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We show that recent (mid-to-late 2024) commercial large language models 

(LLMs) are capable of good quality metadata extraction and annotation with very 

little work on the part of investigators for several exemplar real-world annotation 

tasks in the neuroimaging literature. We investigated the GPT-4o LLM from 

OpenAI which performed comparably with several groups of specially trained 

and supervised human annotators. The LLM achieves similar performance to 

humans, between 0.91 and 0.97 on zero-shot prompts without feedback to 

the LLM. Reviewing the disagreements between LLM and gold standard human 

annotations we note that actual LLM errors are comparable to human errors in 

most cases, and in many cases these disagreements are not errors. Based on 

the specific types of annotations we tested, with exceptionally reviewed gold-

standard correct values, the LLM performance is usable for metadata annotation 

at scale. We encourage other research groups to develop and make available 

more specialized “micro-benchmarks,” like the ones we provide here, for testing 

both LLMs, and more complex agent systems annotation performance in 

real-world metadata annotation tasks. 

KEYWORDS 

large language models, metadata annotation, information extraction, human 
neuroimaging, ontologies, document annotation, text mining 

1 Introduction 

Scientific publications are highly stylized writings with strong rules and norms for 
formatting and arranging the information that they convey, unlike the freedom aorded 
to writings like web pages, business letters, and other working literature. This regularity 
allows scientifically literate readers to deftly read and process these publications. Despite 
these restrictions, scientific publications are generally free-text documents, and the freedom 
aorded to their writing allows an incredibly high degree of variability which limits 
the discovery of relevant publications within the broader research workflow. Basic text 

Frontiers in Neuroinformatics 01 frontiersin.org 

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2025.1609077
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2025.1609077&domain=pdf&date_stamp=2025-08-20
mailto:matthew.turner2@osumc.edu
https://doi.org/10.3389/fninf.2025.1609077
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fninf.2025.1609077/full
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-19-1609077 August 16, 2025 Time: 15:57 # 2

Turner et al. 10.3389/fninf.2025.1609077 

search (e.g., Google web search, PubMed, etc.) has often been 
ineective as it has worked, historically, at the word and phrase 
(syntactic) level, which detaches the search terms from much 
of the surrounding (semantic) context. For example, a web 
search or searching a collection of documents for a term, such 
as “schizophrenia,” will turn up many papers that mention 
schizophrenia in passing or even in the context of “without 
schizophrenia,” and those papers limit the findability of papers 
which present relevant research results directly relevant to the topic. 

Historically, human curation of the scientific literature has been 
required to overcome these limitations, but this approach fails as 
the scale of scientific publication increases (Tan et al., 2024; Yadav 
et al., 2024). Curation refers to the extraction or development of 
specific, context-relevant, information from publications and the 
organization of this information into “annotations” which we treat 
as metadata that are attached to the original publications (Tan et al., 
2024). This metadata specifically allows programmatic methods 
for accessing and further processing this published literature. This 
“further processing” may include finding links to data attached to 
the publications, as well as processing the literature for systematic 
or quantitative reviews. 

This literature curation and metadata annotation comes with a 
number of challenges. Perhaps the foremost of these is economics: 
outside of a few projects such as PubMed or corporate databases, 
there are very few resources available for detailed human curation 
of the scientific literature. But even if such resources existed, 
there are still problems. First, the task requires expertise in the 
relevant scientific area or specialized training of the annotators. 
Second, annotation requires substantial attention to detail, as well 
as high levels of focus, both of which are diÿcult for human 
annotators to achieve. Finally, the task is intrinsically monotonous 
which makes it diÿcult for people to maintain accuracy for more 
than a short period. 

Large language models (LLMs) have disrupted artificial 
intelligence and machine learning research in various ways across 
multiple domains of use, including science (Fernandez et al., 2023; 
Maik Jablonka et al., 2023; Thirunavukarasu et al., 2023; Zhao 
et al., 2023; Nejjar et al., 2024; Sahoo et al., 2024). Within scientific 
research, LLMs are being used for a variety of tasks, but here 
we focus on their use in processing the scientific literature itself. 
Prior work has shown that LLMs can be used in several relevant 
natural language tasks such as summarization of both single and 
multiple documents or gathering materials for reviews (Lála et al., 
2023; Agarwal et al., 2024), and annotation (Ding et al., 2023). 
Here we explore the capabilities of one of the most sophisticated 
of these models (GPT-4o from OpenAI) to do an annotation task 
traditionally done by human experts. 

Given the impressive performance of LLMs in many tasks it 
seems obvious to try them on the annotation task. However, results 
have been mixed: Wadhwa et al. (2024) find that GPT-3 achieves 
state of the art performance in relation extraction from texts while 
Kristensen-McLachlan et al. (2023) find that LLMs are unreliable 
as annotators for problems in tweet classification. Aldeen et al. 
(2023) find that LLM performance in annotations vary widely by 
the specific annotation task tested. These results suggest that LLM 
performance on annotation will depend critically on two things: the 
specifics of each annotation task itself and the choice of LLM used 
to do the task. 

When considering the capability of LLMs to do metadata 
annotation we must acknowledge that the human-made gold 
standard data, which we compare to machine annotation, is far 
from perfect. In a previous study (Sahoo et al., 2023), we used 
trained undergraduate students to do annotation of neuroimaging 
papers with metadata relevant to understanding the type of 
experimental data reported in these papers. Even with well-
trained students and multiple quality control measures (using 
multiple annotators per annotation, more experienced students 
reviewing the work of junior students, multiple passes over the 
annotations, reviews by subject matter experts, etc.) there were 
many errors in the final set of annotations. Additionally, the 
co-developed Neurobridge ontology, like all non-probabilistic 
ontologies, has crisp boundaries which require arbitrary decisions 
in terminology. This leads to the inconsistent application of the 
terms when annotating. 

We take the position that annotating publications with machine 
readable metadata extracted or generated from the unstructured 
text of the publications is suÿciently valuable to warrant its 
creation. One potential criticism of this approach could be that 
LLMs can interact with unstructured text directly, therefore what 
purpose does such metadata serve? While it is possible that LLMs 
could, for each new problem, process many publications directly, 
there are issues with this approach. First are the direct costs 
involved. Commercial LLMs do these sorts of tasks well, but 
open weight LLMs (such as the Llama series of models from 
Meta) do not currently perform as well, as can be seen from 
the various LLM leaderboards. Second, there are serious concerns 
about the environmental impacts, both energy and water usage, 
for the large commercial models (Strubell et al., 2019; Hisaharo 
et al., 2024; Jiang et al., 2024). If eventually open-weight LLMs 
could take on these tasks with less damage to the environment, 
there are still the compute costs and the direct work of deploying 
and maintaining these models. (Running an LLM, even at a 
moderate scale, is not as simple as downloading and running 
an executable). Therefore, minimizing the number of times a 
publication must be processed has intrinsic value. Finally, while 
LLMs are capable of sophisticated processing of publications, they 
are not instantaneous, so passing many publications through an 
LLM workflow is, and will likely remain for the near-term future, 
unacceptably slow for on-demand use. 

