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This study demonstrates the effectiveness of integrating cloud computing platforms 
with Course-based Undergraduate Research Experiences (CUREs) to broaden 
access to neuroscience education. Over four consecutive spring semesters 
(2021–2024), a total of 42 undergraduate students at Lawrence Technological 
University participated in computational neuroscience CUREs using brainlife.io, a 
cloud-computing platform. Students conducted anatomical and functional brain 
imaging analyses on openly available datasets, testing original hypotheses about 
brain structure variations. The program evolved from initial data processing to 
hypothesis-driven research exploring the influence of age, gender, and pathology 
on brain structures. By combining open science and big data within a user-friendly 
cloud environment, the CURE model provided hands-on, problem-based learning 
to students with limited prior knowledge. This approach addressed key limitations 
of traditional undergraduate research experiences, including scalability, early 
exposure, and inclusivity. Students consistently worked with MRI datasets, focusing 
on volumetric analysis of brain structures, and developed scientific communication 
skills by presenting findings at annual research days. The success of this program 
demonstrates its potential to democratize neuroscience education, enabling 
advanced research without extensive laboratory facilities or prior experience, 
and promoting original undergraduate research using real-world datasets.
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Introduction

Neuroscience remains one of the least inclusive STEM disciplines. Recent data shows that 
only 12% of neuroscience program applicants were from ethnic minorities, compared to 18% 
for medical schools and 23% for graduate schools overall (Abiodun, 2019). This scarcity of 
underrepresented minority (URM) students in neuroscience stems from several barriers. 
Historically, access to neuroscience data has been limited to the institutions generating it, often 
due to fears of “parasitic” practices, data misinterpretation by other researchers (Longo and 
Drazen, 2016), data governance challenges related to managing and sharing neuroimaging 
data in compliance with national and supranational regulations, as well as ethical constraints 
where participant consent may not allow sharing. Cost presents a major barrier for both 
students and institutions. Most neuroscience programs are housed in larger, PhD granting 
institutions, which tend to be more expensive than bachelor’s level institutions. These programs 
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demand expensive technical equipment and infrastructure, which 
restricts adequate neuroscience training to larger, better-funded 
institutions. This limitation disproportionately affects 
underrepresented minority (URM) students, particularly in countries 
like the United  States, where high tuition costs create significant 
financial barriers.1

The imbalance extends to faculty and researchers (Wheaton, 
2021), resulting in fewer URM role models and mentors, further 
discouraging promising URM students from pursuing neuroscience. 
To diversify neuroscience and STEM fields, approaches must focus on 
extending research opportunities to resource-limited settings, 
particularly those serving URMs. Open science presents one such 
possibility to address these challenges.

The Open Science movement is not new to research, but its 
adoption in fields like human neuroscience where personal health 
information is often involved has been more complex than in others. 
Neuroscience data (e.g., MRI, EEG, intracranial recordings) is often 
rich in information that could potentially be  used to re-identify 
individuals or reveal sensitive personal attributes related to mental 
health and cognitive abilities. This inherent sensitivity necessitates 
rigorous de-identification procedures, secure data storage, and 
carefully controlled access, all of which complicate and can slow down 
the broad adoption of open data practices compared to fields like 
astronomy or certain areas of physics, where data is less directly tied 
to individual human identity and privacy. While fields like genomics 
also face severe privacy constraints, neuroscience has its own unique 
set of challenges due to the direct link between the data and an 
individual’s cognitive and mental state, making the “mental privacy” 
aspect particularly salient (Jwa and Poldrack, 2022).

Open science refers to a set of practices encompassing open access 
publication, open research funding, open education, open data and 
materials sharing, open infrastructures (e.g., digital laboratories and 
libraries), open software tools, and the minimization of restrictive 
intellectual property rights (Gold et  al., 2019; Vicente-Saez and 
Martinez-Fuentes, 2018). The goals of open science are to reduce 
research costs for all, promote data reuse to increase reproducibility, 
decrease scientific redundancy, invite in a larger diversity of people, 
and increase the rate of discovery and innovation (Gold, 2016; 
McKiernan et al., 2016; Ali-Khan et al., 2018). Sharing research assets 
lowers entry barriers for scientific participation significantly, bringing 
about a more level playing field for underrepresented groups and 
minority-serving institutions. Compared to the traditional, Western 
view of science as being about individual effort and competition, the 
language and ethos of open science reflects more prosocial, communal, 
and interdependent concepts, which in turn may be more attractive to 
people of color, women, and people from lower socioeconomic 
backgrounds (Murphy et al., 2020). Thus, open science can create a 
positive feedback loop in which greater inclusion fosters a culture that 
in turn welcomes greater inclusivity. To increase diversity in STEM, 

1 In this context, initiatives such as the Open Brain Consent seek to support 

the brain imaging community by providing guidance on data sharing practices 

and tools (Bannier et al., 2021). Crucially, such openness is fundamental to 

promoting a more inclusive educational model, enabling institutions with 

limited financial resources to effectively train the next generation of 

neuroscientists.

Murphy et  al. (2020) call for “initiatives to allow for establishing 
education networks, training, resources, and data sharing,” along with 
“the establishment of cloud-based platforms and associated user 
communities for research asset sharing.” In other words, 
open education.

Open education focuses on the benefits of open science to 
decrease inequality in learning and to support lifelong learning 
(Blessinger and Bliss, 2016). Open education refers to the sharing of 
resources and assets that users are able to “retain, reuse, remix, and 
redistribute” (Wiley et  al., 2014). Though the application of open 
science to education has received less attention overall compared to 
research (Heck et al., 2020), open neuroscience (Nielsen, 2020) and 
large-scale data sharing projects (van Essen et al., 2013; Gorgolewski 
et al., 2017) have strong potential to increase accessibility and diversity 
in neuroscience education and training (Markiewicz et  al., 2021; 
Rokem et al., 2021; Milham et al., 2018), and several such efforts are 
underway. For example, the OpenNeuro program, evolving from 
previous initiatives in neuroscience data sharing, currently offers more 
than 1,400 datasets, including data from more than 60,000 
participants, comprising multiple species and measurement modalities 
(Markiewicz et  al., 2021). Similarly sized, the Adolescent Brain 
Cognitive Development (ABCD) study longitudinally tracks and 
openly shares the biological and behavioral development data of more 
than 10,000 children at 21 sites (Casey et al., 2018). Neurohackademy 
(NHD) students spend 2 weeks at the eScience Institute of the 
University of Washington learning how to analyze human 
neuroscience data and make the results shareable and reproducible. 
The online format of the 3-week, computational neuroscience summer 
school by Neuromatch Academy makes it more affordable for 
multilingual and multinational trainees around the world (van Viegen 
et al., 2021; Kording, 2021). Brainhack (BH) offers a novel, less formal 
workshop format with participant-generated content catering to the 
rapidly growing open neuroscience community. Brainhack includes 
hackathons, “unconferences,” and educational sessions with the goal 
of fostering new ideas, projects, and collaborations (Gau et al., 2021).

