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Introduction: Enhancing the command capacity of motor imagery

(MI)-based brain-computer interfaces (BCIs) remains a significant challenge

in neuroinformatics, especially for real-world assistive applications. This study

explores a multiclass BCI system designed to classify multiple MI tasks using a

low-cost EEG device.

Methods: A BCI system was developed to classify six mental states: resting

state, left and right hand movement imagery, tongue movement, and left

and right lateral bending, using EEG data collected with the Emotiv EPOC

X headset. Seven participants underwent a body awareness training protocol

integrating mindfulness and physical exercises to improve MI performance.

Machine learning techniques were applied to extract discriminative features from

the EEG signals.

Results: Post-training assessments indicated modest improvements in

participants’ MI proficiency. However, classification performance was limited

due to inter- and intra-subject signal variability and the technical constraints of

the consumer-grade EEG hardware.

Discussion: These findings highlight the value of combining user training with

MI-based BCIs and the need to optimize signal quality for reliable performance.

The results support the feasibility of scalable, multiclass MI paradigms in

low-cost, user-centered neurotechnology applications, while pointing to critical

areas for future system enhancement.

KEYWORDS

brain-computer interface (BCI), Emotiv EPOC X, motor imagery, body awareness
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1 Introduction

Brain-computer interface (BCI) technology enables users to interact with and control

their environment using neural activity alone. When fully developed, BCI systems have

potential applications in a wide range of domains, including ergonomics at work (Ekandem

et al., 2012; Venthur et al., 2010), the arts (Wadeson et al., 2015; Gürkök and Nijholt, 2013),

smart environments (Tabbal et al., 2018), neurotherapy (Tabernig et al., 2018; Zhuang

et al., 2020), and neuroprosthetics (Cajigas et al., 2021; Hayashibe et al., 2015). Specifically,

BCI could be used to monitor and regulate cognitive states in employees or students,
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helping determine whether an individual should engage in a

cognitively demanding task or take a break (Gerjets et al., 2014).

In addition, it offers communication solutions for people with

paralysis and can facilitate the control of smart home systems

(Birbaumer and Cohen, 2007). In entertainment and virtual

environments, BCIs could enable users to control characters in

video games or avatars in virtual reality (Wen et al., 2021). Despite

its remarkable potential and significant research over the last

30 years, the widespread adoption and implementation of BCI

technology remains limited.

The limited adoption of BCI in daily life is due to three key

challenges. First, active BCIs, which rely on voluntary modulation

of brain activity, generally provide only two to three commands,

much fewer than traditional input devices, such as keyboards

or mice. Second, controlling an active BCI is challenging, with

up to one-third of users unable to generate the necessary brain

signals, requiring extensive training. Third, brain activity detection

requires specialized hardware, and although commercial options

are emerging, they still require further validation.

The study explored a new possibility of expanding the number

of classes in mental task-based BCI by combining the resting

state with motor imagery (MI) of five movements: left hand

movement, right hand movement, tongue movement, left and

right lateral bending. Although previously studied separately, such

a combination of imagined movements and resting state was

never implemented in a MI-based BCI. The present study utilized

the mobile electroencephalography (EEG) device Emotiv EPOC

X, classification-based machine learning techniques, and a novel

procedure designed to train MI.

2 Motor imagery-based
brain-computer interface

MI-based BCIs enable users to control systems through

imagined movements, offering a non-invasive, stimulus-

independent communication method. By detecting changes

in sensorimotor rhythms (SMRs) via EEG, these systems translate

mental tasks into commands, making them valuable for assistive

and neuroadaptive technologies.

2.1 State of the art on motor
imagery-based brain-computer interface

The term “Brain-Computer Interface” (BCI) was coined by

Vidal (1977) in the 1970s, demonstrating real-time processing of

EEG signals and control of a cursor using visual-evoked potentials.

The first attempt to read one’s cognitive state began with Albertino

Mosso’s studies on mental activity and blood circulation in the late

19th century (Poldrack, 2018), and Hans Berger’s development of

electroencephalography in the 1920s. The most accepted definition

of BCI combines the neuroscientific perspective of Wolpaw and

Wolpaw (2012) with the cognitive perspective of Zander and Kothe

(2011), describing BCI as a system that measures the activity of the

central nervous system (CNS) to predict the cognitive state of the

user and produce an artificial output that influences the interaction

between the CNS and the environment and provides feedback to

the user.

There are several paradigms for acquiring BCI input, the

most widely used of which are based on physiological brain

activity. These include steady-state visually evoked potentials

(SSVEPs), event-related potential (ERP) on P3b, sensorimotor

rhythms (SMRs), and slow cortical potentials (SCPs). SSVEPs are

evoked by fast and repetitive stimuli, such as flickering lights, that

modulate the frequency and voltage of the ongoing oscillations

in the corresponding areas of the occipital cortex in such a way

that the frequency of these oscillations matches the frequency of

presentation of the given stimulus (Allison et al., 2012). In P3-

based BCI, the component P3b, which is a positive change in

potential appearing around 300 ms after stimulus presentation

over central parietal sites on the scalp, is evoked in an odd-ball

paradigm by a task-related infrequent stimulus (Sellers et al., 2012).

SCPs (Allison et al., 2012) and SMRs (Pfurtscheller and McFarland,

2012), resulting from oscillatory changes in the sensorimotor cortex

during motor preparation or imagery, are analyzed in the time

and frequency domains, respectively. Both the P3 and SSVEP

paradigms are reactive and require minimal user training, but

they are based on external stimuli. In contrast, the SCP and SMR

paradigms are independent of external stimuli but often require

extensive and fatiguing user training.

Mental imagery-based BCIs rely on users performing cognitive

tasks to generate control signals. Such tasks include mental

rotation, counting, face or speech imagery, auditory and olfactory

imagery, spatial navigation, self-induced emotions, and MI (Roc

et al., 2021), the most commonly studied. MI encompasses various

imagined actions, typically involving simple body movements such

as movements of the right or left hand (Arias-Mora et al., 2015),

feet (Bousseta et al., 2018), or tongue (Lin and Lo, 2016). Less

frequently studied movements include swallowing (Yang et al.,

2014), lateral bending (Li et al., 2019), and sign language (AlQattan

and Sepulveda, 2017). Many studies do not specify the exact nature

of the imagined movements.

Neuronal populations in the cortex that correlate with MI

express oscillatory activity called Sensorimotor Rhythms (SMR)

(Pfurtscheller and Lopes da Silva, 1999). Depending on the

frequency band, three types of SMR were identified: the mu rhythm

with lower mu 7–10 Hz and higher mu 10–12 Hz, the beta rhythm

with lower beta 12–20 Hz and higher beta 20–30Hz and the gamma

rhythmwith 30–200Hz (Pfurtscheller andMcFarland, 2012). In the

field of BCI studies, the specific boundaries of these bands differ

between studies (Jeunet et al., 2019). Moreover, since most BCIs

employ EEG, which does not precisely measure gamma, the focus

is placed mainly on mu and beta rhythms (Jeunet et al., 2019).

2.2 Machine learning for motor
imagery-based brain-computer interface

Machine learning is crucial for BCI systems because it enables

the accurate interpretation of complex brain signals, converting

them into actionable commands. It helps distinguish subtle patterns

in neural data, allowing BCIs to adapt to individual users’

brain activity. Machine learning in BCI consists of the following
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stages: signal acquisition, signal processing, classification, and

performance evaluation.

2.2.1 Signal acquisition
Signal acquisition for BCI involves collecting a biosignal from

the cerebral cortex using electrodes placed on the scalp, typically

following the 10–20 system for optimal electrode placement.

Choosing the right electrodes, particularly those over the primary

motor cortex and primary somatosensory cortex (Schnitzler et al.,

1997) and the supplementary motor area and premotor areas

(Dechent et al., 2004), improves classification accuracy and

machine learning speed, with research indicating that the use of too

many or too few electrodes results in poor performance and the use

of 8 to 36 electrodes (Tam et al., 2011) yields the best results for

real-time applications such as operating a wheelchair or facilitating

communication.