Preprocessing to extract such metadata and curating the 
results as a searchable repository for the future enables reuse and 
repurpose, thus saving valuable resources. Further, the benefits of 
having such a repository are additive as it enables aggregation 
with additional metadata based on other future LLM extractions. 
We believe that a growing prompt-annotated metadata repository 
would be a very useful tool for researchers who can search 
for past annotated data and add to the repository with focused 
annotation prompts that they find relevant for their current 
research. Community annotated metadata using AI-prompts will 
be a valuable addition for future research and improve the metadata 
signatures for datasets with minimal eort. 

Many neuroimaging papers describe research studies where the 
authors make their data available, but this is often done without 
putting the data directly into public repositories or making the data 
easily findable via internet search. The goal of the Neurobridge 
project (Sahoo et al., 2023; Wang L. et al., 2023; Wang X. et al., 2023) 
is to facilitate the ability to find neuroimaging data described in the 
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published literature. With this goal in mind, the characteristics of a 
magnetic resonance imaging (MRI) dataset that we have annotated 
here address the question: “If I received this dataset from the 
authors, what would I receive?” Specifically, we focus on aspects 
of the data that allow either data reuse or which could be used 
to address further questions, such as: What types of MRI scans 
were collected? Who were the participants who were recruited? 
What were the parameters used in the scanner? Therefore, we are 
interested in descriptions of subject or participant populations, 
including diagnostic status; the structure of the experimental 
groups; anatomical MRI imaging parameters; and classification 
of functional MRI methods (e.g., resting state MRI versus task-
based MRI); and detailed descriptions of task-based MRI, with 
classification into specific categories. The Neurobridge Ontology 
serves as standardized terminology that can be used as annotations. 
This list of questions will expand as Neurobridge continues. 

We present examples of three specific targeted LLM annotation 
tasks in this paper that relate to data findability. We note that 
this same information is of value in the curation of papers for 
systematic reviews and meta-analyses. Specifically, we develop 
several “micro-benchmarks” that are directly relevant to our 
curation problem, and we evaluate the leading large language 
model on this annotation task. By “micro”-benchmark we mean 
an exceptionally well curated, therefore usually small, collection 
of test cases with gold-standard human extracted metadata. (We 
might call such extremely vetted data a “platinum” standard, but 
there is no term in current use for such data). We expect this 
collection of micro-benchmarks to expand as part of the ongoing 
Neurobridge research and encourage the development of additional 
benchmarks by other research groups using LLMs for these types of 
annotation tasks. 

We provide the benchmarks we have developed, along with 
all testing materials and code for comparing model performance. 
All materials are available at this paper’s GitHub repository, please 
see the Data Availability Statement. We expect this repository 
(or a linked one) to eventually contain additional test sets, 
papers, and labels, for other annotation targets and we welcome 
contributions from other research groups working on similar 
annotation problems. 

2 Materials and methods 

2.1 Experimental data 

The text used in these experiments are the published texts 
of scientific papers (hereafter “publications”) and several sets of 
human annotations treated as standards for comparison with the 
LLM results or used as performance comparisons. We used a subset 
of 186 open access full-text publications from the PubMedCentral 
(PMC) as our main collection of scientific papers in this study (see 
below). Several sets of highly curated labels, available on subsets 
of these publications, were used to jump start annotations as 
described below. 

2.1.1 Annotations: targets 
Human-assigned annotations were either available, partially 

available, or newly produced for the following aspects of the 

publications. The previously available annotations for these tasks 
are all taken from (2023). 

Each of these sets of annotations defines a specific 
annotation task: 

• Task 1: General Imaging Type - (25 publications) The 3 labels 
available for this annotation are broad categories of types of 
human neuroimaging: (1) T1 weighted anatomical images, (2) 
resting state functional MRI, and (3) task based functional 
MRI. This is the simplest category of labels we used and 
only requires classifying the general neuroimaging modalities 
reported in the publications. 

• Task 2: Structural Imaging Parameters - (44 publications) 
These are the parameters used to collect T1 weighted images, 
such as magnetic field strength, TR, TE, etc. (see Table 1 for 
a full listing.) There are 12 of these parameters we identified 
as being the most used to describe anatomical imaging, but it 
is common to just give a subset of these 12, as some of the 
parameters can be derived from combinations of the others. 
Which parameters are explicitly stated in a publication is a 
choice by the authors and, while guidelines exist, individual 
presentations can be idiosyncratic. While more complex than 
general imaging type, this task requires finding the specific 
parameters that are listed in the publication and recording 
only those explicitly present. These annotations were prepared 
expressly for this research and full details of how they were 
made are given in the next Section “2.1.2 Annotations: 
process.” 

• Task 3: Experimental Group Information - (30 publications) 
From previous research we have trained annotator labels for 
the participant (subject) groups used in the research presented 
in each of the 30 publications. Specifically, there is a set of 41 
diagnostic labels as potential annotations and the annotator 
identified which label is appropriate for each experimental 
group presented in the publication. Here we require the LLM 
annotator to determine the number of participants in each 
group as well, which the human annotators were not asked to 
do previously. These participant count annotations are new to 
this work. 

These three annotation tasks present a variety of challenges for 
the annotation of neuroscientific publications. 

Task 1, the general imaging type is the simplest task as it only 
requires recognizing that something is present in the text, usually 
presented in clear or highly regularized language, and only requires 
assigning a generic label to indicate that the thing’s category is 
present. As such it constitutes a classical multilabel classification 
problem (Tsoumakas et al., 2006). 

Task 2, identifying the structural imaging parameters is also a 
simple annotation case, only requiring copying values present in 
the text. Although the parameters for T1 structural images need to 
be stated explicitly in the methods of each paper, there has been a 
lack of standardization in how these parameters are reported, and 
some of the parameters can be derived from others. This creates 
a complex system of reporting where there are many dierent 
combinations of reported parameters that may imply the same 
underlying set of scanning parameters (see below). 

Additionally, this requires a sensible grouping of the 
parameters by scan, as some parameters are present but have 
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dierent values in dierent scans (T1, T2, etc.). For the annotations 
to be correct, the parameters reported must belong to the correct 
scan. While this is generally easy for humans, machines may 
confuse or combine parameters from dierent scans. Our pilot 
studies of this process on earlier OpenAI models such as GPT-3.5 
and GPT-4 showed many errors of this type. We also note that 
our initial human annotations contained significant errors as well 
(discussed below), so again we emphasize that human annotations 
are never perfect without intense review, revision, and curation. 

We selected 12 structural imaging parameters for extraction 
by the LLM (see Table 1). Every paper should report a subset of 
these parameters. We expect the LLM to simply copy the values if 
present in the paper and report the value as is, with one exception. 
That exception was “scan acquisition time” which, when present, we 
requested to be reported in units of seconds no matter how it was 
listed in the source publications. (Acquisition time was reported in 
the original publications in a wide variety of dierent formats and 
units). There are some minor dierences in what was annotated 
by the student annotators and the LLMs, see the discussion of the 
annotation process (below) for more details. 

Task 3, the experimental group information is the most 
complicated of our annotation tasks. Here we chose a set of 
publications where each publication had exactly one or two 
participant groups. The process requires that an annotator do the 
following: 

1. Read the language used in the publication to describe the 
experimental groups and determine the psychiatric diagnoses 
that are present in natural language. Note that this language 
is not fully standardized across either area of research or 
publications. As one example of a standardization issue, we 
note that this language has changed over time: with the 
publication of the Diagnostic Standards Manual 5 (DSM-
5) the separate diagnostic labels “alcohol dependence” and 
“alcohol abuse” were combined into “alcohol use disorder.” 
So, as an example, the distribution of terminology is non-
stationary. 