But while these provide useful models, they are limited with 
regard to the goals of inclusion, as they primarily focus on increasing 
the existing technical and computational skills of users, i.e., highly-
skilled, well-educated trainees (graduate students, postdocs) and 
faculty with the aim of growing a data science-ready generation of 
Psychological and Brain Science Ph. D.’s. In short, these programs have 
been developed to facilitate access to complex neuroscience, advanced 
coding skills and data accessibility, and not necessarily to lower 
barriers of entry to neuroscience as a whole. To our knowledge, no 
existing open science/big data neuroscience educational program 
specifically targets undergraduate students. Thus, there is a pressing 
need to develop a curriculum with similar methodologies for content 
delivery as Brainhack, Neurohackademy, Advanced Computational 
Neuroscience Network, and Neuromatch Academy, but that both 
targets younger students with limited or no neuroscience or data 
science literacy, and is attractive to URMs and URM-serving schools.

A second limitation of existing big data (and other) training 
programs within neuroscience is a tendency toward a focus on within-
discipline methods and skills. But, in truth, neuroscience is a 
multidisciplinary field where its foundations are built on biology, 
physics, and other STEM fields. To truly solve the diversity and 
accessibility problem within neuroscience, training needs to integrate 
expertise from neuroscience, computer science, engineering, the 
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medical sciences, and high performance computing. One example of 
a big data training program that integrates these disciplines is the 
Advanced Computational Neuroscience Network (ACNN). ACNN 
workshops build transdisciplinary educational opportunities and 
interactive learning abilities as they promote the sharing of data 
management tools, online documentation, and training manuals. As 
of today, there is not a comparable resource for undergraduate 
students. One of the main goals of our study is to promote notions of 
multidisciplinarity and flexibility in undergraduate neuroscience 
education, in contrast with ultra specialized training in one technique, 
modality, hypotheses or brain area.

We describe here a pilot learning experience that provides an 
introduction in computational neuroscience to undergraduate 
students at Lawrence technological University, a primary 
undergraduate institution (PUI) located in the Metro Detroit area. The 
experience integrates open science and big data via a user-friendly 
cloud-computing virtual environment (brainlife), with course-based 
research experience model (CURE) with the goal of providing hands-
on, problem-based learning in data neuroscience to undergraduate 
students with very limited or no previous knowledge in neuroscience.

Brainlife.io is a big data neuroscience cloud platform that brings 
together scientists, educators, and trainees from psychology, 
neuroscience, engineering, and computer science in order to lower 
barriers to entry and increase the reproducibility of findings through 
the provision of open science neuroimaging data, data management, 
and data processing algorithms (Hayashi et  al., 2024). The 
continuously growing platform provides simplified access to data from 
multiple sources and open projects (the OpenNeuro.org, Nathan-
Kline Institute, and Human Connectome Project, among others), 
including data for visualizing brain anatomy and function. Brainlife 
provides extensive documentation regarding its use via tutorials, 
videos, and public lectures (on YouTube). This material forms the core 
educational material to be exported as a CURE suitable for students 
with little or no previous neuroscience background.

Course-based Undergraduate Research Experience (CURE). 
Course-based Undergraduate Research Experiences (CUREs) 
integrate authentic research into regular class activities (Dolan, 2016), 
addressing questions relevant to the broader scientific community 
(Auchincloss et al., 2014). This model enhances scalability, provides 
earlier exposure to research, and promotes inclusivity by allowing 
more students to participate without the barriers of traditional 
individualized research experiences. Lawrence Technological 
University’s College of Arts and Sciences began implementing 
Course-based Research Experiences (CRE) in 2014, transforming 
traditional courses into research-oriented learning environments 
across various disciplines, including biology, chemistry, physics, and 
psychology. This initiative has successfully revamped over 40 courses 
with the involvement of more than 30 instructors (Delogu et al., 2023, 
Shamir et al., 2019). The goals of LTU’s CRE program align with 
national efforts to improve student persistence in STEM fields and 
make research accessible to diverse populations. By conducting 
research during regular class hours (see for example Delogu et al., 
2022), CUREs are particularly beneficial for students with 
non-academic responsibilities, like working students or students with 
childcare. LTU’s approach stands out due to its scale and 
multidisciplinary focus, aiming to reshape the pedagogical vision of 
the entire college. This initiative not only enhances students’ academic 
experiences but also prepares them for future educational and career 

opportunities in research-related fields. Previous efforts have 
successfully applied the CURE model to undergraduate neuroscience 
education. The Journal of Undergraduate Neuroscience Education 
(JUNE) has played a key role in showcasing innovative strategies for 
integrating research into neuroscience curricula and in providing a 
platform for undergraduate researchers. For example, Ryan and 
Casimo (2021) described a CURE in which students progressed from 
formulating research questions to presenting findings using the Allen 
Brain Map. Similarly, Maldonado-Vlaar and García-Arrarás (2024) 
outlined effective strategies for expanding research access at Hispanic-
Serving Institutions through targeted training programs.

Building upon these foundational efforts, our study introduces a 
novel integration of cloud computing into a neuroscience CURE 
framework. By leveraging accessible cloud-based tools for 
computational neuroscience, our approach offers a new scaffolding 
that supports scalability, inclusivity, and diversity in neuroscience 
education—especially for students who might otherwise lack access 
to advanced research experiences.

In this study, we summarize a pedagogical experience of four 
cohorts of undergraduate students at Lawrence Technological 
University. In four consequent semesters, the students of behavioral 
neuroscience experienced undergraduate course-based research in 
computational neuroscience by using the apps, the datasets and the 
cloud computing capabilities of the brainlife platform. This initiative 
specifically targeted students who lacked prior knowledge or 
experience in both cloud computing and computational neuroscience. 
The initial pilot experience, conducted in 2021 focused on examining 
the accessibility and effectiveness of the cloud computing platform 
environment when paired with the hands-on collaborative 
undergraduate research (CURE) approach. The objective was to assess 
how user-friendly and engaging this combination could be for novices, 
providing insights into its potential as an educational tool for fostering 
foundational skills in these emerging interdisciplinary fields. 
Specifically, we intended to investigate if 1. Students with limited or 
no previous experience with neuroscience and cloud computing could 
successfully perform anatomical and functional brain imaging analysis 
in a cloud computing environment; 2. The course-based experience 
with computational neuroscience is formative and engaging. 3. Our 
CURE pedagogical experience is highly flexible and can be used to 
answer always new original questions. A total of 42 students 
participated in the CURE experience with brainlife in 4 subsequent 
semesters (11 in 2021, 11 in spring 2022, 13 in spring 2023 and 7 in 
spring 2024).

The first semester CURE course (2021) was focused on a general 
exploration of the platform, the apps and the datasets, while the 
successive three cohorts of students (2022, 2023, and 2024) focused 
on specific volumetric hypotheses. As follows, we will describe the 
work of the first cohort in detail.

First iteration of the CURE brainlife experience at LTU.

Methods

Participants

All students enrolled in the spring 2021 Behavioral Neuroscience 
course at Lawrence Technological University (N = 11, 6 female) 
participated in the research activities. The students had no previous 
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experience with Brainlife and no, or very limited, knowledge of brain 
anatomy and functions.

