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Improving EEG classification of
alcoholic and control subjects
using DWT-CNN-BiGRU with
various noise filtering techniques

Nidhi Patel*, Jaiprakash Verma* and Swati Jain*

Department of Computer Science and Engineering, Nirma University, Ahmedabad, Gujarat, India

Electroencephalogram (EEG) signal analysis plays a vital role in diagnosing

and monitoring alcoholism, where accurate classification of individuals into

alcoholic and control groups is essential. However, the inherent noise and

complexity of EEG signals pose significant challenges. This study investigates the

impact of three signal denoising techniques’ Discrete Wavelet Transform(DWT),

Discrete Fourier Transform(DFT), and Discrete Cosine Transform (DCT) Non EEG

signal classification performance. The motivation behind this study is to identify

the most e�ective preprocessing method for enhancing deep learning model

performance in this domain. A novel DWT-CNN-BiGRU model is proposed,

which leverages CNN layers for spatial feature extraction and BiGRU layers for

capturing temporal dependencies. Experimental results show that the DWT-

based approach, combined with standard scaling, achieves the highest accuracy

of 94%, with a precision of 0.94, a recall of 0.95, and an F1-score of 0.94.

Compared to the baseline DWT-CNN-BiLSTM model, the proposed method

provides a modest yet meaningful improvement of approximately 17% in

classification accuracy. These findings highlight the superiority of DWT as a

preprocessingmethod and validate the proposedmodel’s e�ectiveness for EEG-

based classification, contributing to the development of more reliable medical

diagnostic tools.
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1 Introduction

Alcoholism is considered a significant health problem, causing a variety of physical,

psychological, and social consequences (Manivannan et al., 2024). Detecting and

monitoring the neurological effects of alcohol abuse is essential for prompt intervention,

enabling effective treatment. EEG, a noninvasive technique that measures brain electrical

activity, has emerged as a valuable tool to study the neural mechanisms associated

with alcoholism (Rodrigues et al., 2019). However, analyzing EEG data presents notable

challenges due to the presence of noise as well as artifacts, which can obscure meaningful

brain signals. Therefore, implementing efficient noise filtering techniques is crucial to

improve signal quality and improve the accuracy of subsequent analyses (Cohen et al.,

2023).

Machine learning (ML), deep learning (DL), and statistical models have been widely

adopted to classify individuals as alcoholic or control subjects based on EEG signals

(Mumtaz et al., 2016; Faraz et al., 2024). EEG data, with its ability to capture neural activity
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patterns, serves as a reliable modality to identify alcoholism-

related dysfunctions (Hosseini et al., 2021). These models utilize

various features extracted from EEG signals, such as frequency

bands, temporal dynamics, and connectivity measures, to achieve

significant classification accuracy (Pain et al., 2023). Furthermore,

EEG signals are widely used to detect and analyze emotional

states, providing insight into the impact of addiction on emotional

regulation (Akbari and Korani, 2023). The integration of advanced

algorithms, including support vector machines (SVM), random

forests, CNN, recurrent neural networks (RNN), and hybrid

architectures such as CNN-LSTM-ATTN, further enhances the

capability of interpreting complex, high-dimensional EEG data

(Singhal et al., 2021; Siddiqa et al., 2024). Optimizing EEG

electrode configuration has been shown to enhance classification

performance and reduce complexity in neonatal studies (Siddiqa

et al., 2025, 2023), a consideration also relevant for improving

accuracy in addiction-related emotion recognition models.

Recent deep learning frameworks combining CNN-based

feature extraction with fuzzy clustering have demonstrated

effective classification of alcoholic and non-alcoholic EEG signals,

showcasing robustness, noise resistance, and generalizability

(Mei and Yi, 2024). In addition, statistical models help

identify hidden trends and correlations, facilitating a deeper

understanding of addiction and its emotional dynamics (Sanov

et al., 2023). The multifaceted application of EEG in neuroscience

research underscores its potential for diagnostic, therapeutic, and

investigative purposes.

Given the susceptibility of EEG data to various sources of

noise, such as muscle artifacts, eye blinks, and environmental

interference, noise removal becomes a critical preprocessing step.