2. The description in the publication must be mapped into the 
set of terms in our controlled vocabulary. Even assuming 
perfect reading of the publications and full understanding 
of the controlled vocabulary, it is possible for annotators to 
choose dierent terms given intrinsic vagueness of language. 

3. The label for the group must be paired with the correct 
final count of subjects or participants. Any cases that might 
have the correct label, but which lack the correct count, are 
considered errors. 

These operations are usually easy for people but have 
only recently been consistently achieved by LLMs. In our 
pilot studies, the GPT-3.5 and the first version of the GPT-4 
models could not consistently do this task, often inventing 
new terms that were not in the controlled vocabulary 
(“hallucinating” in LLM terminology). Note also that in 
Sahoo et al. (2023), the students were not required to annotate 
the group sizes so we do not have a human comparison for 
these. 

2.1.2 Annotations: process 
2.1.2.1 Previous work: annotation tasks 1 and 3 

Tasks 1 and 3, General imaging type and the experimental 
group information, were annotations from previous work. Briefly, 
both sets of annotations were made by trained (undergraduate) 
student annotators in several passes over the publications. During 
the first pass, students entered their choices into a spreadsheet 
and, when relevant, made recommendations for new ontology 
terms to the ontologists; the Neurobridge ontology was co-
developed with the annotations. After consultations between the 
students and the ontologists, the draft ontology labels were 
entered into the spreadsheets. In a later phase, the raw text of 
the publications was marked up directly with the annotations 
in specially formatted files by a new group of trained students. 
During this latter phase the earlier work was checked by 
the new students and, finally, reviewed by “senior annotators” 
(students who were promoted from the annotation task or their 
supervisors) for correctness. See Sahoo et al. (2023) for full 
details. 

As noted above, this process did not produce perfectly correct 
annotations. In fact, despite the extensive eort put into the 
process, many errors were present in the final collection of 186 
publications annotated. 

In this study, several senior authors reviewed, evaluated, and 
corrected the student annotations that were used in this study, 
producing a new much more extensively reviewed and corrected 
set of annotation labels for these two tasks. These were vetted 
repeatedly, and the final annotations were only accepted when 
both authors agreed. Additionally, after the LLM annotation, each 
of the disagreements between the humans and the LLM were 
reviewed again. This process was repeated until every disagreement 
between humans and LLM were accounted for; this yielded the 
final gold standard we now make available in this work. We 
note that this final set of gold standard annotations has been 
subjected to more extensive review than most “gold standard” 
evaluation data. 

TABLE 1 The structural MRI parameters targeted for annotation from each publication (task 2). 

MRI parameters targeted for extraction (12) 

T, tesla, magnetic field strength of the scanner Voxel size, (1–3 numbers; mm; sometimes with exponents) 

TR, repetition time (ms) Matrix size, (usually 2–3 numbers, more rarely 1; unitless) 

TE, echo time (ms) Slice thickness (mm) 

TI, inversion time (ms) Acquisition time, (s; the only unit conversion in prompt) 

Flip angle (degrees) Number of slices (unitless) 

FOV, field of view (1–3 numbers; mm) Image orientation (values: axial, sagittal, coronal) 

Graduate student authors labeled the annotations in Roman font, and a senior author labeled the items in italics. See the Section “4 Discussion” in the text for details. 
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2.1.2.2 New work: annotation task 2–structural imaging 
parameters 

The structural imaging parameter annotations were made by 
the graduate student authors and reviewed by senior authors. The 
graduate students were required to label the set of 44 publications 
for 9 possible values (see Table 1). So, there were 9 × 44 = 396 
annotation positions (potential parameter values) to fill in. Note 
that three of these labels were for FOV, matrix, and voxel size. Each 
of these parameters may be represented by 1, 2, or 3 numbers. 
The students reported the values as strings, not as individual 
numbers, so each of these count as a single annotation position. The 
LLM treated these 3 items as 9 distinct annotations, one for each 
number reported. This will aect the counts of potential annotation 
positions and the accuracy calculations in the discussion below. 
The graduate students each labeled about half of the publications 
annotated, then they switched and reviewed each other’s work. 
Below we call this set of annotations (before review) the “graduate 
student annotations.” 

These annotations were reviewed and normalized by the first 
author. Normalization corrected for dierent encodings: some 
of the elements annotated by the students were cut-and-pasted 
while others typed, so dierent symbols, sometimes visually 
indistinguishable, were all corrected to specific standard symbols. 
Additionally, units were normalized (e.g., “10 degrees” and “10◦” 
were both made the same) and generally removed from the 
student annotations and embedded in the format used to store the 
data (that is, either paired with a column name in spreadsheets 
or stored as a dierent data element in JSON formats, see 
task 2 below for the JSON). OpenRefine (version 3.8.2) was 
used as the primary tool for this cleaning process (Ham, 2013; 
Petrova-Antonova and Tancheva, 2020). 

We note that during this review and normalization process 
the three remaining annotations were added: slice thickness, image 
orientation, and Tesla (magnetic field strength), which had not 
been part of the original annotations. The annotations are referred 
to as the “additional annotations” below. This led to an additional 
set of 132 (44 × 3) annotation positions. 

Subsequently, all the annotations were reviewed by two senior 
authors. Note that by the end of this, some annotations have been 
through 5 passes: original annotator, second annotator, the first 
author (during normalization), a second senior author, then a 
repeated vetting by the first author, while the additional annotations 
have been through 3 passes (annotation by the first author, followed 
by review from another senior author and the first author a final 
time). We call all of these final, thoroughly reviewed annotations 
the “full human system annotations.” Throughout this process, data 
was collected on human errors made in annotation at each stage; 
these will be discussed below. Note that we have three relevant 
stages to assess the accuracy of the annotations: the correctness 
of the graduate student annotations (before review) together with 
the correctness of the additional annotations (by the first author) 
before review, the annotations after being reviewed and updated 
by experts, and the correctness of this reviewed data during the 
post LLM review of dierences. (Each of these can be considered 
a dierent stage of the development of the annotations.) The 
graduate student and additional annotations are comparable to 
what most papers call a “gold standard” data set, despite still 
containing many errors. The full human system annotations are 
much more deeply reviewed than is usual in this kind of work. 

Our new “gold standard” annotations are the final set that has been 
through all these processes. 

This particularly intense review process yielded a set of 
annotations that are more correct than we have come to expect 
from most human annotated gold standard data sets. However, 
after LLM annotation, the entire set of human/LLM disagreements 
was reviewed again, which yielded 2 additional human errors 
that had made it through the entire process described above. 
We discuss the correctness of these sets of annotations in the 
appropriate section of the results below and we consider the costs 
involved there as well. 

All of the final gold standard annotations are available in 
the GitHub repository for this project, see the Section “Data 
availability statement.” 