Apparatus: combining CURE with a cloud 
computing neuroscience platform

We combined a CURE pedagogical framework with the use of 
brainlife.io to structure the learning experience of the students. 
Specifically, the course was delivered online in a synchronous modality 
in which students met twice a week for 1 h and 15 min. Most of the 
assignments required the students to run applications (akin to MRI 
data analysis steps) on BrainLife and to present the results within a 
week. The CRE activities were integrated in the course and spanned 
for the entire 16 weeks of duration of the course.

Summary of the activities

The course included traditional lectures about theory of neuroscience 
and practical experiences. The lectures included introductory notions of 
history of neuroscience, anatomy and physiology of the nervous system, 
macro anatomical and functional organization of the human brain, brain 
lateralization, introduction to brain imaging and MRI and fMRI analysis 
(see Appendix A for a list of materials and readings).

The practical experience included course-based research activities. 
All CURE activities were conducted in brainlife and the results of the 
assignments were stored within the platform. The experience was 
divided into two parts (1) Tutorials and (2) Group analysis through 
pipeline creation.

Part one–Tutorials
Brainlife provided students with tutorials to allow them to 

familiarize with apps and processes in computational neuroscience. 
Typically, the completion of each one of the tutorials took a week (two 
class periods). For each tutorial, the instructor introduced the topic 
during the class period (on zoom), clarified the meaning of new 
terminology and concepts and guided the students in their first steps 
within the tutorial and to plan the activities of the assignment. Our 
CRE student sample spent time working individually on the 
following tutorials:

 A) Introduction: this tutorial guides students through account and 
project creation, access and use of datasets, launching 
processes, visualizing results

 B) Anatomy: It allows students to familiarize with T1-weighted 
anatomical images of brains and shows how to process 
anatomical data for further data analysis (ie. 
volumetric analysis)

 C) FMRI preprocessing: It shows how to successfully process 
functional data for further data analysis

 D) FMRI networks: It allows students to generate functional 
connectivity matrices following fMRI preprocessing.

Part two–Group analysis through pipeline 
creation

Using pipelines, which allowed for the combination of application 
and processes, students applied the algorithms of the apps they 

learned in the tutorials to multiple subjects at a time. The students 
worked individually and as a group to create multiple pipelines with 
the use of apps indicated in Table 1. All Apps are referenced using the 
digital object identifier (DOI) provided by brainlife.io under the 
shoulder: https://doi.org/10.25663.

Dataset and data

Anatomical MRI and fMRI data from 24 subjects in the human 
hippocampal replay during rest prioritizes weakly learned information 
and predicts memory performance dataset by Schapiro et al. (2020) 
were used in this analysis. Specifically, Avigan et al. (2020), tracked 
item-level replay in the hippocampus during an awake rest period 
after a memory test. The dataset includes two sessions per subject for 
a total of 48 acquisitions. Data was acquired using a 3 T Siemens Skyra 
scanner. In each session, they collected 9 functional runs with a 
T2*-weighted gradient-echo EPI sequence (36 oblique axial slices: 
3 × 3 mm inplane, 3 mm thickness; TE = 30 ms; TR = 2000 ms; 
FA = 71°; matrix = 64 × 64). Each run contained 195 volumes. They 
collected two anatomical runs for registration across subjects to 

TABLE 1 Applications used to create a data analysis pipeline for brain 
imaging research.

App name Function DOI

HCP ACPC Alignment Aligns a T1 weighted 

image using the 

anatomical landmarks of 

the anterior and 

posterior commissure

https://doi.org/10.25663/

brainlife.app.800

FreeSurfer Segments the T1w 

anatomical data into 

functionally different 

parts of the brain.

https://doi.org/10.25663/

brainlife.app.462

Multi-Atlas Transfer 

Tool

Maps the anatomy of a 

subject’s brain to a 

template then subdivides 

the brain into known 

brain areas.

https://doi.org/10.25663/

brainlife.app.470

fMRIPrep Preprocesses the 

functional activations 

(fMRI) to reduce 

artifacts.

https://doi.org/10.25663/

brainlife.app.160

fMRI to Connectivity 

Matrices

The fMRI to connectivity 

matrices app builds 

functional brain 

networks

https://doi.org/10.25663/

brainlife.app.167

Conmat 2 Network Converts a conmat 

datatype to a network 

datatype so it can 

be used in the network 

pipeline

https://doi.org/10.25663/

brainlife.app.335

Network Visualization Generates simple 2D 

static visualizations for 

networks

https://doi.org/10.25663/

brainlife.app.306
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standard space: a coplanar T1-weighted FLASH sequence and a high-
resolution 3D T1-weighted MPRAGE sequence. An in-plane magnetic 
field map image was also acquired to correct for EPI distortion. More 
information about data acquisition can be  found in Avigan 
et al. (2020).

CURE work with brainlife

Re-Alignment of the brain and artifact correction
After familiarizing with the brainlife.io environment through the 

introduction to brainlife tutorial, students performed a standard 
realignment task to make sure to align the anatomical image to the 
point where two white matter tracts cross hemispheres: the anterior 
commissure and posterior commissure (ACPC). Specifically, the 
image will be moved so that a horizontal line drawn from the front to 
the back of the brain will pass through both landmarks, and a 
horizontal line drawn from the temporal lobes and a vertical line from 
the top of the brain to the bottom bisect at the midpoint of the two 
landmarks. Typically, this is done by linearly-aligning an anatomical 
T1w image to a standard template (ex. MNI) that has already been 
aligned to these planes. The students practiced the alignment of the 
anatomical image to the anterior and posterior commissure (ACPC) 
using the Align T1 to ACPC Plane (HCP-based) app. Figure 1 shows 
an example of the image centered and aligned to the ACPC plane. To 
properly display the images, another app, Generate Image of T1 was 
used. The Generate Image of T1 app creates quality assurance images 
allowing users to view T1 in the mid- axial, sagittal and coronal plane.2

Measuring the brain: morphometric data 
extraction and parcellation

The second step for the students was to explore how the whole 
brain is organized into several functional and anatomical regions. The 
aligned, anatomical brain image was divided (parcellated) into several 
anatomical landmarks. The parcellation was achieved through the use 
of the Freesurfer app (see Figure 2A). As an output of freesurfer, the 
students obtained a graphical representation of the volumes of gray 
and white matter and cerebrospinal fluid (CSF) in the brain of one of 
the subjects (Figure 2B). Volumetric information such as this can 
be used by students to build and test hypotheses about the relationship 
between anatomical and functional features of brain areas.

After obtaining general information about the gray and white 
matter volumes and thickness in the two hemispheres, students 
produced visualizations in which different cortical structures are 
represented in different colors and can be explored, navigated in 3d 
(Figure 2C).

They used the Freesurfer Statistics app3 to convert the 
morphometric information used by freesurfer into tabulated numeric 
data (comma separated values, csv files) about the volumes for gray 
and white matter (see Figures 2D,E).

The tabulated data format can be easily used for statistical analysis.

2 Description source of Generate Image T1: https://brainlife.io/

app/5e88c72d952fefe0a07abfb6/readme

3 https://brainlife.io/app/5e31bea8b81ce26c2f9c9a88

fMRIPrep–volume output
The next step was for the students to familiarize themselves with 

preprocess fMRI data via the app fMRIprep. It involved fMRIPrep 
automatically handling various data corrections and alignments, 
ensuring the images were ready for their subsequent analytical studies. 
This step prepared both task-based and resting-state fMRI scans for 
analysis (Figure 3).