Band-pass filtering is commonly applied to isolate frequency bands

of interest while attenuating irrelevant signals (Mukhtar et al.,

2021). Advanced techniques such as DWT, DFT (Roushdy et al.,

2024), FFT (Fast Fourier Transform) (Cohen et al., 2023), and DCT

(Discrete Cosine Transform) (Jyothirmy et al., 2023) have been

widely employed to reduce non-stationary and time-varying noise

by transforming signals into alternate domains where noise can be

more effectively suppressed.

These methods not only improve the reliability of EEG signal

analysis but also preserve the essential characteristics of neural

activity. Techniques such as wavelet packet decomposition (WPD)

and the use of specific wavelet families, such as Biorthogonal,

have been shown to enhance classification accuracy, achieving

performance levels as high as 99.87% (Rodrigues et al., 2019).

Additional filtering techniques—such as high/low-pass filters,

Second Order Blind Identification (SOBI), the ntzapline function,

Common Average Referencing (CAR), and Laplacian filtering—

further contribute to artifact removal and spatial resolution

improvement (Sampedro-Piquero et al., 2024; Reddy and Sharma,

2024).

Despite these advancements, challenges remain. Many studies

have yet to explore hybrid deep learning architectures that

effectively capture both spatial and temporal EEG features (Farsi

et al., 2021). Moreover, there is limited comparative research on

how different noise filtering techniques—particularly DCT and

DFT—impact the performance of deep learning models relative

to DWT. There is a need for comprehensive studies that evaluate

the combined effectiveness of noise filtering and deep learning

techniques in accurately classifying alcoholic vs. control subjects (Li

and Wu, 2022).

This article is structured as follows: Section 1 introduces

the background and motivation for EEG-based classification in

addiction research. Section 2 outlines the materials and methods

used, including dataset description and preprocessing with DCT,

DFT, and DWT. Section 3 presents the proposed approach,

including a performance comparison of different models and

pseudocode. Section 5 discusses the results and their implications.

Section 6 concludes the paper with key findings and suggestions for

future research.

1.1 Motivation

Alcohol addiction has a profound impact on brain function,

and EEG serves as a reliable modality for detecting such

neurological abnormalities. However, the classification of alcoholic

brain signals is complicated due to high levels of noise and

variability. Most existing studies rely on a single publicly

available dataset and focus on limited preprocessing techniques.

This highlights the need for a robust, noise-resilient deep

learning framework that can improve classification accuracy and

generalizability.

1.2 Key contributions

The main contributions of this work are as follows:

• A novel DWT-CNN-BiGRU model is proposed, which

combines Discrete Wavelet Transform for noise filtering,

Convolutional Neural Networks for spatial feature extraction,

and Bidirectional Gated Recurrent Units for modeling

temporal dependencies in EEG signals.

• A comparative analysis of three signal processing techniques—

DWT, DFT, and DCT—is conducted to evaluate their

effectiveness in EEG denoising for classification tasks.

• Standard scaling is applied before feature extraction to

improve model convergence and accuracy.

• The proposed method achieves a classification accuracy of

94%, outperforming baseline models.

• A future direction is outlined to collect a new EEG dataset

from clinically diagnosed alcoholic subjects to address the

limitation of public dataset availability and enhance real-world

applicability.

2 Materials and methods

2.1 Study design

This EEG data analysis study utilizes a publicly available dataset

obtained from Kaggle.1 The dataset comprises EEG recordings

from two categories of subjects: alcoholic and control individuals.

1 EEG-Alcohol – kaggle.com. Available online at: https://www.kaggle.

com/datasets/nnair25/Alcoholics. (Accessed November 28, 2024).
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FIGURE 1

Distribution of alcoholic and control subjects in the dataset.

The primary objective of the study is to apply various noise

filtering techniques, implement an accurate deep learning model,

and conduct a comparative analysis of different models to classify

subjects effectively.

2.1.1 Dataset
The dataset includes EEG recordings from 16 subjects,

comprising eight alcoholic and eight control individuals. The

data are acquired using 64 electrodes positioned according to

standard sensor placements, with a sampling rate of 256 Hz. Each

subject undergoes 30 trials, each lasting 1 second, enabling the

analysis of brain responses under different stimulus conditions,

including single stimulus (S1) and paired stimuli (S1 and S2).