2.2.2 Signal processing
In BCI devices, signal processing is divided into the following

parts: preprocessing, feature selection, and/or extraction and

classification.

Preprocessing such as temporal filtering, removes these

artifacts to enhance the signal-to-noise ratio, ensuring that relevant

data are processed for better classification accuracy (Aggarwal and

Chugh, 2019). Preprocessing is important since EEG signals include

activity in the cerebral cortex and artifacts of eye movements,

blinking, head movements, jaw clenching, and external stimuli. In

MI-based BCI devices, particular attention is given to SMR waves,

specifically mu waves in the 7–13 Hz frequency range (Pfurtscheller

and Neuper, 2001), using filters like Butterworth and Chebyshev to

refine the signal (Singh et al., 2021).

Feature selection is the method that removes redundant

information to reduce the dimensionality of vast amount of EEG

data and thus improve its accuracy (Singh et al., 2021). Feature

selection methods, which will enhance classifier performance and

speed, can be categorized into filter methods—independent of

the classifier with low computational cost, wrapper methods—

evaluating data subsets for specific classifiers, and embedded

methods—integrating feature selection into classifier training

(Guyon and Elisseeff, 2003).

Feature extraction transforms preprocessed EEG data into

a new feature space to reduce data volume for better classifier

performance and faster computation. Six categories of feature

extraction methods include: time domain, spectral domain, time-

frequency domain, spatial domain, spatio-temporal domain, and

the Riemannian Manifold method, each focusing on different

aspects of the EEG signal to obtain relevant features for analysis

(Singh et al., 2021).

Classification involves interpreting brain activity and

converting it into actionable commands using algorithms trained

on labeled data to predict target variables based on extracted

features. Lotte et al. (2007) categorizes classifiers into generative-

discriminative, static-dynamic, stable-unstable, and regularized

types, with popular algorithms including linear classifiers such as

linear discriminant analysis (LDA) and support vector machine

(SVM), artificial neural networks (ANN), non-linear Bayesian

classifiers, and k-nearest neighbor (KNN) classifiers.

Improving classifier performance and accuracy can involve

combining different classifiers, reducing data dimensions through

feature selection and extraction, and optimizing algorithm

hyperparameters. Tools such as GridSearch can help identify the

optimal set of hyperparameters by exhaustively searching and

evaluating different combinations of parameters to maximize the

precision of a specific data set (Syarif et al., 2016; Feurer andHutter,

2019).

2.2.3 Performance evaluation
Performance evaluation is crucial to assess the BCI operation,

ensure the classification algorithm’s effectiveness, and verify that

the results are not due to chance. Evaluation involves considering

the number of trials and the likelihood of class occurrence, with the

actual chance level varying based on the number of classes, e.g., a

two-class problem has a chance level 70% instead of 50% (Müller-

Putz et al., 2008). Standard evaluation metrics for BCI classification

include accuracy, Cohen’s Kappa coefficient, Confusion Matrix,

specificity, and sensitivity. These metrics help determine how well

the BCI performs and if the results are statistically significant.

2.3 Brain-computer interface applications

BCI applications translate brainwave modulation into actions,

bypassing neuromuscular output to enable control of devices

such as wheelchairs and communication tools for individuals

with motor impairments. BCIs serve medical and nonmedical

purposes, helping people with disabilities by replacing, restoring,

or enhancing neuromuscular functions (Wolpaw and Wolpaw,

2012; Bamdad et al., 2015; Värbu et al., 2022), while also offering

applications in monitoring, device control, and entertainment (van

Erp et al., 2012; Kutt et al., 2015; Zioga et al., 2018; Douibi

et al., 2021; Värbu et al., 2022). Despite their potential, achieving

consistent accuracy and user experience is challenging outside

controlled laboratory settings (Hammer et al., 2012; Wolpaw and

Wolpaw, 2012; Mridha et al., 2021).

2.4 Brain-computer interface study
objectives

This study aimed to develop an MI-based BCI system to

improve communication for people who have lost neuromuscular

function due to injury or disease. To make BCI a viable daily

communication tool for individuals with disabilities, it must

be user-friendly, independent, and multiclass. Commercial EEG

headsets, such as the Emotiv EPOC X, offer a portable and cost-

effective alternative (Mwata-Velu et al., 2021) to medical-grade,

while providing high-quality signals.

This study explored whether an MI-based BCI using the

Emotiv EPOC X could accurately distinguish between six classes:

resting state and five imagined movements: left hand, right hand,

tongue movement, left and right lateral bending. Participants were

familiarized with the BCI, underwent data acquisition and training,

and tested their ability to use the BCI by playing the song “Soft
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FIGURE 1

Combination of the two main architectures of a BCI system. The

three stages of the architecture, which focus is put on the

interaction between two entities of the BCIs—the user and the

computer—are presented on the left. The six architecture steps

centered on the BCI work cycle, which constitute the second stage

of the more general architecture, are presented on the right.

Kitty”1 with success determined by classification results above the

chance level. The selected movements are novel, with previous

research indicating that left- and right-lateral bending can be

distinguished using the Emotiv EPOC X headset (Li et al., 2019).

3 Materials and methods

This section outlines the experimental design, tools, and

procedures for developing and evaluating the BCI system. It

describes the architecture of the BCI framework, the hardware

and software employed, participant details, training protocols, data

acquisition process, and the machine learning pipeline used for

signal processing and classification. Each component was carefully

selected and integrated to ensure reliable performance and user

engagement throughout the study.

3.1 Architecture

The typical BCI architecture consists of six key stages:

CNS activity collection, offline preprocessing, feature extraction,

classification, real-time data analysis, and feedback delivery based

on predicted mental states. These stages form the core of a broader

BCI framework, including user training to modulate CNS activity

for computer recognition, enabling feedback that enhances control

of brain activity. Figure 1 shows the architecture used in this study.

3.2 Emotiv Epoc X

In nonclinical contexts, commercial EEG kits2 are gaining

popularity for use in laboratory research, ecological studies, and

1 English equivalent of a popular Polish children’s song “Wlazł kotek

na płotek” https://en.wikipedia.org/wiki/Soft_Kitty; https://pl.wikipedia.org/

wiki/Wlazl_kotek_na_plotek.

the gaming industry. The Emotiv EPOC X was deliberately

selected for this study due to its ease of use, rapid self-mounting

capability, user comfort, and—critically—its demonstrated signal

quality comparable to medical-grade EEG systems (Duvinage et al.,

2012), cf. Figure 2A. It features 14 electrodes, 4 reference channels,

and a sampling rate of 128 Hz, with wet electrodes soaked in a

solution of water and sodium chloride (NaCl). The electrodes are

placed according to the 10–20 system. As illustrated in Figure 2B

electrodes locations are as follows: AF3, F7, F3, FC5, T7, P7, O1,

O2, P8, T8, FC6, F4, F8, AF4.

3.3 Study participants

The study involved 7 participants (3 women and 4men) with an

average age of 24 years, ranging from 21 to 26 years. The number

of participants was chosen based on previous studies of MI-based

BCI built with Emotiv EPOC X, in which sample sizes typically

ranged from 4 to 7 (Arias-Mora et al., 2015; Bousseta et al., 2018;

Lin and Lo, 2016; Yue et al., 2021). Detailed participant information

is presented in Table 1. Written informed consent was obtained

from all participants before the study. As a token of appreciation,

participants were offered a sweet snack, consisting of fruit and

chocolate, after the study.

3.4 Body awareness training

A body awareness training protocol was developed and

implemented to improve the participants’ ability to perform

kinesthetic MI. This training combined mindfulness meditation

(Eskandari and Erfanian, 2008; Jiang et al., 2021; Lo et al., 2004;

Stieger et al., 2020; Tan et al., 2014, 2015) with body awareness

exercises (Cassady et al., 2014)—the detailed transcript of the

training can be found in the Supplementary material. Participants

were guided through a 35 min video, divided into two sections, to

facilitate training.