Multi-atlas transfer tool
Completion of artifact reduction and brain parcellation through 

Freesurfer prepared the images for the use of the Multi-Atlas Transfer 
Tool application. This application is an important tool to obtain 
multiple parcellations of the volumetric data within the T1-weighted 
image (Figure 4).

fMRI to connectivity matrices, conmat 2 network 
and network visualization

After familiarizing with structural MRI by processing anatomical 
data and images, the students started exploring introductory network 
neuroscience. Specifically, they focused on network connectivity by 
using the brainlife apps fMRI to Connectivity Matrices, Conmat 2 
Network and Network Visualization measuring and visualizing the 
correlated activity between different brain regions and got an 
introductory understanding of how brain regions interact and process 
information. They first used fMRI to Connectivity Matrices which 
allows identifying functional connections between different regions of 
the brain by measuring the correlation of activity across multiple 
regions of the brain, which result in functional connectivity matrices. 
Between the outputs, there is a comma-separated-values (csv) file 
containing a bidimensional matrix with all the correlations of 
activation between brain regions. Such matrices reveal network-level 
properties of the brain, particularly in fMRI studies. The connectivity 
of different brain regions are determined by the association of the 
fMRI BOLD signals originating from the respective areas. Specifically, 
the connectivity is measured as a correlation between BOLD signals 
in two or more regions. Functional connectivity matrices have 
multiple uses, including brain states clustering, characterization of 
dynamic functional states, identification of individuals, and the 
understanding of task-related network configurations, all important 
assets for students learning the foundations of computational 
cognitive neuroscience.

Once functional connectivity matrices were built, the students 
used the Conmat 2 Network app to convert network matrices into 
network data types that can eventually show the interconnectedness 
of the different brain regions. With network visualization, the students 
were able to visualize the network associations from the output of the 
connectivity matrices. Figure 5 shows the chain of apps used and 
resulting matrix of correlation between the simultaneous activation of 
different areas of the brain.

Assessment of the experience of the first 
cohort of students

Eleven undergraduate students (6 female; 5 male, average age: 
20.4) with no previous experience neither with neuroscience analysis 
nor with any cloud computing platform participated in the first cohort 
of CURE -brainlife at LTU. The experience was part of a 16-weeks 
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behavioral neuroscience course delivered online. During the course, 
all students completed the above described assignments in brainlife, 
studied introductory concepts of neuroscience, neuroanatomy, and 
neuroimaging. We  assessed both performance and 
experience indicators.

Student performance indicators
To assess student performance we  took into consideration 

students’ final grades, the percentage and the timeline of 
completion of individual assignments and the quality of the CURE 
final report. The average final grade expressed in numbers was 96.5. 

A T-Test for single means indicates that the final grade in the 
CURE course was higher (t = 3.68, p = 0.001) than the average final 
grade (92.8) for the same course in 3 previous semesters. The 
sample used for comparison includes all grades in the non-CURE 
implementation of the same course in the same university, using 
the same handbook with the same instructor. This result does not 
necessarily imply that CURE improved the average grade of 
students in the course. It could be, for example, that online delivery 
was an intervening factor. However, the scores in the tests relative 
to the lecture part of the CURE course were not lower than the 
scores for the same portion of the curriculum in the traditional 

FIGURE 1

Realignment of the brain and artifact correction of anatomical MRI data. (A) Prompt for the execution of the acpc-alignment app in brainlife. The 
students can select the input file from a list of anatomical t1 weighted files (in this case subject 3, scan 1). The output will be a new anatomical image, 
realigned to the anterior and posterior commissure (ACPC). (B) Sagittal, Coronal and Axial Views of the brain of Subject 3 after ACPC Alignment.
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FIGURE 2

Measuring the brain volumes: morphometric data extraction and parcellation. (A) Processing request submitted for the realigned T1-weighted 
anatomical image of subject 3 using the FreeSurfer 7.1.1 app. The application generates several output files, including a FreeSurfer visualization file for 

(Continued)
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implementation of the course. Through the LTU’s learning 
management system (Canvas), we  calculated the percentage of 
completed tasks. The completion rate of the individual and team 
tasks was above 80%.

Student experience indicators
At the end of the course, all students completed a post-course 

survey indicating, on a scale from 1 to 5 their level of satisfaction with 
the different aspects of their CURE experience. Results are shown in 
Figure 7. Each student was also asked to provide a list of two or three 
adjectives to describe their experience with the brainlife platform, 
with brain anatomy and with their tasks and assignments. The word 
cloud shown in Figure 8 indicates the frequency with which every 
adjective was used. Finally, students were asked to provide a written 
feedback on the positive and negative aspects of their experience.

As shown in Figure 7, students reported high levels of satisfaction 
in all aspects of their CURE experience. All average responses were 
higher than the neutral response value of 3. A single-mean t-test after 
Bonferroni correction for multiple-testing showed values significantly 
higher than the neutral response for the following questions: relevance 
for my education (average response = 4.0, p = 0.03), brainlife tutorials 
(average response = 4.27, p = 0.002), completing multi-subject 
pipelines (average response = 4.36, p = 0.0004), and working on home 
assignments (average response = 4.18, p = 0.0006), working in an 
online setting (average response = 4.18, p = 0.04).

The word cloud in Figure 8 shows that “interesting” emerged as 
the most frequent adjective used to describe the experience. Notably, 
however, the second most frequent adjective was “frustrating.” 
Students often reported discussed with the instructor the long 
processing time of some of brainlife apps as the main cause of 
frustration during the CURE experience. Other reasons for frustration 
were the limited time dedicated to theoretical explanations of the 
brainlife computational processes and of the theory of neuroimaging.

Concerning students’ written feedback on CURE, the qualitative 
analysis of the written feedback provided by the students indicates a 
general positive attitude toward the experience. Two independent 
raters analyzed 9 feedback sentences and rated their valence in a 0–10 
scale where 0 is extremely negative, 10 is extremely positive and 5 is 
neutral. Results show an average valence of 6.1 which indicate a 
greater focus on the positive aspects of the experience than on the 
negative ones. The inter-rater correlation, measured with Person’s R 
coefficient, was R = 0.95, indicating high agreement between the 
two raters.

Both the performance and the experience indicators jointly 
indicate that a hands-on neuroimaging introduction via the CURE 
pedagogical model and a cloud computing neuroscience platform can 
be successfully performed by undergraduate students in spite of a 
reduced, or absent, previous experience in neuroscience and/or cloud 
computing. The performance and experience indicators were 
instrumental for us to refine the learning experience of the successive 
iterations of the CURE experience in spring 2022, 2023 and 2024.

Further pilot experiences with CURE in 
computational neuroscience

The inaugural pilot study in 2021 aimed to evaluate the 
effectiveness of a Course-based Undergraduate Research Experience 
(CURE) in computational neuroscience, integrated into an 
undergraduate neuroscience course for psychology majors (Bucciero 
et al., 2021). The primary objective of our initial CURE focused was 
to assess the overall response to the cloud computation environment, 
associated applications, and assigned tasks of students with no prior 
background in cloud computing or computational neuroscience.