2.1.3 Publication texts details 
LLM usage. The raw text of the publications given to the LLM 

in two of our experiments (tasks 2 and 3) were the BioC texts 
of the publications (Comeau et al., 2019). These BioC formatted 
papers were further processed to provide the plain text of the 
papers with footnotes, citations, and other technical apparatus 
removed. Due to context window size limitations of earlier LLMs, 
only the content of the papers to the end of the Sections “2 
Materials and methods” were provided to the LLMs. This included: 
titles, abstracts, introductions, and methods sections; removing the 
results, discussion, and other latter parts of the papers. The sections 
were determined from the metadata provided in the BioC format. 
For task 1, general imaging type, the LLM was given the PMC 
provided PDFs rather than the BioC text. This task’s workflow was 
dependent on the LLM provider’s internal process for converting 
the PDFs into usable text for the LLM and, as such, we do not 
have access to the details of how this was done. We note that there 
were two runs which generated failures in parsing the PDFs. This 
appeared to be an intermittent fault and in both cases repeating 
the analysis in a new chat session resolved the problem with no 
changes. See below for more details (Section “2.2.1 LLM: GPT-4o”). 

Human usage. For annotation tasks 1 and 3, the human 
annotators had access to the full (all text sections) BioC text for 
their final markup, but they were not restricted to using only this 
text and were free to review PDF versions of the papers. For the 
structural imaging parameters task, the human annotators used the 
PMC provided PDFs as their texts. 

2.2 Large language model and prompting 
strategies 

2.2.1 LLM: GPT-4o 
The present study focuses exclusively on the GPT-4o (omni) 

LLM, the 2024 flagship product from OpenAI, although we 
developed many of the experimental tasks on earlier models (GPT-
3.5 and GPT-4 at various checkpoints). It is used as the reference 
model as it is an extremely capable model with a reasonable price 
point for use in research applications. As the goal of this paper 
is to establish whether the most powerful models available can 
reasonably solve these tasks, we did not attempt to systematically 
explore all currently available models but instead established a 
baseline against one of the most prominent current commercial 
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models. Therefore, the results here may not fully generalize to 
other large commercial models. As there are new models released 
continuously, overall LLM model performance is a rapidly moving 
target. We provide code in the paper’s GitHub repository that can 
be modified to enable testing other LLMs with our annotations. 

We used two methods of submitting our prompts to the LLM. 
Task 1 was run manually via ChatGPT (OpenAI’s chat interface), 
selecting the GPT-4o model and uploading the PMC-provided 
PDFs of the publications for analysis. Each paper was run with 
the prompt in a fresh chat session, using the default parameters 
for ChatGPT. Accessing GPT-4o via the chat interface precludes 
knowing the specific model version or “checkpoint” used; however 
all of these were run on the same day in August 2024, so they 
should all have used the same version of the model. The other 
tasks (2 and 3) were run through OpenAI’s API, which allows 
direct programmatic access to the models via functions in a 
corresponding Python library released by the company.1 The model 
used in those tasks was the GPT-4o LLM (version checkpoint: 
gpt-4o-2024-08-06). In these experiments, the raw BioC text of 
each paper in turn was appended onto the end of the prompt for 
the task and submitted for processing. As LLMs are stateless, this 
approach is the equivalent of using a fresh chat session as in the 
manually run experiment. 

For these tasks, all LLM parameters were set to their defaults 
except for the “temperature” parameter. Temperature appears to 
be related to LLM response variability, although this claim is 
contested (Renze and Guven, 2024). Others commonly claim that 
it is a response “creativity” parameter, but this is also unlikely 
(Peeperkorn et al., 2024). For task 1 the temperature was left at the 
default for the ChatGPT interface. For task 3, the temperature was 
set to 0.2 (low), based on informal advice we received, but we did 
not explore other settings. For task 2 we had to set the temperature 
to zero to fix a specific problem. This task used the most 
complex JSON prototype of all the tasks. When the temperature 
was greater than zero, the LLM would often return simplified 
JSON, that is, it would pick out the annotations present in the 
publication and return only the JSON fields corresponding to the 
parameters explicitly reported. The JSON fields that corresponded 
to parameters not present would often be elided in unusual ways 
that were problematic for post-processing. Setting the temperature 
to zero made the LLM always return the exact same JSON each 
time, just with the JSON nulls replaced with values for any 
parameters present in the publication. All the other parameters 
remained present in the JSON and set to null. This is the behavior 
that we wanted. For the other tasks, no temperature changes were 
needed to maintain the expected JSON format. We take the position 
that JSON should always remain fully present (i.e., don’t delete 
fields for information not available) to simplify the postprocessing 
of the JSON returned from the LLMs. 

2.2.2 Prompting strategy 
Given that we were using a capable leading edge LLM, we 

explored the quality of annotations under only the simplest possible 
usage (Schulho et al., 2025). Specifically, we used “zero-shot” 
prompts for these tasks (Reynolds and McDonell, 2021; Li, 2023). 
Prompts are the text that specify the task that the LLM is supposed 

1 github.com/openai/openai-python 

to perform (Bhandari, 2024). A zero-shot prompt is one in which 
instructions for the task are given, but no specific examples are 
included. Performance with a zero-shot prompt can be thought of 
as a type of baseline performance or naive prompting strategy. If 
there are annotations that do not perform well under zero-shot 
prompts, so-called “few-shot” prompts can be used to improve 
performance. These prompts include both the task instructions 
along with one or more examples. If there are known cases that 
are challenging for the LLM, these problems can often be solved by 
adding examples that specifically cover the most challenging cases. 
For more complex annotation situations there are sophisticated 
systems, such as DSPy (Khattab et al., 2023a,b), that exist to 
automate few-shot prompt development with examples. 

We selected the zero-shot approach for several reasons, the 
main one being that this approach is what most people would 
try first when faced with a new annotation problem. Current 
commercial LLMs are quite capable when used with zero-shot 
prompts, and any annotation problem which requires going beyond 
simple prompting strategies will likely require addressing specifics 
that may be unique to the class of annotations involved. Perhaps 
obviously these procedures are not perfect. However, human 
annotation has its own problems as noted above. No method, 
either human or automated, will ever annotate perfectly except 
in situations of extensive review and curation, but we find that the 
types of errors GPT-4o commits under this strategy are comparable 
to human annotation (particularly when that human annotation is 
given reasonable review and verification). 

Additionally, our prompts contained JSON prototypes of 
varying complexity that guided the LLM responses in each 
annotation problem. See Figure 1 for the most complex example. 
We recommend using more detailed JSON, like that for task 2 
here, as such prototypes contain information that improve LLM 
performance in annotating publications. The handling of the JSON 
format by LLMs has dramatically improved over the course of this 
study. The most recent OpenAI models oer a new feature, called 
“structured outputs,” that allow for more fine-grained control of the 
JSON returned from the LLM.2 We did not use these new features 
as they became available too late in the course of this study. All the 
outputs from the models presented here used only the more basic 
JSON-mode provided by OpenAI for their models along with in-
prompt instructions to return JSON as the response.3 Despite using 
this older and more limited control over the LLM output, we still 
achieved excellent results. 