The first part was audio-based. The participants sat with their

eyes closed and followed the guided instructions. The session began

with an overview of the training goals, followed by a focus on

breathing, a guided body scan, and a minute to do the body scan

on their own.

The second part involved five audio-visual blocks, where

participants stood with open eyes. Each block trained MI for

one of the five movements to be used for BCI control: opening

and closing the right or left fist, cf. Figure 3A, lateral bending to

the right or left cf. Figure 3B, and horizontal tongue movement

cf. Figure 3C. The participants were instructed on performing

each movement, practiced the movement in a loop to ensure

accuracy, and then focused on the movement with their eyes open.

Then, they were asked to close their eyes and concentrate on the

sensations associated with movement. Afterward, they stopped the

physical movement and engaged in MI of the action. During MI,

participants answered questions to assess the accuracy of their

2 Currently available kits includeMuse https://choosemuse.com, NeuroSky

https://neurosky.com, OpenBCI https://openbci.com, and Emotiv https://

www.emotiv.com.
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A B

FIGURE 2

The commercial EEG headset Emotiv EPOC X (A) and its 14 channels: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4. The motor

homunculus with electrode locations in the Emotiv EPOC X headset. The location of the electrodes (B) according to the international 10–20 system.

Light gray: sensors. Dark gray: references.

TABLE 1 Participants’ data.

ID Age Sex Handedness BCI experience Playingsports Others

S01 26 Male Right No Yes Fine arts, meditation (irregularly)

S02 26 Male Right Yes Yes Fine arts, dance

S03 22 Female Left No Yes —

S04 26 Male Right No Yes —

S05 24 Female Right Yes No Dance

S06 21 Female Right No Yes Meditation

S07 21 Male Right No Yes —

Survey results presenting participants’ data: age, gender, handedness, previous experience with brain-computer interfaces, sports, dance, fine arts, and meditation. (—) not provided.

mental rehearsal. The video was segmented into parts, allowing

participants to repeat MI as needed. Once satisfied, they proceeded

to the next movement.

3.5 Performance measures—Movement
imagery questionnaire

MI ability varies between individuals and was assessed in this

study using the Movement Imagery Questionnaire (MIQ) (Hall

et al., 1985; Hall and Martin, 1997; Williams et al., 2012) and the

Vividness of MI Questionnaire (VMIQ) (Isaac et al., 1986; Roberts

et al., 2008). The MIQ evaluates how easily participants imagine

movements, using a 7-point Likert scale, while the VMIQmeasures

the vividness of MI, on a 5-point Likert scale.

To assess whether training improved MI skills, participants

completed the Polish version of MIQ-3 (Budnik-Przybylska

et al., 2016), the detailed questionnaire can be found in the

Supplementary material. Since the training focused on kinesthetic

MI, only two subscales were used: visual internal imagery and

kinesthetic imagery, with eight items total. Participants performed

a movement, then imagined it in either the kinesthetic or visual

mode, rating the ease of imagery on a 7-point scale. Each

participant completed the questionnaire before and after the

training, with a research assistant reading the questions and

recording responses.

3.6 Integrated brain-computer interface
software

In this study, IDE Processing3 and OpenViBE4 were used.

IDE Processing, a free and open-source software developed by the

Processing Foundation, is designed for visual programming and

the creation of digital visual art. OpenViBE is a free open-source

platform that enables real-time BCI design and implementation

through real-time processing of EEG signals. It supports online

preprocessing, feature extraction, classification, offline analysis, and

visualization of large EEG datasets. OpenViBE also provides real-

time feedback and can be used to develop applications in fields such

3 https://processing.org in version 4.2.

4 http://openvibe.inria.fr in version 3.5.0.
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FIGURE 3

Movements presented during the body awareness training illustrate three of the five movements. Participants were instructed first to perform the

movement physically (A–C) and then to imagine it without any physical motion. Motor imagery of the movements was used to control the built BCI.

as medical applications, gaming, virtual reality, and BCI-robotics

integration. It is compatible with commercial EEG devices like

Emotiv EPOC X and OpenBCI.

Virtual piano applications were designed using the above tools,

shown in Figure 4B. As the maximum number of symbols to

visualize with the OpenViBE Multimodal Graz Visualization box

is four, the IDE Processing was used as the OpenViBE Graz

Visualization box. The Lua Script provided in OpenViBE was

modified to initiate the generation of the stimulations used in the

study. The Lua Stimulator box read an adjusted Lua Script and sent

stimulations to the transmission control protocol (TCP) Writer

box, which works as a TCP server as illustrated in Figure 4A. The

OpenViBE TCPWriter box sent the stimulations to the TCP socket

localized in the IDE Processing script. The script reads stimuli and

displays the corresponding visualization.

Participants’ interaction with the BCI system consisted of three

stages: data acquisition, user training, and user testing. Separate Lua

and IDE Processing scripts were created for each stage.

During data acquisition, participants completed 60 trials, with

12 trials per imagined movement presented in random order. Each

trial, cf. Figure 4C, began with a 2 s fixation cross, followed by

the display of five keys representing movements for 1 s. A cue

was presented by backlighting a single key and simultaneously

playing a corresponding sound for 2s, marking the stimulus onset.

Participants were asked to performMI of the cued movement while

the fixation cross reappeared for 4 s.

The user training stage was identical to the data acquisition (60

trials, with 12 trials per imagined movement presented in random

order), except feedback which was displayed instead of the fixation

cross for 4 s after the disappearance of the cue in the form of a red

highlight over the predicted key and the corresponding sound. The

feedback was actualized every 0.5 s and was presented as the best

prediction. Examples of congruent and incongruent feedback are

shown in Figures 4D, E, respectively.

The user testing stage followed the same procedure as user

training, but without sound cues, and consisted of 36 trials

presented in the order of the notes from the song “Soft Kitty.” The

trials in all stages were separated by intervals of 1.5–3.5 s.

3.7 Machine learning pipeline

The theoretical analysis conducted before designing the BCI

application in this study informed the selection of the following

machine learning pipeline:

Frontiers inNeuroinformatics 06 frontiersin.org

https://doi.org/10.3389/fninf.2025.1625279
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Tarara et al. 10.3389/fninf.2025.1625279

FIGURE 4

Screenshots of the application controlled by the built brain-computer interfaces (BCI). (A) connection of the OpenViBE Lua Stimulator box (generator

of stimulations) with the OpenViBE TCP Writer box (TCP server). (B) 5 piano keys with the corresponding images of the body movements. (C) course

of a single trial in the data acquisition stage. (D) course of a single trial in the user training and testing stages with congruent feedback. (E) course of a

single trial in the user training and testing stages with incongruent feedback.

• Feature extraction method common spatial pattern (CSP),

• Classificationmethod: support vector classification (SVC), i.e.,

SVMwith a radial basis function (RBF) and a nonlinear kernel.

This study aimed to determine the optimal parameters for the

SVC classifier and to identify the most effective set of electrodes

to maximize classification accuracy. For this purpose, 4 sets of

electrodes were included, i.e., set no. 1—(C3, C4), set no. 2—(FC5,

FC6), set no. 3—(T7, FC5, F3, F4, FC6, T8), set no. 4—(T7, P3, FC5,

F3, AF3, AF4, F4, FC6, P4, T8) and grid search were used to find

the most optimal parameters for each of the distinguished sets of

electrodes. The dataset used in this project is the MI dataset from

the study by Cho et al. (2017)5. A grid search, as the results for the 4

sets of electrodes can be found in Table 2, was conducted to evaluate

various combinations of the following parameters:

• kernel: linear, poly, rbf,

• C: 0.01, 0.1, 0.5, 1, 3, 10, 100,

• gamma: scale, auto.

Previous analyses indicated that narrowing the bandpass

frequency to 8–13 Hz and integrating the ICA, CSP, and SVC

algorithms with GridSearch gives the highest accuracy for MI data.

Initially, the project intended to incorporate GridSearch without

relying on findings from previous studies. However, offline tests

5 Available at: http://gigadb.org/dataset/view/id/100295.

TABLE 2 Results of SVC using grid search for 4 sets of electrodes.