Following the largely positive outcomes of the pilot, subsequent 
iterations of the behavioral neuroscience course at Lawrence 

navigation of brain structures and three volume files with brain parcellations based on widely used brain atlases. (B) Gray and white matter volumes for 
subject 3. All measures are reported in cubic millimeters (mm3), except for cortical thickness, which is expressed in millimeters (mm). (C) Visualization 
of gray matter, white matter, and cerebrospinal fluid (CSF) volumes in the brain. Distinct cortical structures are represented by different colors. 
(D) Output. csv files generated by the FreeSurfer Statistics app, available for download. These files contain volumetric, surface area, cortical thickness, 
and vertex count data for cortical and subcortical structures. (E) Example of volumetric and morphometric data from the right hemisphere, extracted 
from the rh.cortex.csv file for subject 3.

FIGURE 2 (Continued)

FIGURE 3

t1-weighted sagittal, coronal and axial images of subject 3 after artifact and distortion correction using the fMRIPrep app.
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Technological University (LTU) in spring 2022, 2023, and 2024 have 
been dedicated to fine-tuning the CURE experience, streamlining 
computational neuroscience activities, run the activities with a precise 
theoretical scope in mind. These improvements have shifted the focus 
toward more direct hypothesis testing, emphasizing authentic 
research experiences.

As a result, our current CURE model prioritizes hands-on experience 
in original neuroimaging research. Students are now empowered to run 
their own research projects by creating an hypothesis, importing actual 
brain data from open-access datasets, processing the data using the brainlife 

apps and pipelines, analyzing the data, preparing a final research report and 
presenting it as a poster in an internal conference (see Figure 6), the LTU 
research day. This event provides a valuable platform for undergraduate 
students to showcase their research findings and gain experience in 
scientific communication.

In each one of the three iterations, the theoretical focus was on 
structural MRI, and specifically on brain volumetry and morphometry. 
The choice of working with brain areas and brain volumes is multifolded: 
1) For undergraduate students with no previous experience with 
neuroimaging, the concepts of brain areas, shapes and volumes are 

FIGURE 4

Working with the multi-atlas tool. (A) The student requested to process the freesurfer file with the multi-atlas transfer tool map. The app offers 
flexibility in the volumetric analysis and comparison. (B) Brain Parcellation of Subject 3 – Sagittal, Coronal and Axial Views are visualized using FSLeyes - 
2D/3D brain volume viewer, which allows visualization of data and results in a variety of useful ways. (C) Lightbox view. (D) Ortho view.

https://doi.org/10.3389/fninf.2025.1608900
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Delogu et al. 10.3389/fninf.2025.1608900

Frontiers in Neuroinformatics 10 frontiersin.org

easier to grasp than other neuroimaging concepts and measures because 
of their immediate concreteness. In fact, students immediately 
understand and appreciate the difference in size and shape of brain 
structures because they are computed with familiar measures as 
millimeters (e.g., cortical thickness), squared millimeters (brain areas) 
and cubic millimeters (brain volumes). 2) Students can easily grasp the 
conceptual variables and hypothesis that they will operationalize in their 
projects. Specifically, they easily understand the potential causes of 
variations of brain morphometry, like the exposome (external 
exposures, lifestyle, biological exposures, social and economic factors), 
age, gender, degenerative disorders, brain injuries, strokes, tumors. 3) 
Increase the sense of research ownership by designing their own 
hypotheses autonomously was facilitated by seemligly direct relationship 
between the abovemetnioed factors and brain morphometry.

Each semester was focus on specific empirical questions, agreed 
with the instructor after an introductory training with the platforms 
and the apps at the beginning of each semester. The following 
empirical questions were statistically tested during the different 
iterations of the course:

 1. Spring 2022: Does Cocaine Use Disorder cause reduction in 
brain white and gray matter?

 2. Spring 2023: Does the presence and the type of brain pathology 
(Schizophrenia, Parkinson’s disease and ADHD) cause 
morphological changes in brain regions in comparison with 
healthy controls?

 3. Spring 2024: What is the impact of different types of brain 
tumors and their surgical removal on brain volumetry and 
spared cognitive abilities?

To answer these questions, regardless of the different theoretical 
focus and empirical hypotheses, the students used very similar 
processes and procedures, shown in Figure 9 and described in Table 2.

The procedures, apps and pipelines described in Table 2 were 
selected as indispensable, but sufficient tools to test volumetric 
hypothesis starting just from importing one t1-weighted anatomical 
file for each subject. Tasks were generally introduced and started 
during class but mostly completed as home assignments. An exception 
was the statistical analysis and Jupyter Notebook work, which took 
place in class under instructor supervision. As coding experience was 
not required, students with coding skills supported peers with less 
experience, fostering collaboration and teamwork. Coding sessions 
followed a guided, peer-supported format rather than formal pair 
programming. Historically, this process allowed notable discoveries in 
neuroscience (e.g.: Lawrie and Abukmeil, 1998). Our CURE research 
protocol and schedule provide students the tools required to run 
analogous scientific processes to the ones they read in neuroimaging 
literature already in their undergraduate years. This hyphotesis-driven 
approach has successfully transformed the course into a more 
immersive and practical research experience, bridging the gap 
between theoretical knowledge and real-world neuroscientific 
investigation. Moreover, most importantly, the protocol allowed 

FIGURE 5

Poster presented by undergraduate students enrolled in a behavioral neuroscience course at LTU research day on April 2022 (https://osf.io/emka8). 
During spring 2022 semester, all students enrolled in Behavioral Neuroscience explored, through CURE and brainlife, the effects of cocaine user 
disorder (CUD) on gray matter volumes of parcellated cortical structures. Students extracted volumetry information of 70 brain structures (Desikan-
Killiany Atlas) from about 150 brain scans included in 12 different MRI datasets. Results indicated that average volumes of brain structures are consistent 
between volume data generated from different datasets.
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FIGURE 6

Visualizing the matrix of correlations of activation between regions: (A) The student uses the app fMRI to connectivity matrix to obtain a conmat file. 
(B) Conmat 2 Network app is used to convert network matrices into network data types. (C) The network visulalization converts network data types in 
static bidimensional images visualized in pdf outputs (D) the correlation matrix visualization. Hue and intensity of colors represent the strength of 
correlation. Each row and column represent a different brain region. Only few labels were printed for legibility.

FIGURE 7

Students reported, in a 5-point likert scale, their perception of the experience with different aspects of their CURE activities and brainlife components. 
Asterisks indicate significant differences at p < 0.05 (*) and p < 0.001 (**) from a neutral response. Error bars indicate standard deviation from the mean.
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students to feel like they own their own discovery process, starting 
from the hypothesis and ending with a final report ready for student-
authored dissemination.

Spring 2022. The impact of cocaine use disorder on the size of 
cortical structures.

All students enrolled in the Behavioral Neuroscience course 
(N = 11) conducted an in-depth analysis of volumetric differences in 
cortical structures using openly shared MRI datasets. Their 
investigation focused on three primary hypotheses:

 1. The existence of hemispheric asymmetry in cortical volumes.
 2. Gender-related differences in brain structure volumes.
 3. The impact of cocaine use disorder (CUD) on cortical 

structure size.

