AUTHOR=Patel Nidhi , Verma Jaiprakash , Jain Swati TITLE=Improving EEG classification of alcoholic and control subjects using DWT-CNN-BiGRU with various noise filtering techniques JOURNAL=Frontiers in Neuroinformatics VOLUME=Volume 19 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2025.1618050 DOI=10.3389/fninf.2025.1618050 ISSN=1662-5196 ABSTRACT=Electroencephalogram (EEG) signal analysis plays a vital role in diagnosing and monitoring alcoholism, where accurate classification of individuals into alcoholic and control groups is essential. However, the inherent noise and complexity of EEG signals pose significant challenges. This study investigates the impact of three signal denoising techniques' Discrete Wavelet Transform(DWT), Discrete Fourier Transform(DFT), and Discrete Cosine Transform (DCT) Non EEG signal classification performance. The motivation behind this study is to identify the most effective preprocessing method for enhancing deep learning model performance in this domain. A novel DWT-CNN-BiGRU model is proposed, which leverages CNN layers for spatial feature extraction and BiGRU layers for capturing temporal dependencies. Experimental results show that the DWT-based approach, combined with standard scaling, achieves the highest accuracy of 94%, with a precision of 0.94, a recall of 0.95, and an F1-score of 0.94. Compared to the baseline DWT-CNN-BiLSTM model, the proposed method provides a modest yet meaningful improvement of approximately 17% in classification accuracy. These findings highlight the superiority of DWT as a preprocessing method and validate the proposed model's effectiveness for EEG-based classification, contributing to the development of more reliable medical diagnostic tools.