Set of
electrodes

Training
set

Test
set

Parameters Medium
accuracy

set no. 1 0.59 0.57 C: 10, gamma:

scale, kernel: rbf

0.58

set no. 2 0.59 0.57 C: 100, gamma:

scale, kernel: rbf

0.57

set no. 3 0.60 0.59 C: 0.5, gamma:

auto, kernel: rbf

0.59

set no. 4 0.68 0.65 C: 10, gamma:

scale, kernel: rbf

0.67

5 divisions of the training set were used (k-fold = 5). The Training set column contains the

accuracy results for the training set using the most optimal parameters. The Test set column

contains accuracy results for the test set using the most optimal parameters selected based on

the training set. The parameters column contains the most optimal parameters selected by

GridSearch for each set of electrodes.

conducted before participant experiments on publicly available

datasets and randomly generated oscillatory data encountered

technical difficulties due to excessive computational requirements.

Consequently, it was decided to omit GridSearch from the current

project and instead adjust the SVC parameters for set no. 4, which

comprised 10 electrodes (T7, P3, FC5, F3, AF3, AF4, F4, FC6, P4,

T8). The adapted parameters are as follows: C = 10, gamma =

scale, and kernel = RBF. The final configuration of the pipeline is

as follows:
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FIGURE 5

Screenshots of OpenViBE common spatial pattern (CSP) trainer algorithm. Combination of pipeline steps for training the CSP algorithm consisting of

following steps: Bandpass filter 8–13 Hz box, Stimulation based epoching boxes (Left Hand, Right Hand, Torso Left, Torso Right, Tongue) and

Regularized CSP Trainer box.

• bandpass filter 8–13 Hz,

• feature extraction method: CSP,

• classification method: SVC.

The classifier training process has been divided into OpenViBE

CSP Trainer and OpenViBE SVM Trainer. The Pipeline OpenViBE

CSP Trainer consisted of the following components, as shown in

Figure 5:

• bandpass filter 8–13 Hz cf. Temporal filter box named

Bandpass filter 8–13 Hz,

• division of data into 5 classes corresponding to the imagery

movements cf. Stimulation based epoching boxes named

accordingly to the imagery movement task performed by

participants of this research: Left Hand, Right Hand, Torso Left,

Torso Right, Tongue, and

• training of the CSP algorithm cf. Regularized CSP Trainer box.

This pipeline was designed to train the CSP algorithm to

increase the variance of each of the five classes by dividing the

training dataset into five subsets corresponding to each class. The

dataset used for classification was divided into a training set and

a test set. In this project, the training dataset was derived from

the signal acquisition stage, and both CSP and SVC were trained

on this data. The test set comprised data from both user training

and user testing. A bandpass filter of 8–13 Hz, corresponding to

the mu frequency, was applied to reduce redundant data. Epochs

were defined as the 0–500 ms window following stimulus onset,

which wasmarked by a 2-s cue involving the backlighting of a single

key and the simultaneous playback of a corresponding sound.

The study defined five classes corresponding to the following

body movements: right hand, left hand, right torso, left torso,

and tongue.

After training the CSP, the SVC classifier was trained. As

illustrated in Figure 6, the Pipeline OpenViBE SVC Trainer

consisted of the following components:

• bandpass filter 8–13 Hz cf. Temporal filter box named

Bandpass filter 8–13 Hz,

• pretrained CSP filter cf. Temporal filter box named CSP spatial

filter, which used the trained data from the previous step, i.e.,

OpenViBE CSP Trainer in Figure 5,

• division of data into 5 classes corresponding to the imagery

movements cf. Stimulation based epoching boxes named
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FIGURE 6

Screenshots of OpenViBE support vector classification (SVC) Trainer algorithm. Combination of pipeline steps for training the SVC algorithm

consisting of following steps: Bandpass filter 8–13 Hz Box, common spatial pattern (CSP) spatial filter box, Stimulation based epoching boxes (Left

Hand, Right Hand, Torso Left, Torso Right, Tongue), Time based epoching box, Signal Power Log box, Feature aggregator box and SVM classifier

trainer box.

accordingly to the imagery movement task performed by

participants of this research: Left Hand, Right Hand, Torso Left,

Torso Right, Tongue,

• the creation of epochs cf. Time based epoching box,

• power extraction cf. Signal Power Log box,

• features extraction cf. Feature aggregator box, and

• training of the SVC algorithm cf. Classifier trainer box named

SVM classifier trainer.

The parameters selected for the SVC were based on the

optimal settings obtained through GridSearch for set no. 4, which

comprised the following 10 electrodes: T7, P3, FC5, F3, AF3, AF4,

F4, FC6, P4, and T8.

These steps were carried out offline. Finally, in the part

of the study where the participant was asked to play “Soft

Kitty” using only their thoughts, i.e., user training and user

testing, the classification was performed online on previously
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FIGURE 7

Screenshots of OpenViBE User Training/Testing algorithm. Combination of pipeline steps for user training and user testing consisting of the following

steps: Bandpass filter 8–13 Hz Box, CSP spatial filter box, Time based epoching box, Signal Power Log box, Feature aggregator box, and textit

Classifier processor box.

trained CSP and SVC algorithms. The Pipeline OpenViBE User

Training/Testing consisted of the following components, cf.

Figure 7:

• bandpass filter 8–13 Hz cf. Temporal filter box named

Bandpass filter 8–13 Hz,

• pretrained CSP cf.Temporal Filter box namedCSP spatial filter

box), which used the trained data from the previous step, i.e.,

OpenViBE CSP Trainer,

• the creation of epochs cf. Time based epoching box,

• power extraction cf. Signal Power Log box,

• features extraction cf. Feature aggregator box, and

• pretrained SVC algorithm cf. Classifier processor box, that

used the trained data from the previous step, i.e., OpenViBE

CSP Trainer.

In all of the aforementioned pipelines, the signal was not filtered

at the current frequency, as the Emotiv EPOC X is equipped with

built-in digital notch filters operating at 50 Hz and 60 Hz applied to

the raw data.
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TABLE 3 Statistics and distribution for the subscales.

Subscale N Mean SD Skewness Kurtosis

Pre-training

Visual 7 5.64 0.95 -0.58 0.87

kinesthetic 7 5.00 1.19 -0.43 0.05

Post-training

Visual 7 5.71 1.12 -1.10 0.89

kinesthetic 7 5.57 0.79 -0.01 -0.25

N, number of participants; SD, standard deviation.

3.8 Semi-structured interview

To gain insight into the subjective experience of interacting

with the developed BCI and to further investigate the impact of

body awareness training on MI skills, a semi-structured interview

was conducted with each participant after the study, detailed

interview questions cf. Supplementary material. The interview

questions addressed several topics, including the general comments

of the participants, their approach to imagining movements,

the ease and intuitiveness of MI, the perceived effectiveness of

training, limitations related to memory and attention, feelings

of mental and physical fatigue, the general participation in the

study, motivation levels, clarity of instructions, understanding and

usefulness of feedback, strategies for managing negative feedback

and feelings of control and ownership over actions mediated

by BCI.

3.9 Procedure

The procedure consisted of the following steps:

1. Signing the form of informed consent and consent to t.

2. Introducing the participant to the subject of the study,

including the trial setup of the EEG set and showing the

participant’s EEG waves on the screen to make the participant

aware that he has a volitional influence on changing his own

EEG signal.

3. Pre-training conducting a questionnaire—Polish version of

the MIQ-3—Movement Imagery Questionnaire (Budnik-

Przybylska et al., 2016).

4. Body awareness training.

5. Post-training conducting a questionnaire—Polish version

of the MIQ-3—Movement Imagery Questionnaire (Budnik-

Przybylska et al., 2016),

6. data acquisition.

7. Classifier training.

8. User training—preparing the participant to play the melody.

9. User testing—playing the “Soft Kitty” melody.

10. Conducting a semi-structured interview.

The duration of the study for one participant is 2.5 h. Data

from each stage where the participant performedMI tasks, i.e., data

acquisition, user training, and user testing, were recorded.