A system prompt is text appended to the start of the LLM 
session which sets a context for what follows. We used such 
prompts for tasks 2 and 3, and the full text of these prompts can be 
found in the GitHub repository. In each of these system prompts a 
persona for the LLM is defined which prompts the LLM to act as a 
“helpful assistant” and contains a directive that the LLM is “expert” 
in the annotation task at hand. Additionally, the LLM is given the 
directive to be “careful, thorough, and brief” in responses. Finally, 
the LLM is instructed to respond using JSON only, following the 
prototype provided. All of this follows industry practice for LLMs. 

2 platform.openai.com/docs/guides/structured-outputs 

3 platform.openai.com/docs/guides/structured-outputs/json-mode#json 
-mode 
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FIGURE 1 

JSON prototype for the structural MRI parameters task (task 2). Each 
entry corresponds to one T1-weighted structural MRI parameter, 
and includes the standard units used for that parameter to guide the 
LLM response. The LLM returns this JSON in its entirety with any 
parameters present in the text replacing the relevant “null” values 
under the “value” keys. Parameters not explicitly listed in the 
publication text are left as JSON nulls. Note the use of allowed 
values for “image orientation.” 

For task 1 we did not set a system prompt, using instead the default 
provided by ChatGPT. 

2.2.3 Evaluation 
The tasks described here are evaluated in two important ways. 
First, the tasks are analyzed using simple accuracy (the ratio 

of correct annotations, including “not present” or “not applicable” 
as required, to the count of all possible annotation positions). 
However, given the high accuracies reported here (all greater 
than 90%), we focus on comparing these numbers with human 
performance for calibration. As our claim is mere comparability, 
and LLM performance equals or exceeds human performance in 
all cases presented, we do not discuss any statistical analysis in the 
paper. We have provided some additional statistical analyses in the 
Supplementary material. 

Second, for each task, there is a qualitative analysis which 
reviews each of the disagreements between the LLM and the human 
gold-standard data. It is known that LLMs occasionally do better at 
annotating than humans do (Nahum et al., 2024). We also find this 
in our results. This includes both finding additional errors made 
by humans that slipped through review and occasionally finding 
that the LLM annotations are better organized than the human 
work. Note that with this review we were compelled to change 
our conception of our gold standard, producing a higher quality 
final product than previous human-centered annotation processes 
have produced. 

3 Results 

3.1 Annotation task 1: general imaging 
type 

This task used the prompt given in Figure 2. An issue arose in 
this case: for nine of the papers the given prompt failed to generate 
correct answers. For these papers, a new run was started and a 
prompt that said, in its entirety: “Please summarize this paper” 
was given. Then, after ChatGPT generated the summary of the 
paper, the original prompt was repeated verbatim; and this action 
substantially improved the performance of ChatGPT. Note that this 
is a chain; these two prompts were run in sequence in one session. 
This action improved the results even though the summaries were 
not relevant to the errors present in the initial response. Adding 
this summary prompt before the papers that worked initially did 
not change their annotations, so a fully automated process for this 
task via the API is trivial to implement. 

The scores for this manual process are presented in Table 2. We 
scored the LLM based on both the initial response to the manual 
prompt and again with this prompt being repeated after generating 
a summary. The initial LLM responses for the publications analyzed 
are presented in the column “LLM without summary.” Simple 
accuracy here is only 84.0% reflecting 12 errors: 8 omissions (all 
“T1 Weighted Imaging”) and 4 false positives (all “Resting State 
Imaging”) each of these divided by 75 possible annotation positions 
(3 annotation positions per document × 25 documents). After 
summarization, this was reduced to two errors, both false positives 
for “Resting State Imaging.” Both the LLM with summaries and 
human student annotators scored an accuracy of 97.3% on 2 errors 
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FIGURE 2 

Manual zero-shot prompt for general imaging type task (task 1). This text was pasted into the chat window after uploading the publication PDF. See 
text for details. 

TABLE 2 Results for the general imaging type annotation task (task 1). 

Parameter LLM without summary LLM with summary Student annotators 

Accuracy 84.0% 97.3% 97.3% 

Fraction of perfect labeling 14/25 23/25 23/25 

The LLM was tested under two conditions: once with just the basic prompt and a second time with this prompt following a request for the LLM to summarize the publication. See text for details. 

for each (see below for details of the errors). It is reasonable to 
expect these labels to be among the most easily assigned, so this 
result with LLM and humans tied is not surprising. It also makes the 
point that human annotations are never perfect. The second row of 
the table is the fraction of “perfect” cases out of the total number 
of cases. 

3.1.1 Qualitative analysis 
The student annotators are scored as committing two errors, 

one false positive and one false negative for T1 Weighted Imaging. 
One of these is correct but based on information not included in 
the actual publication analyzed (the information was included in 
a supplement to the publication). As such it is unfair to score the 
students as wrong here (however in the ground truth this was set 
to “no T1 Weighted Imaging” to accurately reflect the contents of 
the publication text). The other error that the human annotators 
made was missing an oblique reference to T1 imaging in one paper. 
However, it is worth noting that this paper did not follow standard 
reporting practices, so the reference was easy to miss, although the 
LLM did both find this obscure reference and correctly interpret it. 

The LLM (with summarization) committed two errors as 
well, both of which were the inclusion of the “Resting State 
Imaging” indicator when this type of imaging was not present 
(false positives). Without summarization beforehand, the LLM 
made this error four times, summaries resolved two of these. 

In the non-summary condition, the LLM also made eight errors 
(false negatives) for the T1WeightedImaging label. Given the prior 
probability of structural imaging being included in almost any 
given fMRI study this seems strange. Also, as noted, none of the 
generated summaries included any mention of structural imaging, 
so it is not clear why these summaries improved the performance 
in so many cases. 

3.2 Annotation task 2: structural MRI 
parameters 

The prompt and the JSON prototype for this task are presented 
in Figures 1, 3. Note that these are shown separately for the 
presentation here due to their size but were combined with each 
other and with the publication text to be analyzed into a single 
block of text when sent to the LLM via the API. The instructions in 
Figure 3 simply list the parameters to be collected, along with a one-
line definition of what the parameters mean, and an admonition 
to only list parameters explicitly present in the publication. This 
example uses a more complex JSON format than our other tasks 
in that it also includes embedded information to guide the LLM 
toward a correct solution and alignment with the instructions. 
Each of the items shown in Figure 1 includes a brief informative 
description and the most common units of measurement used for 
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FIGURE 3 

Zero-shot prompt for the structural MRI parameters task (task 2). This prompt describes the potential MRI parameters to be returned. It provides a 
limited vocabulary for “image orientation” and the expected units for all other parameters. Also, it tells the LLM to convert scan acquisition times to 
units of seconds, no matter how this was originally reported in the publication. 

each parameter. Although occasionally the publication text strays 
from these units, the LLM successfully mapped the parameters in 
the free text into the JSON with units used correctly. We did not 
ask the LLM to do any unit conversions, except for the “acquisition 
time” of the scans, which was reported in a wide variety of ways 
in the original publications. We prompted the LLM to convert 
any dierent time representations into seconds no matter how 
they were reported (Figure 3). This is the only explicit demand 
for unit conversion. Amazingly, given the wide variety of ways 
that acquisition time was written in the publications, the LLM was 
successful in converting and recording these for all but one case 
(see below). 