Each trial file contains various attributes such as trial number,

sensor position, sample number, and sensor value—representing

microvolt readings at each electrode location. Additional metadata,

including subject identifiers (alcoholic or control), matching

conditions, channel numbers, and timing information, provides

essential inputs for preprocessing, noise filtering, and classification

tasks using advanced machine learning models.

Figure 1 provides a visual summary of the subject distribution

within the dataset. As shown in the pie chart, the dataset includes

an equal number of alcoholic and control subjects in each category,

ensuring a balanced representation for binary classification tasks.

2.2 Preprocessing

The preprocessing step involves standardizing the sensor

position labels, transposing EEG samples, reorganizing the data,

and restructuring the DataFrame to ensure consistency across trials

as well as conditions. The data are then converted so that each

row represents a sample from a single electrode. Subsequently,

various noise filtering techniques’ such as DCT, DWT, and DFT,

are applied to clean the EEG signals. These noise-filtering methods

are described in detail in the following sections.

2.3 Discrete cosine transform

The DCT transforms a discrete data sequence into a sum

of cosine functions with varying amplitudes. Mathematically, the

DCT of a sequence x[n], where n = 0, 1, . . . ,N − 1, is defined as:

X[k] =

N−1
∑

n=0

x[n] cos

(

πk(2n+ 1)

2N

)

, k = 0, 1, . . . ,N − 1.

The noise filtering process using DCT involves three main

steps:

1. Transform the noisy EEG signal from the time domain to the

frequency domain using the DCT.

2. Identify and remove high-frequency components that

correspond to noise, retaining the most significant

lower-frequency coefficients.

3. Apply the IDCT(inverse DCT) to reconstruct the filtered signal

in the time domain.

DCT is known for its efficiency in both noise reduction and

signal compression, since it concentrates most of the signal’s energy

into a few significant coefficients. Unlike DFT, DCT uses only real

numbers, which simplifies computations and reduces processing

time. This characteristic makes DCT especially suitable for EEG

signal processing, as it effectively separates meaningful neural

activity from high-frequency noise (Mehla et al., 2023). However,

selecting an appropriate coefficient threshold is critical to avoid

losing essential signal information, and improper thresholding may

introduce boundary artifacts.

2.3.1 Discrete Fourier transform
The DFT converts a discrete time-domain signal into its

frequency-domain representation, enabling the identification and

removal of noise components. For a sequence x[n] of length N, the

DFT is defined as:

X[k] =

N−1
∑

n=0

x[n] e−j 2πN kn , k = 0, 1, . . . ,N − 1.

The DFT-based noise filtering process includes:

1. Transforming the noisy EEG signal into the frequency domain

using the DFT.

2. Identifying frequency bands dominated by noise.

3. Designing and applying an appropriate filter (e.g., low-pass,

high-pass, or band-pass) to attenuate unwanted components.

4. Applying the IDFT to reconstruct the cleaned signal in the time

domain.

Although the DFT provides a precise frequency-domain

analysis, it assumes signal stationarity and yields limited temporal

resolution. Consequently, it may inadequately capture transient

EEG events and requires careful filter design to preserve essential

neural information.
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2.3.2 Discrete Wavelet transform
The DWT decomposes an EEG signal into wavelet coefficients,

enabling efficient noise filtering and feature extraction. For a signal

X(t), DWT expresses it as:

X(t) =

J
∑

j=0

Aj(t)φj(t) +

J
∑

j=1

Kj
∑

k=1

Dj,k(t)ψj,k(t)

where Aj(t) are approximation coefficients at scale j, φj(t) is the

scaling function, Dj,k(t) are detail coefficients, and ψj,k(t) are

wavelet functions (Chandel et al., 2023).

We perform DWT-based noise filtering as follows:

1. We decompose the EEG signal into four levels, producing

approximation coefficients A4 and detail coefficients

D1,D2,D3,D4.

2. We apply soft thresholding to each detail coefficient Dj,

suppressing noise while preserving key neural components.