4 Results

Results are organized into four main categories: motor imagery

ability, classification performance of machine learning models,

EEG data findings, and participants’ subjective evaluations. Each

category highlights the impact of body awareness training, the

effectiveness of the classification approach, observed neural activity

during motor imagery, and user feedback on the overall study

experience.

4.1 Results of movement imagery
questionnaire-3

Table 3 presents the mean, standard deviation, skewness, and

kurtosis for both the pre-training and post-training conditions

across the visual and kinesthetic subscales. In both conditions,

participants rated their visual MI higher than their kinesthetic

MI, demonstrating that visual MI was easier for participants to

perform. A negative skewness score suggests a rightward shift

in the distribution, indicating the above-average capability of the

participants in imagining movements. In contrast, positive kurtosis

values suggest that the results predominantly indicate high levels

of motor image ability. An exception is noted in the kinesthetic

subscale under the post-training condition, where skewness is close

to zero, suggesting an average ability of participants to imagine

movements in this context. Furthermore, visual inspection suggests

a trend toward higher post-training scores, with an increase

in average values observed for both subscales following body

awareness training.

The individual item analysis of the pre-training and post-

training conditions is shown in Table 4. For pre-training

conditions, visual MI was rated higher than kinesthetic MI, except

for item 2, where kinesthetic MI for a specific movement was

rated higher than item 1, where visual MI was used for the same

movement. For the post-training condition, visual MI was rated

higher than kinesthetic MI, except item 2, where kinesthetic MI for

a specific movement was rated higher than item 1, where visual MI

was used for the same movement. Comparing both conditions, it

can be seen that most of the scores in both visual and kinesthetic

subscales increased in the post-training condition.

4.2 Machine learning e�ciency

The effectiveness of machine learning classification was

evaluated using EEG data collected during the data acquisition, user

training, and user testing phases. All calculations were performed

offline. The evaluation metrics included training and test accuracy,

Cohen’s Kappa coefficient, confusion matrices, sensitivity, and

specificity. These metrics were computed for two conditions: user

training and user testing, and were calculated separately for each

participant.

The classifier’s accuracy for both user training and user testing

conditions, calculated for each participant, is presented in Table 5.

No signal was recorded during the first participant’s user training

condition due to a technical failure. The train accuracy in both
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TABLE 4 Individual item analysis for pre-training and post-training

conditions.

Subscale Item Pre-training Post-training

Mean SD Mean SD

Visual 2 5.00 1.29 5.14 1.21

4 5.86 0.69 6.00 1.00

6 5.29 0.49 5.43 1.27

8 6.43 0.53 6.29 0.76

kinesthetic 1 5.43 0.98 5.71 0.95

3 4.71 1.70 5.43 0.98

5 5.00 0.82 5.43 0.79

7 4.86 1.21 5.71 0.49

The item column shows the number of individual mental tasks where the only difference

between these tasks is that in the first mental task, the participant imagined the movement

visually, while in the second, the exact same movement was imagined kinesthetically. SD,

standard deviation.

conditions was similar for each participant, with a range of

0.48–0.60 for user training and 0.48–0.62 for user testing. A

slight increase in test accuracy was observed in the user testing

condition compared to the user training condition: test accuracy

for user training ranged from 0.18 to 0.25, while for user testing

it was between 0.17 and 0.36. The significant discrepancy between

training and test accuracy in both conditions suggests overfitting,

where the classifier performs well on known data, the training data,

but poorly on unseen data (Ying, 2019).

Cohen’s Kappa coefficient was slightly higher than zero in most

cases. This coefficient value indicates that most of the classifications

performed by the classifier were close to or somewhat higher than

the chance level. The exception here is the two results achieved for

s06 and s07, where Cohen’s Kappa is lower than zero for the user

testing condition. The classification in these two cases was random.

4.3 EEG data analysis

EEG data analysis was performed to visualize event-related

desynchronization (ERD) and event-related synchronization (ERS)

of power for each imagined movement during the data acquisition

stage. Since the signal processing pipeline used in classifier training

relies on power computations from the OpenViBE Signal Power

Log box, power change visualizations were created to complement

classifier results. The analysis was carried out using MNE Python

1.4.2 (Gramfort et al., 2013), an open-source Python package,

following the pipeline proposed by Storti et al. (2016).

Due to the Emotiv EPOC X headset’s incomplete coverage of

the central scalp area, an extensive visual inspection of the data was

first conducted to familiarize oneself with signals from unevenly

distributed sources. Based on this inspection, previous experience,

and EEG literature on Emotiv EPOC X data (Melnik et al., 2017;

Mehmood and Lee, 2016), artifacts were identified and removed

using independent component analysis (ICA). The signal was re-

referenced to a standard average reference, and a 1–30 Hz bandpass

filter was applied using the Parks-McClellan finite impulse response

(FIR) filter.

From each EEG file, 60 time periods were selected,

corresponding to 12 trials per imagined movement condition: left

hand, right hand, left lateral bending, right lateral bending, and

tongue movements. Each trial lasted 9 s. The baseline was set in

the time window from -3.0 to -1.0 s before the cue, corresponding

to the display of the fixation cross. For further analysis, a 3 s time

window was selected from 2.5 to 5.5 s after cue presentation to

avoid signal disruptions caused by saccades as participants shifted

their gaze from the backlit key to the fixation cross; each selected

time window was then segmented into consecutive 500 ms epochs.

A fast fourier transform (FFT) with a non-overlapping

Hamming window was applied to each epoch for each electrode,

followed by averaging across epochs for each condition and

participant. Power spectral density (PSD) was computed for the

alpha, i.e., 8–13 Hz, and lower beta, i.e., 14–20 Hz, frequency

bands. The alpha band was selected to match the frequency range

used in classifier training, while the beta band was included

because of its potential to show complementary power changes

relative to the alpha band (Pfurtscheller and Lopes da Silva,

1999). ERD and ERS, the related topographic maps, can be found

in Supplementary material, where they were calculated as the

percentage of decrease or increase in power relative to the baseline

power, as shown in Equation 1. This equation is adapted from Storti

et al. (2016); Pfurtscheller and Lopes da Silva (1999), where α is the

alpha frequency band. The ERDs of the beta band and the ERSs of

the alpha and beta bands were computed accordingly.

ERDα
=

PSDα

condition
− PSDα

baseline

PSDα

baseline

· 100 (1)

4.4 Semi-structured interview analysis

Semi-structured interviews recorded and transcribed were

analyzed using deductive thematic analysis (Braun and Clarke,

2006; Nowell et al., 2017), with the help of MaxQDA 2022

software (Kuckartz and Rädiker, 2019). Three main themes

were identified and are described below: MI, study design, and

subjective experience.

4.4.1 Theme 1: motor imagery
This theme explores the MI abilities of the participants, aiming

to understand how they imagined the movements, whether it

was intuitive and easy, and the strategies they used to improve

the performance of the BCI. It includes five codes: modality

and perspective of MI, content of MI, strategies used to mitigate

negative feedback, and ease and intuitiveness of MI.

4.4.1.1 Code 1: modality and perspective of motor

imagery

Most participants (4 out of 7 participants) imagined the

movements kinesthetically and used first-person visual imagery

when possible, e.g., hand movements and lateral bending. One

participant noted difficulty in separating these two modalities, as

they felt interconnected: “it was hard for me to distinguish between
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TABLE 5 Classification results: Accuracy and Cohen’s Kappa coe�cient for each participant for user training and user testing conditions.

