have overestimated the influence of APOE,
potentially necessitating a recalibration of our parameters. This
interpretation would suggest that, while APOE4 undoubtedly plays
a significant role in AD pathogenesis, its impact on Aβ dynamics
might be less extreme than our current model indicates. However,
the predictions of ourmodel might accurately reflect the substantial
impact of APOE on Aβ plaque formation and clearance of Aβ ,
capturing a fundamental aspect of the progression of AD that has
been underappreciated in previous mathematical modeling studies.

Recent research supports the latter interpretation (Liu et al.,
2023) demonstrated that APOE4 significantly impairs the ability of
microglia to clear Aβ , which could explain the dramatic differences
observed in our model. Furthermore, Tachibana et al. (2019) found
that APOE4 improves Aβ aggregation and impedes its clearance, in
line with the predictions of our model.

The impact of APOE4 on Aβ dynamics is further complicated
by its influence on microglial and macrophage function. The
model equations we made for microglia Equations (11–13) and
macrophages Equations (14, 15) show that turning these cells
on and off is a key part of removing Aβ . APOE4 has been
shown to alter the balance between pro-inflammatory and anti-
inflammatory states of these cells (Krasemann et al., 2017), which
could exacerbate Aβ accumulation.

In addition, the interaction between APOE4 and Aβ can
influence the activation of microglia and macrophages. The
term κAβo

oM
Aβo

o
Aβo

o+KAβoo

in Equation A7 represents the activation

of microglia by Aβ oligomers. APOE4 has been shown to
enhance this activation (Zhu et al., 2012), potentially leading
to a more pronounced inflammatory response and altered Aβ

clearance dynamics.
These findings highlight the critical role of APOE in AD

pathogenesis and suggest that our model, despite its apparent
extremity, may capture a fundamental aspect of APOE4’s impact
on Aβ dynamics. The complex interplay between APOE4, Aβ ,
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and immune cells underscores the need for multiscale modeling
approaches, as exemplified by Chamberland et al. (2024), to fully
understand the disease process. However, further experimental
validation is needed to confirm these computational predictions
and refine our understanding of the influence of APOE on the
progression of AD.

4.3 Implications of the synergy analysis
results

Other approaches can be used to obtain an index of synergy,
such as those considering isobolograms (Huang et al., 2019), but
our simple implementation captures the same intuitive idea.

Our findings have far-reaching implications for AD research
and treatment strategies. The strong interactions revealed by our
synergistic analysis suggest that, with the right targets, combination
therapies could be better at slowing the progression of AD than
single-target approaches. This insight opens new avenues for
drug development and clinical trials, potentially leading to more
efficacious treatments for AD patients.

Moreover, the synergy pattern observed for N indicates that
multi-pronged treatment strategies targeting different aspects of
AD pathology might be necessary for comprehensive disease
management. This finding challenges the current paradigm of
focusing on a single aspect of AD pathology and suggests that a
more holistic approach to treatment could lead to better results.

From a modeling perspective, our synergy analysis provides
valuable insight to refine our AD model. Parameters involved
in strong synergistic or antagonistic interactions may require
more detailed modeling or further experimental investigation
to better understand their roles in the progression of AD.
This iterative process of model refinement and experimental
validation can lead to more accurate and predictive models of
AD pathology.

Lastly, our findings highlight specific parameter interactions
that warrant further investigation through targeted experimental
studies. These could lead to new insights into AD mechanisms
and novel therapeutic approaches. By identifying these key areas
for future research, our synergy analysis serves as a roadmap for
upcoming studies on AD pathology and treatment.

5 Conclusion

Future research should focus on experimentally validating
the relationships identified in our model and exploring how
interventions targeting these parameters might influence the
overall trajectory of neuronal decline in Alzheimer’s disease.
Alzheimer’s disease is a multifactorial condition with a complex
etiology. Studies focusing on a single factor, such as amyloid
beta, have had limited success. We argue for the importance of
considering an integrative approach. Computer models, such as the
one we employed, offer an opportunity to test multiple factors in
silico and are an ideal way to integrate various hypotheses.

We carried out various analyses on a mathematical model of
brain aging developed by (Chamberland et al., 2024) that takes
into account APOE status and sex. This model was constructed

based on expert opinion and calibrated with different sources
of experimental literature. A table in Appendix B presents the
biological meaning and sources of the selected parameters. These
parameters are identical to those used in the original (Chamberland
et al., 2024) model and form part of the system of equations that
connects all entities in the neurodegeneration model.

We performed a local sensitivity analysis using one-at-a-time
perturbations, relative changes that revealed the most impactful
parameters, as well as pairwise parameter interactions (synergy
analysis) revealing nonlinear interactions between parameter
effects. This analysis reveals potential synergies between treatment
approaches.

Our study provided interesting insights. First, it suggests that
parameters related to glucose and insulin regulation might play an
important role in neurodegeneration and cognitive decline. Second,
the parameters that have the most important impact on cognitive
decline are not completely the same depending on sex and APOE
status. This observation supports the importance of personalized
treatment approaches that take this into account. It is interesting
that small changes in parameter values can lead to relatively large
changes in amyloid beta concentration.

In future work, we plan to perform a global sensitivity analysis
by generating a virtual population by sampling the parameters
and conducting a correlation analysis. This will help us better
understand the relationships between different parameters and
their combined effects on the progression of Alzheimer’s disease.
To ensure reproducibility and robustness, the analysis will also
involve systematically varying initial conditions and comparing
the outcomes between different cohorts. Ultimately, our goal is to
refine the model and investigate how complex interactions among
biological factors influence disease outcomes, while validating its
accuracy and generalizability.

Although this study makes valuable contributions, we
recognize that it has certain limitations. For one, some elements
may be missing from the model that could influence our
conclusion. In addition, we did not address the variability of
parameters in a real population or whether it is possible to alter the
value of a parameter through intervention.
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