Out of 792 annotation positions in the JSON (44 
publications × 18 possible values) the LLM annotations did 
not match the gold standard annotations 35 times, for an overall 
(preliminary) accuracy of 95.6% under the assumption that the 
gold standard is fully correct. However, not all mismatches will turn 
out to be wrong, see the next Section “3.2.1 Qualitative analysis.” 

We reiterate that most of the values to be filled in are nulls, but 
we consider missing a value that is present to be as problematic as 
filling in a null that is not present. We also note that both the LLM 
and the humans made both types of errors. 

3.2.1 Qualitative analysis 
As the number of mismatches was small, we reviewed all 35 

of them to determine the dierences between human and LLM 
annotation. We include the PMC ID numbers and citations for any 
specific papers we review in detail. 

The first group of mismatches are dierences from the gold 
standard that are, in fact, correct. In one paper, PMC5037039 (Janes 

et al., 2016), we discovered that the LLM reported the Tesla rating of 
the scanner as 2.89T, not 3T as reported by our human annotators. 
In fact, both values were listed in the paper, with the 2.89 being 
more precise, so the response from the LLM is correct. In the JSON 
prototype we require 1, 2, or 3 values for voxel size. We note that the 
human annotators just copied these numbers from the publications 
verbatim (as strings) without much consideration (this is what 
they were told to do). The LLM recognized that papers reporting 
“1 mm3 isotropic” for voxel size corresponded to 3D voxels with 
values of (1 mm, 1 mm, 1 mm), and returned the unpacked x, y, 
z values appropriately. This may be considered an error or not, 
depending on the interpretation or the goals of the annotation 
process, but this is a correct interpretation of the notation. This 
specific dierence occurs in 8 papers and accounts for a total of 
16 of the dierences with the gold standard. Combining these with 
the previous dierence for Tesla rating, changes the mismatches 
from 35 to 18 yielding a revised accuracy of 97.7%, if we prefer 
these changes to our original annotation scheme. The annotation 
supervisors were impressed with the LLM’s recognition and correct 
use of the “isotropic” notation and noted that it was a poor choice in 
the design of the human annotation process not to require a similar 
unpacking from the student annotators. 

The second group of mismatches are related to errors or 
ambiguities in the original papers. In one paper, PMC6031869 
(Hua et al., 2018), the authors list the “in plane resolution” or 
voxel size as “231 × 232” which our expert considered most likely 
to be the values for the matrix. This is what the LLM assigned 
those values to; the student annotators did not. In PMC6551253 
(Chumin et al., 2019), the text contains the odd expression. “Field 
of view = 192 × 168 matrix. . .” which the LLM labeled as FOV, 
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but which our expert believes should be the matrix value. However, 
without expertise this is a hard case to resolve, although here our 
student annotators did choose the expert’s preferred solution. Paper 
PMC6677917 (Lottman et al., 2019) stated “base resolution = 256” 
which our expert determined implies a matrix value of 256 × 256. 
The LLM reported this as a matrix with one value (x) of 256; 
the student annotators ignored this information entirely. One 
mismatch was due to the PDF to text conversion of one of the 
publications. In PMC6491039 (Sawyer et al., 2019), the value for 
flip angle was listed as 7 degrees, but the typesetting of the article 
used a superscript zero character rather than a degree sign, and our 
raw text processing turned this into “70,” which is what the LLM 
read and reported, instead of 7◦ as was intended. This is an error 
of the preprocessing of the file, not an error introduced by the LLM 
itself. 

The final group of mismatches are definite errors on the part of 
the LLM. In PMC6289814 (Kim et al., 2019), the LLM took the FOV 
values from a dierent scan. In PMC6104387 (Hahn et al., 2017), 
the LLM copied the FOV and the matrix values from an unrelated 
T2∗ image. Finally, in PMC6491039 (Sawyer et al., 2019), the LLM 
missed an explicit mention of the acquisition time. 

In summary, while there are clear errors present in the LLM 
annotations, they are rare and the general types of errors made 
are not substantially dierent from the sorts of errors made by the 
human annotators. 

3.2.2 Curator/Annotator detailed comparison 
As described in the Section “2 Materials and methods” we 

have detailed information available about these annotations for the 
following stages of the annotation process: 

1. The graduate student annotations – These are the annotations 
made and reviewed by the graduate student annotators. Errors 
here were discovered both during review and normalization 
stage and during the final (pre-LLM annotation) review. 

2. The additional annotations made by the first author – These 
annotations were made during the review and normalization 
stage. Errors here were discovered during the final (pre-LLM 
annotation) review. 

3. The full human system annotations – These are the 
annotations that exist at the end of the entire human 
process, specifically after all annotation, normalization, and 
review passes listed above. Errors here were discovered 
when reviewing the individual LLM mismatches (post-LLM 
annotation). 

We compare the accuracy of these cases here. Results of these 
comparisons are summarized in Table 3. 

The graduate student annotations required labeling 44 
publications for 9 possible values. For this set, there were 

9 × 44 = 396 potential annotation positions to fill in. The student 
annotators made 23 total errors for an accuracy of 94.2%. The 
additional annotations had a similar accuracy to the graduate 
students: three additional annotation fields across 44 publications 
created a total of 3 × 44 = 132 positions, and there were 7 errors, 
an accuracy of 94.7%. We note that for this task, the basic LLM 
accuracy of 95.6% is superior to either of the human annotators 
(94.2% and 93.9%). If the reasonable choices of the LLM above are 
accepted as correct, then the LLM performance becomes 97.7%, 
substantially better than the coordinated and time-consuming 
work of three human annotators. 

In addition, two errors relating to the matrix values made it 
all the way through both student annotation and curator review 
and were only discovered during the detailed review of the LLM 
performance. This last represents the performance of the full 
human annotation system as described above and in the methods. 
This system achieved an accuracy score of 99.6% (2 errors in 
12 × 44 = 528 annotation positions) with a cost of at least 60 
total person-hours of work. LLM annotation of the same texts 
and annotation positions cost approximately 0.90 USD and took 
approximately 15 min. Total LLM process development time took 
approximately 3 h for programming, testing, etc. This comparison 
is not completely fair as much of the conceptual development took 
place during the human labeling process and normalization, but 
these figures provide a reasonable first estimate. It is worth noting 
that even if human review is used, using the LLM for the first 
annotation passes would still represent a significant savings. 

3.3 Annotation task 3: experimental 
group information 

In this task the LLM was required to determine the psychiatric 
diagnosis and the correct final count of research participants in each 
experimental group present in each publication. Performance in 
this task is less accurate than for the other tasks, for both human 
annotators and the LLM. The task has the most intrinsic ambiguity 
as the ontology terms used are for psychiatric disorders and these 
often have intrinsic variability even among expert users. We note 
that there was variability among the ontology experts both for the 
exact usage of each term and which term to use for the annotation 
of each publication. 

Each of the 30 publications used in this task had either exactly 
one or exactly two experimental groups (4 and 26 publications, 
respectively). Furthermore, each experimental group in this 
collection of publications had a single diagnostic label; papers with 
groups of combined diagnoses were excluded. This means that 
the LLM was required to fill 120 annotation positions, comprising 
60 pairs (diagnosis and count), with each pair describing one 
experimental group. For the 4 publications with a single group, the 

TABLE 3 Results for structural MRI parameters (task 2). 