ID Train accuracy
(user training)

Test accuracy
(user training)

Cohen’s Kappa
(user training)

Train accuracy
(user testing)

Test accuracy
(user testing)

Cohen’s Kappa
(user testing)

S01 — — — 0.53 0.25 0.02

S02 0.60 0.18 -0.02 0.62 0.31 0.12

S03 0.55 0.20 0.00 0.62 0.28 0.12

S04 0.57 0.22 0.02 0.57 0.36 0.19

S05 0.58 0.22 0.02 0.58 0.31 0.14

S06 0.48 0.25 0.06 0.48 0.17 -0.03

S07 0.50 0.22 0.02 0.50 0.19 -0.03

(—) not provided.

feeling and seeing because in my mind it always overlaps and forms

a coherent whole.” Two participants reported using only kinesthetic

MI. One described the experience as having two bodies: a real body

and a “ghost body” that performed the imagined movements: “[. . . ]

part of my body was invisible, and when I was supposed to imagine

the movement of the hand, I imagined another ghost hand that was

coming out of my arm and was performing the movement.” One

participant reported imagining movements in the kinesthetic and

either first or third person visual way, depending on the movement

being imagined: “concerning the tongue movements, I imagined

them from beside me, because I cannot see it myself [from the first

person perspective]. Concerning the other movements, I imagined

them from the first-person perspective, as if I were looking down at

my body.” Moreover, they mentioned sometimes confusing their

body image with the body image of the person from the training

movie: “at some point I looked more like her [the person from the

movie] than myself.”

4.4.1.2 Code 2: the content of motor imagery

During data acquisition, participants focused on key points

of each movement (4 participants) or on the overall experience

of performing the movement (3 participants). The key point was

defined as the starting reference for MI. “such a characteristic point

that you could stick to and then go from it to the rest of this

movement,” that, while participants performed the real movements,

was identified as themost felt and the best-remembered feeling, “the

points I felt the most or remembered the most.” The characteristic

points of movements mentioned by the participants were: muscle

movement, muscle tension, muscle contraction, muscle fatigue,

pain, numbness, tendon movements, touch of body to body, e.g.,

nails digging into hand, tongue touching teeth or lips, touch of

clothes to body.

4.4.1.3 Code 3: strategies used to mitigate negative

feedback

During user training and testing, participants received feedback

based on the accuracy of the classification. When negative feedback

occurred, they were instructed to adjust their MI strategy. All

participants modified their approach: four changed their focus

to a different characteristic point, two increased movement pace,

one switched from left to right body movement, one focused

on memorizing details, one enhanced movement granularity, one

concentrated more on the task, and one shifted focus to physical

discomfort experienced during the movement.

4.4.1.4 Code 4: easiness of motor imagery

Regarding the ease of MI, only one participant reported

that all movements were equally easy to imagine. The most

complicated movements to imagine were tongue movements (3

participants), lateral bending (2 participants), and handmovements

(1 participant). The movement was deemed hard to imagine when

there was no (1 participant) or only one characteristic point (1

participant), the movement was very complex (1 participant), or,

in case of two participants that considered negative feedback as an

indicator of subjective ease of imagery, there was toomuch negative

feedback. The easiest movements to imagine were handmovements

(3 participants), tongue movements (2 participants), and lateral

bending (1 participant). As explained by two participants, a

movement was easy to imagine when the participant had already

encountered the movement in a non-experimental context, and if

there was a well-discernible characteristic point that was felt while

performing the movement.

4.4.1.5 Code 5: intuitiveness of motor imagery

Regarding the intuitiveness of MI, three participants found all

movements intuitive to imagine. Four participants indicated that

hand movements were the most intuitive, while one participant

found tongue movements and lateral bending to be the most

intuitive. Conversely, lateral bending (3 participants) and tongue

movements (2 participants) were reported as the least intuitive.

The intuitiveness of a movement was influenced by its frequency

in everyday life (4 participants) and its complexity (1 participant).

4.4.2 Theme 2: study design
This theme addresses specific elements of the study, including

instructions, fixation point, body awareness training, feedback,

breaks, and technical comments. Each element is categorized as a

separate code within the theme. This theme aims to evaluate the

study design and the effectiveness of the body awareness training.

4.4.2.1 Code 1: feedback

All seven participants confirmed their understanding of the

feedback provided. Furthermore, three participants actively sought

patterns within the feedback: “for example when I tried to move
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my tongue, it [feedback] always showed my left hand and right

hand at the same time, [. . . ], maybe I was thinking about direction

or something,” and three participants suspected that the feedback

was random.

Three participants found the feedback helpful, while four

perceived it as somewhat helpful. Two participants appreciated

receiving both positive and negative feedback, as it indicated

ongoing changes in their brain activity: “it is better to have any

feedback so that we know that our brain is working.” However, three

participants noted a lack of clarity in the negative feedback, which

indicated that they needed to modify their strategy: “it is helpful

in that you have to try something different,” but it did not inform

participants whether the changes that they had applied in the used

strategy of MI yielded any results, “when I saw that the interface

didn’t really catch what I meant, I tried to go back to what was in

those videos [. . . ] I don’t really know with what effect,” and it did

not contain specific instructions on how to improve it, “I couldn’t

draw from this information any hint on what I should have changed

in order that the computer scores a hit.”

Positive feedback motivated three participants, while one stated

that negative feedback served as a motivator, highlighting the need

for improvement to achieve better results. “I felt pressure that I

should try harder.” Furthermore, the negative feedback resulted

in a change of the used MI strategy (4 participants), distraction

(2 participants), “I started to think about the movement that was

highlighted [as the negative feedback], and not the one that I

should have initially thought about,” frustration (1 participant),

overcomplication of MI (1 participant), “I was trying too hard at

some point—trying to figure out how to make it work—and I may

have overcomplicated it a bit,” and a surprise that it is negative (2

participants), “it surprised me sometimes that [the feedback] wasn’t

correct.” Furthermore, two participants regarded negative feedback

as a direct indicator of their subjective experience of the ease of

performing MI for the respective movements.

4.4.2.2 Code 2: instructions

All participants indicated that the instructions were clear.

One participant specifically appreciated the understanding checks

conducted by one of the researchers “I liked that check-ups made by

you, because I knew exactly that I understood everything.”

4.4.2.3 Code 3: fixation point

Participants were questioned about their eye movements

during the interview without an additional eye-tracking method

to analyze gaze patterns. During the data acquisition stage, all

participants reported shifting their gaze to the cue, i.e., the backlit

key, and then returning their gaze to the fixation point when it

appeared on the screen. In the user training and testing stages,

two participants kept their gaze on the key to be activated, while

five participants directed their gaze toward the feedback and cue.

Regardless of the approach, the participants confirmed that they did

not consistently maintain their gaze on the fixation point.

4.4.2.4 Code 4: body awareness training

The seven participants reported that body awareness training

was beneficial. Training facilitated the development of MI for the

specified movements and served as explicit instruction for the

expected actions, as noted by two participants: “the video showed

me exactly what movements you are expecting from me. So that

was cool because I knew exactly what was going to happen,” that

allowed the normalization of imagined movements, “when it comes

to tongue movements, I would not do such a thing myself. I would

not think that it was possible to do such a thing. I certainly would

not stand in front of a mirror and see what it looks like.” Moreover,

the training allowed participants to focus their attention on the

movements while performing them (3 participants) “it brought that

awareness back to what was going on in the movement, because it

[training] was not done automatically, but with an inquiry, what

is going on?”, identify characteristic points of movement for MI (5

participants) and, as a result, to better rehearse the givenmovement

during MI (3 participants), “it was only during this training that

I realized that I could do such a movement, and the movement

had already been repeated many times and MI was just a recapture

from muscle memory,” because of the newly created memory of the

given movement, “[training] helped with the freshness of recalling

these movements later”. However, as some participants previously

mentioned, there was confusion between their own body image and

the body image presented during the training.

4.4.2.5 Code 5: technical aspects of the study

During the interview, participants provided feedback on the

technical aspects of the study. Three participants felt that specific

components, including instructions and training, were overly

lengthy. Regarding the study environment, three participants

reported feeling discomfort: one cited a lack of natural light in the

cabin, while two others found the Emotiv EPOC X uncomfortable

due to its tight fit to their heads.

Regarding the instructions, one participant noted that the

phrasing of several statements felt awkward, stating, “you do not

say it that way.” Additionally, one participant found the distinction

between visual and kinesthetic MI inadequately explained, and

another preferred to read the instructions independently rather

than have them read aloud by the researcher.