Utilizing Brainlife tutorials and processing pipelines, students 
analyzed 103 anatomical MRI scans drawn from multiple datasets. 
Their findings supported existing literature, revealing (a) significant 
differences in cortical volumes between the left and right hemispheres 
(see Toga and Thompson, 2003 for a review); (b) Male participants 
exhibited larger overall brain volumes, while female participants 
showed greater cortical density in specific regions (see Ruigrok et al., 
2014 for a review); (c) Individuals with CUD demonstrated markedly 
reduced cortical volumes, particularly in the frontal lobe, with an 
average reduction of 18.8% (see Dang et  al., 2022 for a 
meta-analysis).

Beyond the scientific findings, this iteration of our CURE-
brainlife course confirmed that students engaged in authentic 
research processes can significantly enhance their understanding 
of course content. Students were particularly impressed to learn 
about structural changes in the brain correlate with chronic 
cocaine use. By analyzing real-world data and contributing to 
hypothesis-driven research, students developed a stronger sense 
of ownership over their learning. Moreover, working 
collaboratively on creating the poster and presenting it fostered a 
sense of community and belonging within the field of 
neuroscience—factors known to support student retention 
and success.

Spring 2023. How age, hemispheric asymmetries and the presence 
of neurological disorders causes volumetric variations in the brain.

The spring 2023 semester, all students (N = 13) enrolled in 
Behavioral Neuroscience participated in a course-based research 
experience. Using brainlife.io, they focused on analyzing volumetric 
variations in the human brain, emphasizing hemispheric asymmetries, 
age-related changes, and pathological differences. Like in the previous 
iterations of the course, our approach allowed students to engage in 
authentic research despite limited institutional access to neuroscience 
facilities. The students worked with 117 sMRI brain scans imported 
from several datasets, including data from healthy adults and 
individuals diagnosed with Parkinson’s disease (PD), ADHD, and 
schizophrenia. Guided by brainlife tutorials, they learned to realign 
and debias sMRI data, perform brain parcellations, and conduct 
volumetric analyses using tools like FreeSurfer statistics. Key 
findings included:

 (a) Hemispheric Asymmetry: A slight but significant difference in 
total white matter volume, favoring the left hemisphere.

 (b) Age-Related Variations: Gray matter volume decreased while 
white matter volume increased with age, consistent with 
existing literature (Giorgio et al., 2010).

 (c) Pathological Differences: Unexpected results showed increased 
gray matter volume in PD patients compared to controls, 
possibly due to methodological errors or non-homogeneous 
datasets. ADHD datasets revealed no statistically significant 
differences between children with ADHD and typically 
developing children (Figure 10).

Spring 2024 – investigating the impact of brain tumors and surgical 
intervention on brain volumetry and cognition.

During the spring 2024 semester, all students (N = 7) enrolled in 
the Behavioral Neuroscience course engaged in a course-based 
undergraduate research experience (CURE), using the BrainLife.io 
cloud computing platform. Throughout the semester, students 
investigated the effects of brain tumors and their surgical removal on 
brain volumetry and cognitive function. This CURE approach, 
supported by the computational power and accessibility of brainlife.
io, enabled students to participate in hands-on, hypothesis-driven 
research that would typically be out of reach in smaller academic 
institutions with limited resources.

The research focused on MRI data from 19 patients diagnosed 
with various types of brain tumors, alongside a control group of 10 
healthy individuals. Students conducted volumetric analyses of 
intracranial space, gray matter, and white matter, comparing pre- and 
post-surgical scans. Their findings (see poster in Figure 11), revealed 
that total intracranial volume remained largely stable following tumor 
resection, potentially indicating compensatory mechanisms such as 
brain tissue regrowth, scar formation, or cerebrospinal fluid 
redistribution. Modest reductions were observed in gray and white 
matter volumes—3.9 and 1.1%, respectively—after surgery. 
Interestingly, performance on cognitive tasks did not differ 
significantly between patients and controls, suggesting that brain 
plasticity may help preserve function despite structural changes.

Through BrainLife tutorials and workflows, students learned key 
neuroimaging techniques, including MRI segmentation and 
volumetric analysis, gaining valuable skills in data processing and 
interpretation. Unlike previous iterations of this course-based 
research, this project centered specifically on the dynamic changes 
associated with pathological tissue removal. Students expressed a 

FIGURE 8

Self reported student experience word cloud. Word size indicates the 
number of times the word was reported in a list of three adjectives 
used by the students to describe their CURE experience.
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strong emotional and intellectual engagement with the topic, 
particularly when visualizing anatomical alterations in tumor-affected 
brains. This real-world application of neuroscience concepts deepened 
their understanding of the material and highlighted the relevance of 
research to human health and clinical practice. In their CURE study, 
the students did not apply the necessary adaptations to the FreeSurfer 
pipeline to account for the presence of large brain lesions. This is a 
crucial consideration, as Freesurfer perform poorly when standard 
atlas-based is used to analyze structural pathology without corrections. 
For future iterations of studies involving brain tumors or major brain 
lesions, it will be essential to implement specialized solutions which 
can generate a lesion-free T1-weighted image, enabling more reliable 
and accurate brain parcellation and analysis (Radwan et al., 2021).

Overall, this iteration reinforced the pedagogical value of 
integrating cloud-based platforms with CURE models in neuroscience 
education. It not only enhanced technical competencies but also 
fostered a greater sense of relevance, motivation, and connection 
between classroom learning and lived experiences.

General discussion

Over four consecutive spring semesters from 2021 to 2024, 
undergraduate students at Lawrence Technological University (LTU), 
a private primarily undergraduate institution (PUI) in Metro Detroit, 
participated in a computational neuroscience course-based 
undergraduate research experience (CURE) as part of their Behavioral 
Neuroscience course. Utilizing brainlife.io, a robust open cloud-
computing platform, and students conducted anatomical and 
functional analyses on brain imaging data sourced from openly 
available datasets. Each cohort tested original hypotheses about 
volumetric and structural differences in brain anatomy, reflecting both 

methodological growth and deepening scientific engagement 
over time.

The program evolved meaningfully across the 4 years, progressing 
from a primary emphasis on mastering data processing pipelines and 
cortical connectivity visualizations to conducting hypothesis-driven 
investigations on the impact of age, gender, and pathological 
conditions on volumetric and morphometric properties of the brain. 
This evolution provided students not only with technical skills in 
handling and analyzing neuroimaging data but also with an 
appreciation of the broader scientific questions and clinical 
implications that guide neuroscience research.

By embedding open science and big data practices in a user-
friendly, cloud-based platform, the Brainlife-CURE model offered 
hands-on, problem-based learning opportunities to students with 
minimal prior exposure to neuroscience research. BrainLife.io 
facilitated this by offering unrestricted access to curated neuroimaging 
datasets, pre-built analysis pipelines, and extensive educational 
documentation. The platform’s accessibility allowed students to 
undertake sophisticated neuroimaging research in the absence of 
high-cost infrastructure or dedicated laboratory facilities—barriers 
that often limit engagement at PUIs, minority-serving institutions 
(MSIs), and community colleges.