3. We reconstruct the denoised signal by inverting the DWT using

the thresholded coefficients.

DWT captures transient and non-stationary features by

isolating frequency-specific components of EEG signals, thereby

enhancing our analysis of cognitive and emotional states. This

approach improves the signal-to-noise ratio and supports more

accurate tasks such as emotion recognition or alcoholism

classification (Suryani et al., 2024; Li and Wu, 2022).

2.4 Classification

EEG signals classify subjects as alcoholic or control by

identifying neural activity patterns associated with alcohol

addiction and support clinical decision-making. Two hybrid deep

learningmodels enable this classification: CNN-BiLSTM andCNN-

BiGRU. Each model integrates CNN layers with bidirectional

recurrent layers to capture spatial and temporal features from raw

EEG signals. CNN layers apply one-dimensional filters to learn

spatial dependencies across electrode channels, while bidirectional

recurrent layers process sequential data in both forward and

backward directions to capture temporal dynamics.

2.4.1 CNN-BiLSTM
The CNN-BiLSTM model analyzes EEG data by combining

spatial feature extraction with temporal sequence learning. It

receives EEG input shaped as (time steps, channels) through

an input layer. Three 1D convolutional layers with 64, 128,

and 128 filters apply ReLU activation to extract spatial features.

Each convolutional layer follows a MaxPooling1D layer to reduce

dimensionality. Dropout layers with a rate of 0.5 follow selected

layers to prevent overfitting. Two bidirectional LSTM layers process

the pooled features, with the first layer returning sequences to

preserve temporal structure. Dropout layers follow each LSTM

layer to enhance generalization. A fully connected dense layer with

softmax activation produces classification probabilities over the

encoded labels. The model compiles with the Adam optimizer at

a learning rate of 0.001 and uses sparse categorical cross-entropy

loss.

2.4.2 CNN-BiGRU
The CNN-BiGRU model adopts the same convolutional

architecture as CNN-BiLSTM and replaces LSTM layers with

GRU layers. It applies three 1D convolutional layers with ReLU

activation, each followed by MaxPooling1D and dropout layers.

Two bidirectional GRU layers then capture temporal dependencies

while reducing computational complexity. Dropout layers follow

each GRU layer. A final dense layer with softmax activation

generates classification probabilities. The model is compiled with

the Adam optimizer, using a learning rate of 0.001, and optimizes

sparse categorical cross-entropy loss.

The CNN-BiGRU model architecture integrates CNN with

Bi-GRUs to analyze EEG data effectively. In Figure 2, the model

takes input data structured with a specified shape, followed by

a series of Conv1D layers that extract spatial features through

convolution, utilizing 64 and 128 filters with a kernel size of

3. Each convolutional layer is accompanied by MaxPooling1D

layers to downsample the data and reduce computational load,

while dropout layers with a 0.5 rate mitigate overfitting by

randomly disabling neurons during training. The architecture then

incorporates two bidirectional GRU layers, which capture temporal

dependencies in both forward and backward directions, enhancing

the model’s ability to learn complex patterns in the data. Finally,

a dense output layer applies a softmax activation function for

multi-class classification, facilitating the identification of various

emotional states or neurological conditions based on the EEG

signals. Themodel is compiled with the Adam optimizer and sparse

categorical cross-entropy loss function to optimize performance

during training.

3 Proposed research

Figure 3 illustrates the experimental architecture. This study

applies various noise filtering techniques to EEG data to improve

signal quality before classification by deep learning models. The

preprocessing pipeline uses the Standard Scaler to normalize

features by subtracting the mean and scaling to unit variance,

thereby enhancing model performance.

The study employs DCT, DWT, and DFT to remove noise.

These methods eliminate unwanted components to produce

cleaner input data, which proves crucial for accurate classification.

After preprocessing, the filtered EEG data enter the CNN-

BiLSTM and CNN-BiGRU models for classification of subjects as

alcoholic or control. By integrating these noise filtering techniques,

the proposed research aims to enhance deep learning model

accuracy and overall classification performance.