Annotator type LLM Graduate student 
annotations 

Additional 
annotations 

Full human system 
annotations 

Accuracy 95.6% (97.7%) 94.2% 94.7% 99.6% 

Accuracy of each human annotator group, annotation by LLM alone, and the complete “human system” which includes multiple review processes. See text for details of each column. The 
value for LLM accuracy in parentheses is the revised score for extra annotations that were correct but which did not agree with the original gold standard data. 
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FIGURE 4 

Zero-shot prompt and JSON prototype for the experimental group information task (task 3). Note that the version of this prompt shown here has 
had the full list of ontology terms elided. This list can be found in the GitHub repository (see Section “Data availability statement”). The use of 
“emotional” stimuli words (“Please pay special attention to this requirement, my job depends on it.”) was a previously recommended procedure that 
is not used as often today. See text for details. 

other group should be left blank by the LLM; anything other than 
an empty response would be an error of equal weight. For these four 
groups null values should be given for both diagnosis and count. 

The prompt for this task is shown in Figure 4. This prompt 
is like the previous examples: it is zero-shot and provides a JSON 
prototype to guide the LLM. The list of psychiatric diagnoses 
comes from the Neurobridge ontology, which is available in the 
Neurobridge GitHub repository as an OWL file. (see Section “Data 
availability statement” for details). Note that the figure elides the 
list of 41 diagnoses that were given to the LLM, but the full 
prompt is available in the GitHub repository as well. The text of 
the publication was appended to the end of the prompt after the 
“###” delimiter which follows OpenAI best practices.4 

4 help.openai.com/en/articles/6654000-best-practices-for-prompt-
engineering-with-the-openai-api 

Additionally, to emphasize the instruction to choose just one 
item from the list, we added the phrase “Please pay special attention 
to this requirement, my job depends on it.” These sorts of phrases 
were commonly used in prompt design (Li et al., 2023), although 
their importance has dropped o with more recent models. 

The accuracy of the LLM in this task is 90.8%, with 11 total 
mismatches across 30 publications. We note that disagreements 
tended to bunch together by publication: 26 of the 30 publications 
were labeled in perfect agreement with the human results. All 
errors were in just four publications, as described in Section “3.3.1 
Qualitative analysis” (below). 

There was no direct independent analysis of human annotation 
performance available for comparison with the 30 publications 
used for LLM annotation in this task. However, as part of 
developing the materials for this study, we reviewed 39 dierent 
publications labeled by humans as part of our prior work in 
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Sahoo et al. (2023). All these 39 publications were reviewed and 
given definitive labels by the present authors with all final decisions 
made by a senior author who is a co-developer of the Neurobridge 
ontology. These final annotation decisions were made without 
knowledge of either the human or LLM annotation results. While 
we recognize that it is impossible to resolve all ambiguity in any 
ontology, this approach allowed us to develop a fully expert-
labeled gold standard data set that could be compared against 
both previous student work and LLM performance. Our review 
revealed many errors remaining in the human annotation results 
from Sahoo et al. (2023). 

Specifically, in the 39 publications reviewed that were human 
annotated there were 13 errors found, but this was only noted at 
the level of an individual publication and not at the experimental 
group level. That is, a publication was marked as being in error if 
any number of mistakes of annotation were made for it. Almost 
all these papers were two-group research studies, although a few 
had more groups, so the human annotators would have had to 
fill in labels for 78 participant groups minimally (2 groups × 39 
publications). It was rare for multiple errors to be made in a 
single paper. This conservatively estimates the human annotation 
accuracy at approximately 83.3% (13 errors across 78 annotation 
positions). Also note that the collection of human annotations 
reviewed was not selected randomly but was based on the topics 
of the publications. We were specifically selecting publications 
connected to drug abuse topics which was a subset of the original 
collection. There is no obvious reason to suppose that our human 
annotators would make more or fewer errors for other topics. 
Table 4 summarizes this comparison. 

3.3.1 Qualitative analysis 
Reviewing the mismatches between the 30-case gold standard 

and the LLM for this task we note the following: In the publication 
PMC5086261 (Forster et al., 2016), the LLM chose the annotation 
“substance disorder” in place of “drug abuse” and it is not clear that 
this dierence is an actual error as these terms overlap significantly. 
In two cases, PMC4990879 and PMC6704377 (Chang et al., 2016; 
Vanes et al., 2018), the LLM appeared to ignore any control groups 
and split the group of interest into two, while giving each split 
group the same diagnostic label. We have no explanation for 
this strange error, as looking at the original source publication 
revealed no obvious reason to split these groups. In another case, 
PMC6215331 (Alloza et al., 2018), the LLM correctly identified 
one group and ignored another. The last error is hard to explain 
because when we took the relevant text from the paper and pasted it 
into a ChatGPT session (GPT-4o) with the same prompt, ChatGPT 
correctly identified the two groups (which happened to both be 

TABLE 4 Accuracy comparison between human annotators from Sahoo 
et al. (2023) and the LLM annotation from this study for the experimental 
group information task (task 3). 

Labeler Accuracy Publication 
fraction correct 

LLM 90.8% 26/30 

Human (student annotators) 83.3% 26/39 

Note that the collections of publications annotated are dierent and that the human 
annotation performance is a conservative estimate (it is possible that it undercounts human 
errors). See text for details. 

groups with “no known disorder,” or control groups). As the chat 
interface does not report the exact model used, this might reflect a 
change in the underlying model, or it may be due to the stochastic 
nature of LLMs. 

One additional publication is also worth noting: PMC6906591 
(van den Heuvel et al., 2019), although the LLM was scored as 
correct for this case. In this work, all the human annotators, as 
well as the more senior reviewers, identified two specific groups as 
the correct answer. This was because these two groups were the 
only new data collected in this publication. However, this paper 
has 23 total groups in it, the additional 21 being validation datasets 
(usually with cases and controls both, which we count as separate 
groups) that went unnoticed by the original human annotators. The 
senior reviewers noted the additional validation data but agreed 
that the annotators should only have listed the groups with new 
data, as the other data came from other publications. The LLM 
initially found and annotated all the groups present in the study 
completely correctly. It was scored only against the two groups 
the senior reviewers and original annotators had found. We were 
genuinely surprised that the LLM correctly annotated all these 
groups, especially as some of these groups were not human but 
primate data. We note that the prompt above does not limit the 
LLM to original data, so strictly this is not an error by the LLM but 
in the prompt it was given. 

4 Discussion 

We describe and evaluate three real-world biomedical research 
annotation tasks where experimental metadata from neuroimaging 
research publications is collected. We show that one current 
flagship commercial LLM can annotate this material as well as 
or better than human annotators. This performance is consistent 
with informal AI industry assessments for other, very dierent, 
metadata annotation tasks. Even in our most challenging case, the 
annotation of experimental group information where the textual 
descriptions are highly variable and the annotations themselves 
contain substantial ambiguity, we achieved >90% annotation 
accuracy with 87% of publications annotated perfectly according 
to a highly refined human standard. We note also that across these 
example tasks many of the LLM disagreements were not errors but 
instead reasonable and explainable responses. 