Crucially, the Brainlife-CURE addressed longstanding limitations 
associated with traditional undergraduate research models. It 
demonstrated scalability by integrating research experiences into 
regular coursework, allowing full-class participation without requiring 
additional resources or lab space. The approach introduced authentic 
research early in students’ academic careers, aligning with evidence 
that early exposure significantly impacts persistence in STEM fields, 
particularly for underrepresented groups. Moreover, by eliminating 
selection barriers often associated with competitive research 
placements, the model promoted greater equity and inclusivity.

FIGURE 9

The iterative process of hypothesis creation, testing and reporting of CUREs on structural MRI analysis.
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Throughout the four-year span, cohorts consistently developed 
and tested original hypotheses, such as the presence of hemispheric 
asymmetries, gender differences in cortical volumes, and the 
effects of substance use or brain pathology on brain structure. In 
2024, for instance, students analyzed pre- and post-surgical MRIs 
of patients with brain tumors, identifying subtle yet informative 
changes in gray and white matter volumes after tumor resection. 
In 2023, the class investigated cortical volume variations in 
individuals with cocaine use disorder, finding significant volume 
reductions in the frontal lobe—a finding consistent with existing 
literature. These projects helped student’s bridge classroom 
learning with real-world applications, including public health 
relevance and clinical impact.

The program also fostered the development of essential scientific 
communication skills. Students presented their research at the 
university’s annual research day, and in some cases, shared their work 
in peer-reviewed outlets and at professional conferences, such as the 
Michigan Academy of Science, Arts and Letters. The inaugural 2021 
cohort overcame the added challenge of fully remote instruction 
during the COVID-19 pandemic, highlighting the program’s 
adaptability to different learning environments.

Overall, this multi-year experience in computational neuroscience 
demonstrates the feasibility and educational value of a scalable, 
inclusive CURE model powered by cloud computing. It broadened 
access to neuroscience education, promoted engagement with real-
world research questions, developed technical and scientific literacy, 

TABLE 2 Description of all the cure tasks, timeline, apps and materials used by students in their CUREs.

CURE task Task description Apps Week Work type Materials

1. Literature Review Explore existing research on 

factors influencing brain 

morphometry to identify gaps 

and formulate objectives.

FSL Anat (single 

subject)

1–2 individual Introduction tutorial

2. Hypothesis creation Develop a testable statement 

based on literature and project 

goals.

Freesurfer (single 

subject)

3 individual Anatomy tutorial

3. Upload Datasets Select and upload relevant 

datasets to the project in 

brainlife.

Freesurfer statistics 

(single subject)

4 individual Openneuro & Brainlife 

datasets

4. FSL Anat pipeline Filter, adjust, realign 

anatomical sMRI data

FSL_Anat (multiples 

subjects)

5–6 team Pipeline tutorial

5. Freesurfer pipeline Extract cortical surfaces and 

segment brain structures.

Freesurfer (pipeline 

with multiples subjects)

7–8 team Pipeline tutorial

6. Freesurfer statistics 

pipeline

transform the brain 

parcellations from 

visualization format to 

numerical comma-separated-

value outputs.

Freesurfer statistics 

(multiples subjects)

9 team Pipeline tutorial

7. Data analysis run statistical analysis, 

Interpret results, validate 

findings, and draw meaningful 

conclusions

Jupyter Notebook, Jasp 10–11 team Jupyter Notebook

Poster Design Create a visually engaging 

summary of findings for 

presentation.

Apps for image and 

word editing

12–13 All class NA

Poster Presentation Share project insights and 

results at LTU internal and/or 

external conferences and 

workshops.

NA 14 team NA

Final report Collective draft of a final 

report structured like a 

neuroscience research article. 

Instructor provide an empty 

structure, different team focus 

on one section of the report 

compiling comprehensive 

documentation of methods, 

results, and conclusions.

NA 15–16 All class Formatted document with 

step-by-step instructions is 

provided
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and fostered a sense of scientific identity and belonging among 
students. By leveraging a wide array of openly available datasets and 
modular analysis pipelines within brainlife, the program consistently 
supported new discoveries, making each cohort’s experience unique 
and impactful.

A key contextual factor contributing to the success of this CURE 
implementation was the relatively small class size, which enabled close 
student–instructor interactions and personalized support—especially 
during coding sessions and while navigating the cloud-based tools. 
This environment likely fostered higher student engagement and 
helped to mitigate challenges associated with the technical complexity 
of the tasks. However, this raises important considerations regarding 
the scalability of the model. For larger cohorts (e.g., 25–30 students), 
additional instructional support may be  required, such as the 
involvement of teaching assistants, peer mentors, or the 

implementation of more structured collaborative learning strategies. 
Based on our experience, class sizes of up to 20 students can 
be  effectively managed by a single instructor, but exceeding this 
threshold would likely necessitate adjustments to maintain 
instructional quality and individualized feedback. Future 
implementations should explore these adaptations and assess the 
model’s scalability across diverse institutional settings.

One limitation of the present study is the relatively small sample 
size and the fact that it was conducted within a single institution, 
which may limit the generalizability of the findings. However, it is 
important to note that participating students had no prior experience 
with cognitive neuroscience, computational neuroscience, or cloud-
based scientific platforms. This context renders the sample 
particularly valuable, as it highlights the potential for successfully 
introducing advanced, research-oriented content to undergraduate 

FIGURE 10

Poster presented by undergraduate students enrolled in a behavioral neuroscience course at LTU research day on April 2023 (https://osf.io/8t3dn). The 
Spring 2023 class of Behavioral Neuroscience at LTU used brainlife.io to investigate brain volumetric variations (both white and gray matter) as a 
function of age, gender, hemispheric lateralization and pathological conditions. A total of 200 t1-weighted anatomical MRI scans of brains were 
selected from 10 different public datasets archived in https://openneuro.org/. The brains were parcellated in 74 non-overlapping areas for each 
hemisphere using the app freesurfer. Successively, morphometric and volumetric data were reported in csv files using the app freesurfer statistics. The 
procedure was automated using pipelines to simultaneously run the same apps and procedures over all the subjects included in brainlife projects, 
individually managed by each student. Finally, a jupyter notebook embedded in brainlife and powered with python was used to perform data tabulation 
and statistical analysis. Students took into account the following pathologies and related volumetric hypotheses: 1. ADHD, or attention-deficit 
hyperactivity disorder, with the expectation to find global reductions in gray matter volumes in comparison to control subjects; 2. Parkinson’s, with the 
expectation to find a reduction in the volume of subcortical areas of Parkinson’s subject compared to controls; 3. Schizophrenia, with the expectation 
to find areas of the brain cortical and subcortical reduction in schizophrenic patients’ volumes compared to their siblings and to unrelated controls. 
Consistently with previous studies, students also expected to find a negative correlation between age and gray matter volume as well as gender 
effects. Results confirmed all the above-mentioned hypotheses.
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learners without specialized backgrounds. In this sense, the cohort 
serves as a compelling case study of how open science tools and 
CURE-based pedagogy can lower entry barriers in neuroscience  
education.