To optimize the model’s performance, we conducted

hyperparameter tuning by testing various batch sizes (32, 64,

128, and 200) and epoch settings (50 and 100 epochs). The Adam

optimizer with a learning rate of 0.001 was used throughout all

experiments. After comparison, the best results were obtained

using a batch size of 200 and 100 epochs, especially when used in

combination with the DWT preprocessing and standard scaling.

Stratified 5-fold cross-validation was applied to ensure robustness

and fairness across the alcoholic and control groups. This cross-

validation strategy helped evaluate the model’s consistency and

avoid overfitting on specific subjects.
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FIGURE 2

CNN-BiGRU layer architecture.

FIGURE 3

Proposed research.

3.1 Comparison analysis

The study evaluates the impact of applying standard

scaling, along with the effectiveness of various noise filtering

techniques–namely DFT, DWT, and DCT, on classification

performance. Data processed with and without standard

scaling is input into both CNN-BiLSTM and CNN-BiGRU

models to classify subjects as either alcoholic or control.

Standard scaling, by normalizing feature values, enhances model

learning and improves overall performance, as reflected in the

evaluation metrics.

Figure 4 Illustrates the accuracy vs. epoch for the model’s

performance, with the number of epochs set to 100 during

evaluation. This graph provides insight into how each model

converges and stabilizes in accuracy over time, highlighting the

effectiveness of different filtering and scaling configurations. The

comparison of noise filtering techniques across both models is

summarized in a table, including accuracy, precision, recall, and

F1 score as key performance metrics. To ensure the robustness

and generalizability of the models, 5-fold cross-validation was

employed. The average performance metrics across all folds are

reported, offering a reliable estimate of model stability under

varying data splits. This analysis serves as a guide for optimal

preprocessing strategies in EEG data classification using deep

learning models.

CNN-BiLSTM: This model performed well, particularly when

combined with Discrete Wavelet Transform (DWT) and standard

scaling, achieving 93% accuracy. The CNN layers extract spatial

features from the multichannel EEG input, while the BiLSTM

captures sequential dependencies.
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FIGURE 4

Results of accuracy.

CNN-BiGRU: This model yielded the highest accuracy (94%),

suggesting that GRU’s simpler architecture and fewer parameters

contribute to more efficient learning without compromising

performance. BiGRU captures bidirectional temporal featuresmore

effectively in this case, possibly due to better generalization on small

datasets.

4 Discussion

The ability of the suggested DWT-CNN-BiGRU model to

effectively extract and use both spatial and temporal characteristics

from EEG signals is responsible for its superior performance.

Denoising the EEG data while maintaining crucial time-frequency

components makes the Discrete Wavelet Transform (DWT) an

effective preprocessing method. This raises the quality of the

input data that is fed into the model and increases the signal-

to-noise ratio. While the Bidirectional Gated Recurrent Unit

(BiGRU) records both past and future temporal relationships

across time steps, convolutional neural networks (CNNs) are very

good at extracting spatial patterns across the 64 EEG channels.

These elements work together to create a hybrid architecture that

improves classification accuracy by learning comprehensive EEG

representations.

In this study, the CNN-BiGRU model was designed to

effectively process and classify EEG signals by capturing both

spatial and temporal dependencies. The input EEG data were first

reshaped to a 3D format of (samples, timesteps, 1) and standardized

using StandardScaler to normalize the amplitude values across

all electrodes and trials. The architecture includes multiple 1D

convolutional layers for spatial feature extraction, followed by max

pooling and dropout layers to reduce overfitting. Two bidirectional

GRU layers (each with 64 units) were added to learn the temporal

sequence information from both directions of the EEG signal. The

final dense layer with softmax activation outputs the classification

into alcoholic or control classes.

Performance results from different preprocessing and model

configurations are summarized in Table 1, with the DWT

+ StandardScaler + CNN-BiGRU configuration demonstrating

superior classification accuracy.

Alcoholic brain signals are known to exhibit distinct patterns

compared to non-alcoholic or control subjects. Neurological

studies have shown that alcohol abuse leads to alterations in

brain wave activity, particularly affecting the alpha, beta, and

theta frequency bands. These changes manifest as variations in

amplitude, signal coherence, and latency, which are captured in

EEG recordings. In this study, visual differences were analyzed

through distribution plots and classification accuracy metrics.