All seven participants confirmed that the five body movements

were easy to perform and that they did not have difficulty

remembering how to imagine performing them. However, two

participants mentioned that the fixation cross was not clearly

visible, describing it as too thin and black against a dark gray

background. Lastly, a participant indicated that they initially

associated the red feedback color with an error.

4.4.3 Theme 3: subjective experience
The theme reflects the subjective experience of the participants.

This theme aimed to determine in what state the participants found

themselves and how they felt about the BCI-mediated actions they

performed. Therefore, the theme contains codes concerning the

participant’s state, i.e., attention, fatigue, motivation, and interest,

as well as codes that regard the senses of agency and ownership over

BCI-mediated actions.

4.4.3.1 Code 1: attention

Four participants reported difficulties in maintaining focus

during the study. The reasons for losing concentration included

thinking about personal responsibilities, their relationship with one

of the researchers, and the methodological aspects of the study.
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Furthermore, a participant noted that the study did not naturally

engage their attention: “I wouldn’t call the study interesting as very

auto-focusing because you had to maintain the focus yourself.”

4.4.3.2 Code 2: fatigue

All seven participants reported feeling fatigued during the study

– either physically (3 participants), mentally (1 participant), or

both (3 participants). Reported causes included the study’s length

(3 participants), lack of movement during BCI interaction (2

participants), boredom (1 participant), eye strain (1 participant),

discomfort from wearing the Emotiv EPOC X (2 participants), and

feeling time pressure (1 participant): “I felt a bit of time pressure,

such that I only have these 4 s for this one key to light up,” feeling

of frustration (1 participant), general tiredness as a result of poor

night sleep (1 participant), and finally, lack of natural light in the

study environment (1 participant). All participants reported that

breaks helped them recover energy.

4.4.3.3 Code 3: motivation and interest

All seven participants expressed interest in the study and

motivation to perform well. Four participants reported general

motivation, two were motivated by their friendship with one of the

researchers, and one was driven by the potential to contribute to

technology that could aid people with disabilities as an alternative

to a mouse and keyboard. All participants were interested in BCI

technology, particularly its potential to enable communication

without physical movement. One participant also found the

interactive nature of the study particularly engaging.

4.4.3.4 Code 4: sense of agency and sense of ownership

The sense of agency was defined as the participant’s perception

of being the cause of an action, while the sense of ownership refers

to the feeling of being the one experiencing the action (Gallagher,

2000, 2012). Based on these definitions, all seven participants

reported experiencing only partial or low control over their actions:

“if you include me with some convulsions, then yes, [I controlled

it],” and ownership of actions, “it is actually me, not a video, [. . . ]

that ’me’ component was there too.” Participants ascribed to the

computer some of the control: “[the keys were controlled by] an

algorithm or an artificial intelligence or whatever you call it,” and the

ownership of actions, “I’m just not sure if sometimes the computer

didn’t do it.” The feeling of control in three participants depended

on feedback, i.e., when the feedback was positive, they felt control,

and when it was negative, they did not. One participant reported

that their feeling of control increased with the course of the study:

“and especially at the end [...] I really knew that when I wasn’t

thinking about any of these things [movements] at all, or even about

my body, none of them [the keys] would turn on.” Finally, three

participants were acquainted with the principles of operation of a

BCI: “I was probably the trigger that started the process of starting

the keys, but which key fired was no longer entirely dependent on

what I was trying to think about,” and the rules of operation of their

brain activity: “I do it but there’s quite a lot of noise going on.”

5 Discussion

Despite general brain activation patterns during MI, variations

exist depending on factors such as the specific body part

involved, type of movement, modality, perspective, and individual

differences, both between participants and within the same

participant over time. Therefore, individualized training for each

participant is crucial to optimize speed and accuracy in real-time

MI-based BCIs.

To our knowledge, no previous motor imagery study has

combined lateral bending with tongue and bilateral hand

movements, making the present protocol a novel contribution to

the field. Critically, we introduced a dedicated body-awareness

training session to enhance motor imagery precision, in which

each target action–lateral bending, tongue, and left- and right-

hand movements–was physically demonstrated and rehearsed

prior to the imagery blocks. This structured somatic preparation

stands in contrast to previous studies, where the content of

imagined movements was often underspecified or left entirely

to participant interpretation. By anchoring motor imagery in

embodied experience, our approach aims to improve the specificity

and consistency of imagery movements.

5.1 Machine learning

Overfitting is evident in user training and user testing

conditions for each participant, as indicated by much higher

train scores than test scores. This discrepancy may result from

insufficient data to achieve proper classification performance.

The dataset in this study includes only 7 participants. For each

participant, 12 trials per class at 5 classes were recorded in the

data acquisition stage, the training set. The first test set was

recorded in the user training stage–the data acquisition results

totaled 60 trials. For the user testing stage, the second test set,

only 36 trials were collected across the classes. Furthermore,

the training data were divided into five subsets (k-fold = 5),

probably contributed to overfitting due to limited data. Increasing

the dataset by recruiting more participants, conducting additional

trials, adding random noise, or generating synthetic data based

on the existing distribution could mitigate this issue (Ying,

2019). However, this was intentionally omitted to maintain a

simplified pipeline suitable for future application in ecological

research.

Furthermore, the EEG data suffered from a low signal-to-

noise ratio due to the absence of artifact-removal techniques

such as ICA. ICA is among the most effective techniques for

removing ocular and other noise artifacts. However, to meet

the study’s primary goal of developing a low-cost, mobile,

and plug-and-play BCI suitable for battery-powered systems

and ecological applications, ICA was omitted from the online

processing pipeline. Algorithm hyperparameters could be

optimized through grid search to reduce overfitting and

improve classifier performance. Another way to improve the

classification accuracy is by selecting an appropriate classifier.

Although the SVC was chosen based on previous analysis,

algorithms such as LDA have also shown promising results for

MI tasks.

Feature selection is another critical aspect to consider for future

improvements. More features can increase model complexity

without necessarily improving accuracy, as some may act as noise
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(Ying, 2019). Reducing the number of features can be achieved

using filter methods such as K Best, which selects k features giving

the best score, percentile, which selects the indicated percentage

of features giving the best score, False Positive Rate test, which

selects features with p-value below the alpha threshold in the FPR

test, or wrapper methods such as forward selection, which adds

features from the list, creating a list of features giving the best

score, or backward elimination, which removes features from the

complete list of features, stopping at the smallest subset giving

the best score. The PCA-based feature extraction method can also

help reduce the number of data dimensions. GridSearch selects the

best classifier and the most optimal parameters, and the algorithm

searching for the best set of features has not been used due to

hardware limitations.

Moreover, the choice of an EEGheadset limited the data quality,

as it lacked electrodes in the somatosensory cortex, C3 and C4,

which are essential for MI. Future studies could benefit from

equipment such as the Emotiv EPOC Flex or OpenBCI, which

includes these electrodes.

Finally, interindividual variability in the frequency of the

alpha band should be taken into account. The default assumption

of an alpha range between 8 and 13 Hz does not account

for individual differences in alpha frequency, which can reduce

the signal-to-noise ratio and introduce noise into the data. The

interindividual alpha peak frequency (IAF) should be measured

to address this. IAF represents the dominant rhythm within

the 5–15 Hz range, typically determined during a resting state

with eyes closed. The individual alpha band is then defined as

20% above and below the IAF, allowing for a more personalized

and accurate interpretation of the signal (Doppelmayr et al.,

1998).

5.2 Complementary EEG data analysis

An EEG data analysis of the percentage changes in the power

in each condition compared to the power of ERD/ERS baselines

was conducted to complement the classification results. The results

of the analysis were visualized on topographic maps in the

alpha and beta frequency bands. No visible patterns of change

were detected. The primary explanation for this observation is

that ERD/ERS is generally identified over the central electrodes,

specifically C3 and C4, which are absent in the Emotiv EPOC

X configuration. Other factors that may have disturbed the

changes in the EEG power distribution are participants’ eye

movements, fatigue, and problems with focusing their attention

during the study. Therefore, the topographic representations of

the changes in the power distribution are not the same for the

Emotiv EPOC X and the headsets that possess electrodes over

the central electrodes. For comparison, it was referred to other

studies that have presented topographic maps of the changes in

power during MI measured using the Emotiv EPOC X, e.g., Kline

and Desai (2014); Martín-Chinea et al. (2019); Soman et al.