Another notable limitation relates to the technical infrastructure of 
the platform. Several brainlife applications experienced instability or long 
processing times, which occasionally disrupted the workflow. In an 
educational context, particularly within a course structure that includes 
assignment deadlines, these issues can be a source of frustration and 
stress for students—especially those without the technical expertise to 
troubleshoot such problems independently. This contrasts with the 
experience of researchers, who may be more equipped to navigate such 
setbacks. To address this, we recommend continued optimization of the 
platform’s user interface and backend performance, along with the 
development of educational-specific features that improve reliability and 
ease of use. These improvements would significantly enhance the 
feasibility of integrating brainlife into broader undergraduate curricula.

Implementation requirements and practical 
considerations

To support potential adoption of the Brainlife-CURE model at 
other institutions, especially those with limited resources, we provide 
below a checklist of the basic requirements, alongside practical 
insights from our implementation.

Checklist for implementation:

Category Requirement Notes

Hardware Standard laptops or 

desktops with stable 

internet access

No high-performance 

computing required

Software/Platforms Free Brainlife.io account All apps used are freely 

available within the  

platform

FIGURE 11

Poster presented at LTU research day on April 2024 about their Spring 2024 experience with CURE-brainlife (https://osf.io/ykbtf). All students enrolled 
in Behavioral Neuroscience explored, through CURE, the effects of brain tumors, on cognitive abilities. To study the volumetry of the brain, they 
uploaded datasets available on openneuro.org to brainlife. The sample included healthy control participants (N = 10) and patients (N = 19) with various 
types of brain tumors: Meningioma I, Oligo-astrocytoma II, Ependymoma II, Anaplastic astrocytoma II-III, Glioma II, and Oligodendroglioma II. Using 
the apps available in brainlife, the students analyzed the relationship between brain tumors and cognitive abilities tested with a battery of cognitive 
tests. They compared pathological (before and after brain surgery) and healthy control subjects in their ratio of gray matter and white matter within the 
total intracranial volume. They also compared patients and controls for their cognitive abilities. Results indicate that patients with brain tumors did not 
differ significantly from healthy controls in gray and white matter volumes and in cognitive abilities. The students discussed the evidence that brain 
tumors, especially when non-cancerous, can be removed with minimal reduction of white and gray matter and that cognitive performance can 
be successfully preserved.
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Web browser 

(preferably Chrome or 

Firefox)

Required to access Brainlife

Jupyter Notebook 

(optional, integrated 

into Brainlife)

For advanced statistical 

analysis

Statistical analysis tools 

(e.g., JASP, Excel)

JASP is free and suitable for 

beginners

Licensing None required All software is open source or 

hosted in the cloud

Instructor 

Preparation

Familiarity with 

Brainlife.io tutorials

Training required for 

onboarding new instructors

Time Investment 1–2 h per week of tech 

troubleshooting or support

Depends on class size and 

instructor experience

Tech Support Instructor-level support 

for common issues

No direct institutional IT 

involvement typically required

Supplemental Materials Video tutorials, 

platform 

documentation

Freely available on Brainlife 

and YouTube

Technical challenges and troubleshooting

One recurring challenge we  encountered involved the long 
processing time for certain Brainlife apps and occasional platform 
instability. These issues occasionally caused delays in assignment 
submission and student frustration. While these problems were 
manageable in small classes through instructor guidance and peer 
support, larger classes may benefit from:

 • Having teaching assistants or peer mentors trained in basic 
Brainlife troubleshooting

 • Scheduling flexibility to accommodate potential delays in 
data processing

 • Institutional support for resolving connectivity or access issues 
(though this was rarely needed at LTU)

In our experience, communication with Brainlife developers the 
community forum proved effective in resolving most technical concerns.

Cost considerations

A key strength of this model is its low financial barrier. Since 
Brainlife is free to use and no physical lab infrastructure is required, 
the total cost to the institution is minimal. Most costs relate to 
instructor preparation time and optional printing of final posters or 
reports. This low-cost, low-barrier model reinforces the scalability and 
adaptability of the Brainlife-CURE experience, especially in 
institutions that aim to increase access to neuroscience research for 
undergraduate students with limited prior exposure.

Conclusion

Neuroscience continues to be one of the least inclusive STEM 
disciplines, with many undergraduate students—especially those from 

underrepresented backgrounds—facing structural barriers such as 
limited access to neuroimaging data, prohibitive costs of training, and 
a shortage of diverse mentors. Open science presents a compelling 
solution to these challenges by promoting transparency, data 
accessibility, and collaborative learning. Major initiatives such as 
OpenNeuro and the Adolescent Brain Cognitive Development 
(ABCD) study have made valuable strides in data democratization; 
however, they often cater to already-skilled researchers and do not 
provide structured pathways for entry-level students. As such, there is 
an urgent need for scalable, inclusive curricular models that embed 
open science practices into undergraduate education, particularly at 
institutions with limited research infrastructure.

Our Brainlife-CURE initiative represents a pioneering effort to 
meet this need. By integrating brainlife.io into the neuroscience 
curriculum at LTU, we developed a cost-effective, scalable framework 
for course-based research that allows all students enrolled in a regular 
undergraduate course to participate in meaningful, hands-on scientific 
inquiry. Importantly, this model eliminates the need for costly 
equipment such as MRI scanners or high-performance computing 
clusters, thereby extending research opportunities to settings that have 
historically been excluded from high-level neuroscience training. This 
includes PUIs, MSIs, and community colleges—institutions that are 
critical for broadening participation in STEM.

In doing so, our program not only reduced the cost of conducting 
research for students from diverse backgrounds, but also promoted 
the reuse of openly shared datasets to increase reproducibility and 
foster innovation. Students explored real clinical and theoretical 
questions—ranging from hemispheric asymmetries to the 
neuroanatomical impact of drug use and brain tumors—and made 
novel contributions to the interpretation of large-scale datasets. These 
experiences underscore how structured engagement with open 
science can support both educational and scientific advancement.

Our findings echo the broader literature on open education, 
which emphasizes that freely available, remixable, and redistributable 
resources can help reduce inequality in educational access and 
outcomes (Blessinger and Bliss, 2016; Wiley et al., 2014). At the same 
time, our program advances the emerging field of open neuroscience 
education, which has typically focused on upskilling graduate students 
and postdoctoral researchers (Markiewicz et al., 2021; Rokem et al., 
2021; Milham et al., 2018). To our knowledge, only a few programs, 
such as that described by Oprisan (2022), have specifically targeted 
undergraduate learners through structured curricula. The Brainlife-
CURE thus fills a critical gap, providing a blueprint for how open 
science practices can be leveraged to introduce undergraduates to 
neuroscience in a meaningful, inclusive way.

Beyond its educational benefits, this model has the potential to 
contribute to the progress of neuroscience as a discipline. By 
expanding access to neuroimaging datasets and analysis pipelines, the 
program facilitates the discovery of new insights, encourages 
collaborative scholarship, and supports independent verification of 
findings—all of which are essential for improving research 
transparency and integrity.

In conclusion, the Brainlife-CURE initiative demonstrates how open 
science and cloud computing can be harnessed to transform undergraduate 
neuroscience education. By combining the principles of course-based 
undergraduate research with accessible, scalable digital infrastructure, this 
model empowers students to conduct authentic research, cultivates 
scientific curiosity, and broadens access to the neuroscience pipeline. As 
institutions continue to seek innovative strategies for inclusive STEM 
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education, our experience offers a practical, impactful approach to engaging 
the next generation of neuroscientists.
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