Additionally, techniques such as feature importance ranking and

attention visualization can be integrated in future work to support

explainability and interpretability of the model. Such explainability

studies can help to highlight which electrodes or time segments

contribute most to the classification decision, offering insight into

brain regions affected by alcoholism.

Although the proposed model demonstrates strong

performance, there remain areas for further optimization.

The reliance on a single public dataset limits the generalizability

of the results. A key enhancement would involve collecting a

larger and more diverse EEG dataset from clinically diagnosed

alcoholic patients, which would allow the model to learn from

more varied brain patterns. Additionally, model complexity can

be reduced through architecture pruning or lightweight deep

learning frameworks, making the model suitable for real-time

or portable EEG devices. Another potential enhancement lies

in combining multiple noise filtering techniques (e.g., hybrid

DWT-DFT) or incorporating attention mechanisms to focus on

the most informative time steps or channels.

Compared to existing techniques, the proposed DWT-CNN-

BiGRU model exhibits superior performance in processing and

classifying EEG signals related to alcoholism. The integration of

DWT enables better noise filtering and signal decomposition, while

CNN and BiGRU components provide complementary spatial and

temporal feature extraction. This combination achieves higher
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TABLE 1 Performance metrics for di�erent noise filtering techniques for various models.

Noise filtering technique Model Accuracy Precision Recall F1 score

Raw data CNN-BiLSTM 90% 0.90 0.91 0.91

DFT CNN-BiLSTM 68.94% 0.58 1.00 0.73

DFT with standard scalar CNN-BiLSTM 78% 0.58 0.99 0.73

DCT CNN-BiLSTM 70% 0.64 0.93 0.76

DWT with standard scalar CNN-BiLSTM 93% 0.93 0.96 0.95

DWT with standard scalar CNN-BiGRU 94% 0.94 0.95 0.94

accuracy, precision, recall, and F1-score than baseline models such

as CNN-BiLSTM or those using only DFT/DCT.

The proposed model demonstrates several advantages,

including enhanced feature extraction through convolutional

layers, reduced overfitting achieved by dropout and

standardization, and effective sequence modeling via recurrent

layers. These components collectively contributed to strong

classification performance on EEG data. Nonetheless, the

model’s reliance on a relatively small dataset and its substantial

computational requirements present notable limitations.

To address these challenges, future work may focus on

incorporating subject-specific adaptations, as EEG signals exhibit

considerable variability across individuals. Techniques such as

personalized calibration or transfer learning could improve model

generalizability. Furthermore, exploring advanced architectures,

including attention mechanisms and transformer-based models,

holds potential for capturingmore complex temporal dependencies

and further improving classification performance.

This study utilizes a publicly available EEG dataset fromKaggle,

which is widely used in previous research due to the limited

availability of open-access datasets related to alcohol-addicted

individuals. While this dataset provides a useful foundation for

evaluating the proposed method, relying on a single dataset may

reduce the diversity of results. To overcome this limitation, future

work will involve collecting and analyzing a new EEG dataset from

clinically diagnosed alcohol-dependent subjects. This will help

strengthen the validation and improve the real-world relevance of

the proposed approach.

5 Conclusion

This study focused on the challenging task of classifying

individuals as alcoholics or controls using EEG signals, an essential

step toward advancing early diagnosis, treatment monitoring,

and therapy planning for addiction-related disorders. A hybrid

CNN-BiGRU model integrated with Discrete Wavelet Transform

(DWT) was proposed to enhance the extraction of both spatial and

temporal features from EEG data. Comparative evaluation with

other filtering methods, including DFT and DCT, demonstrated

that the DWT-CNN-BiGRU model outperformed the widely

used DWT-CNN-BiLSTM model, achieving higher classification

accuracy. The application of standard scaling further improved

model performance by reducing feature variability. The proposed

framework contributes a robust and effective approach for EEG-

based classification in addiction research. While the results are

promising, future work should explore hybrid noise filtering

techniques, larger and more diverse datasets, and multiclass

classification schemes to improve the model’s generalizability and

clinical relevance.
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