(2012).

Since the signal processing used to classify the incoming

EEG data was based on power computation, the variability in

the results may have been due to insufficient differentiation in

power distributions across the scalp between different conditions.

Additionally, within-condition power distributions may not have

been consistent enough for the classifier to distinguish between

them correctly.

5.3 An examination of study design and
motor imagery ability considering
participants’ subjective experiences

The semi-structured interview provided valuable information

on study design, body awareness training, and participants’ MI

abilities and subjective experiences.

In general, the participants confirmed that they understood

the instructions and feedback. The interview revealed individual

preferences on how instructions were presented and expressed.

Training and feedback were generally considered helpful, and

participants found the MI tasks to control the BCI easy to perform

and remember. However, some participants felt that the study was

too long, the environment lacked natural light, and the Emotiv

EPOC X headset caused discomfort.

In this thesis, five body movement cues were presented via

a five-key piano interface, and gaze-shift patterns associated with

the piano’s operation were identified during participant interviews.

These patterns suggest that eye movements were involved, which

could affect classification results. To mitigate this, signal processing

and classification algorithms need an ocular artifact rejection step

to avoid the direction of gaze that influences predictions. This

adjustment would ensure that predictions are based on motor

cortex activity rather than eye movements. However, such eye

movements are common in BCIs for able-bodied users, where

multimodal distractions, such as carting games or drone control,

may affect performance (Schwarz et al., 2016).

Regarding feedback, consistent with the existing literature, e.g.,

(Roc et al., 2021), half of the participants noted that feedback could

have been more responsive to changes in MI and provided more

guidance on improving performance. The participants found the

feedback motivating; half were driven by positive feedback, and

the other half were driven by negative feedback. Although most

BCI studies focus on the impact of biased feedback on motivation,

cf. González-Franco et al. (2011); Mladenović (2020), this study did

not use biased feedback or conduct psychological evaluations, so its

influence on motivation remains speculative.

Some participants also confused feedback with the subjective

difficulty of performing MI, interpreting feedback rates as an

indicator of their performance. Similar responses have been

observed in joystick-based teleoperation of robots (Mavridis et al.,

2015), but this effect has not yet been fully explored in BCI

research. These responses are problematic, as feedback in BCI

systems typically reflects classification accuracy, which depends on

factors such as signal processing and the chosen classifier, and

not directly on the participant’s MI abilities (Lotte and Jeunet,

2018). Furthermore, in line with previous findings that continuous

feedback in MI-based BCIs can cause distractions (Schreuder et al.,

2012; Schwarz et al., 2016), some participants in this study reported

being distracted by the feedback.

The lack of informative and sensitive feedback, combined with

its impact on the motivation of the participants and their perceived
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difficulty, highlights the need for an intelligent tutoring system for

BCIs (Jeunet et al., 2016) and adaptive training procedures (Roc

et al., 2021). Such systems should account for individual differences

in learning and offer more personalized and responsive feedback.

Regarding participants’ subjective experiences, the body

awareness training helped standardize the imagined movements,

allowing for a clearer study ofMI experiences. Participants reported

using kinesthetic or visual and kinesthetic imagery, focusing on

specific points or holistic movement. They also imagined not only

moving body parts and associated sensations, but also elements

such as clothing, discomfort, and other body parts involved in

movement. Consistent with previous research cf. Roc et al. (2021),

familiar to participants, simple, and with identifiable characteristic

points were considered easier and more intuitive.

All participants generally considered training helpful, and they

reported that it helped them focus on body movements, provided

instruction on how to perform the movements, and helped create

MI. However, some participants mentioned distractions, such as

focus on clothing movement, prolonged movement discomfort,

or other body parts involved. One participant also reported

confusing their own body with the trainer’s, suggesting potential

negative effects on MI. In addition, training was perceived as

too long.

Training was partially validated using theMIQ-3 questionnaire,

with improvements observed in both kinesthetic and visual MI

scores, especially on the kinesthetic subscale. However, these results

should be interpreted cautiously due to the small sample size

(7 participants), which limited statistical testing. Furthermore,

repeated use of MIQ-3 could have contributed to improvement,

rather than the training itself.

More validation of the training is needed to assess its

impact on user performance and classification accuracy. Before

conducting this validation, training should be improved by

clearly explaining kinesthetic MI, explicitly instructing participants

to engage in it, specifying the body areas to focus on for

each movement, and encouraging attention to bodily sensations

and movements.

Participant feedback indicated mental and physical fatigue,

with some reporting difficulty focusing during the study-factors

likely affecting classification accuracy. Although scheduled breaks

were initially excluded to limit the session to 2.5–3 h, future

protocols should incorporate brief, regular breaks—i.e., 3–5 min

every 30–40min—to reduce fatigue, improve comfort, and enhance

data quality, even at the cost of slightly longer sessions.

Regarding the sense of agency in BCI-mediated actions,

participants reported feeling limited, partial control, and ownership

over the actions, likely due to the variability in the classification

results. However, the interview was not detailed enough to

fully explore the participants’ sense of agency, which warranted

further research.

The semi-structured interview used in this study was based

on questions drawn from the literature on BCI user training,

subjective experience in BCI-mediated actions, and user experience

(UX) studies. However, UX methods in BCI research have been

advocated van de Laar et al. (2011, 2012), but they remain

underutilized. The interview developed here could serve as a

step forward in incorporating UX into BCI studies and should

be further refined. Future improvements could include iterative

additions to cover relevant aspects of BCI use, integrating

simpler questionnaire-based questions on motivation and interest

to encourage honest responses, explicitly defining terms like

difficulty, intuitiveness, and philosophical concepts related to BCI

actions, and refining questions associated with the sense of agency

and responsibility.

5.4 Limitations

The hardware employed in this study, specifically the Emotiv

EPOC X headset, posed significant limitations. The headset is a

commercial EEG device that lacks central electrodes typically used

in MI research, is available only in one size, operates via Bluetooth,

and utilizes saline electrodes, all of which contribute to suboptimal

signal quality. Consequently, these factors hindered the study’s

overall data quality and analysis capabilities.

Regarding the study design, the sample size of seven

participants was insufficient for conducting robust statistical

analyses of the collected data. Furthermore, the five-key piano

application introduced ocular artifacts that were not mitigated

during the online BCI process, potentially impacting the accuracy

of the results. Moreover, the body awareness training utilized in

the study had not been previously validated, which was limited by

laboratory time and human resources. Lastly, the measures used for

validation during the study were subjective, and repeated use of the

MIQ-3 questionnaire may have influenced its results.

6 Conclusion

The conducted study demonstrated that extending the

number of classes in an MI-based BCI utilizing the Emotiv

EPOC X by replacing foot movement imagery with lateral

bending movements, both left and right, and combining these

with resting state, as well as imagery of left and right

hand movements and tongue movements, is not feasible. The

power changes in the EEG signals recorded with the Emotiv

EPOC X during these MI tasks did not show sufficient

differentiation for the employed SVC, enhanced by CSP-based

feature extraction, to accurately distinguish between these states of

brain activity.

A primary limitation contributing to this lack of differentiation

is the absence of central electrodes in the Emotiv EPOC X,

which impedes the precise capture of signal changes associated

with MI. This limitation highlights the importance of utilizing

equipment that can provide more comprehensive coverage of the

motor cortex.

Despite these findings, the approach of combining these

specific movements has not been previously explored, suggesting

a potential avenue for future research. It is recommended to

investigate whether alternative EEG headsets equipped with

central electrodes can provide better performance for this

type of BCI application, thus facilitating a more nuanced

analysis of MI and expanding the capabilities of BCIs in

practical settings.
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