Two main results are shown by this research. First, the real-
world tasks here provide three new micro-benchmarks, as defined 
in the introduction, for the evaluation of systems that annotate 
free text with metadata that makes explicit ideas and concepts 
embedded in the publication text. Given the variable nature of 
annotation problems, assessing the performance of LLMs will 
require many more similar, real-world annotation tasks to fully 
calibrate our understanding of LLM annotation performance. Such 
benchmarks require much more intensive curation and review than 
is common in previous machine learning research as the evaluation 
of LLMs has shown new complications in the annotation task. 
Additionally, a broad collection of such applied benchmarks will 
be required due to the unique aspects of each annotation situation 
as there is no theoretical or statistical guarantee of results available 
for this sort of work. Our project demonstrates the first such micro-
benchmarks, and we anticipate more and encourage others to make 
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similar high-quality benchmarks available for use by the research 
community. An important aspect of this project is not just the 
results of our annotations, but the methodology identified as a way 
for others to follow in annotating their domain specific metadata 
extraction using current and future LLM systems. 

The second result is that simple zero-shot prompts can get the 
current large commercial LLMs to do metadata extraction for cases 
similar to the ones illustrated here with high accuracy. We agree 
with informal industry assessments that large commercial LLMs are 
broadly capable and can perform human annotation tasks with only 
modest prompt engineering required. More challenging cases may 
require specialization of the LLM to the task at hand, either through 
few-shot prompting or some form of fine-tuning, which at a high 
level are similar processes (Khattab et al., 2023b; Soylu et al., 2024). 
This approach follows the principle that it is relatively simple to 
achieve a solution for the bulk of cases, while more eort is often 
needed to solve the edge or corner cases. 

It is notable that the various publications do not always 
follow the field’s recommendations for reporting neuroimaging 
parameters (Nichols et al., 2016) which hinders their interpretation. 
This makes the annotation problem more complicated, eectively 
asking the LLM or human annotator to identify what the authors 
intended rather than what was reported. An additional challenge 
is the inherent ambiguity of words, even technical vocabulary. 
Psychiatric labels have ambiguity both due to changing diagnostic 
standards and conceptualization over time as well as usage that 
varies internationally. That is, the underlying distribution of usage 
of this vocabulary is not stationary either in time or space. These 
issues have been noted by those developing ontologies (Mugzach 
et al., 2015; Larsen and Hastings, 2018). In the articles used in 
these results, we have already noted the issues of “drug abuse” 
vs. “substance abuse disorder,” with dierent connotations across 
studies, or changes over time combining “substance abuse” and 
“substance dependence” into a single diagnostic category in the 
DSM-5 and subsequently in the scientific literature; the user would 
need to determine their own comfort with separating or combining 
those terms for their own purposes in combining or contrasting the 
datasets or the results across the studies. The choice to annotate 
the papers with the MRI data by types (structural, resting or task 
based functional scans) for example, is also a level of granularity 
that could vary depending on the needs of the eventual user; 
some users may only be interested in particular types of tasks or 
structural scans, which we have not evaluated. As discussed in more 
detail in Sahoo et al. (2023), for humans, both developing and 
interpreting these terminologies requires arbitrary choices about 
specific cases, deep knowledge of the underlying domain, and the 
ability to describe and compare nomenclature across studies. 

We used JSON as our data serialization format. This choice was 
motivated by both the heavy standardization and broad adoption 
already present for JSON as an interchange format (Bray, 2017) 
and the fact that the output of formally correct JSON is something 
that all the major LLM producers have implemented. Because JSON 
is fully represented as text, it can be used both as an input and 
output format for LLMs. Specifically, JSON can be added directly 
to prompts while non-text formats cannot be used in this way. As 
noted in task 2, this allows additional information to be inserted 
into the overall prompt structure to assist the LLM in generating 
correct results. Finally, most computer languages and database 
systems support JSON as a format for data interchange making 

data extracted from publications broadly sharable. We strongly 
recommend the use of JSON in this context for all these reasons as 
there are no current standards for this sort of metadata extraction 
and exchange. 

One concern is the presence of so-called hallucinations in LLM 
responses. These are outputs that contain untrue information that 
is apparently generated by the LLMs spontaneously. Generally, 
hallucinations appear when a LLM must recall some information 
that is embedded into the model itself rather than using 
information given in the prompt context. In the annotation task, 
LLM responses are confined to processing explicit text (the target 
to be annotated) and this reduces the likelihood of hallucinations 
dramatically. This approach is also in line with informal industry 
consensus. It can be hard to distinguish hallucinations from other 
types of errors, but in the work reported here hallucinations have 
played little role since, at least, the GPT-4 era. 

Hallucinations must be defined based on applications. We 
define an LLM as having hallucinated only when it responds with 
something that does not exist (in the context of the task). We 
did find hallucinations of this sort in older models. For instance, 
those models would occasionally make up psychiatric diagnosis 
terms that had the form of our ontology’s terms (written in camel 
case with a similar choice of words to our terms), but which were 
not in the ontology. The current GPT-4o models did not exhibit 
this behavior. We do not count instances of false positives in our 
analysis as hallucinations. For instance, the two cases of resting state 
imaging labels assigned by the LLM in task 1 are not hallucinations 
in our sense of the term because resting state imaging is a real 
type of imaging that was included in our terminology for that 
task. Others may define hallucinations dierently based on their 
problem domain. We also note that advances have been made 
in enabling LLMs to “cite” their sources so one can check the 
responses for hallucinations in contexts where that would make 
sense (Gao et al., 2023; Byun et al., 2024; Huang and Chang, 2024; 
Wu et al., 2024). 

The larger goal that drives this work is to convert 
the information in a neuroimaging publication into a 
programmatically accessible format to enable searching the 
literature quickly for potential MRI datasets. The work presented 
here represents the first steps taken toward the goal. Additional 
work is required to apply this more broadly to the neuroimaging 
research literature. For example, we focused on human MRI 
experimental papers, which reported datasets that might be 
reasonably expected to be available for additional research use. 
Large-scale data aggregation studies (e.g., Thompson et al., 2020; 
Ching et al., 2024; Ganesan et al., 2024) entail identifying the 
existing datasets which might be suitable for a given meta- or 
mega-analysis, which requires understanding the details of each 
study design (Turner, 2014). Our goal is to find data that can be 
used to support answering new questions, therefore the analysis 
originally performed, the specific results of the study, and the 
interpretations the original authors make of their experiment and 
analyses are not necessarily relevant to our goals. Determining 
the most useful aspects of publications to annotate is an ongoing 
research question. 

We also limited the papers to certain formats. For instance, in 
this work we used exclusion criteria to remove publications where 
the information about MRI was only located in tables. We did not 
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provide the LLM with information from the tables, figure legends, 
or any supplementary material. Expanding this work to cover these 
cases is still needed. Additionally, automated methods are needed 
to verify the work of the LLMs so that these processes may be 
expanded to work at a larger scale. This last will likely require 
the use of the newest “chain of thought” models. These are all 
additional topics for future research. 

5 Conclusion 

We have demonstrated that a recent commercial LLM 
can extract standardized information regarding neuroimaging 
experiments at a high level of accuracy. Given the well-known 
costs of human annotation, this approach is feasible for larger 
scale applications to the same scientific literature. Using these 
methods provides a possible road forward for large scale structuring 
of the research literature and potential facilitation of more 
nuanced meta-analyses. 
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