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A correlation-based tool for
quantifying membrane periodic
skeleton associated periodicity

Sam K. Vanspauwen, Virginia Luque-Fernandez and
Hanne B. Rasmussen*

Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of
Copenhagen, Copenhagen, Denmark

Introduction: The advent of super-resolution microscopy revealed the
membrane-associated periodic skeleton (MPS), a specialized neuronal
cytoskeletal structure composed of actin rings spaced 190 nm apart by
two spectrin dimers. While numerous ion channels, cell adhesion molecules,
and signaling proteins have been shown to associate with the MPS, tools for
accurate and unbiased quantification of their periodic localization remain
scarce.

Methods: We developed Napari-WaveBreaker (https://github.com/SamKVs/
napari-k2-WaveBreaker), an open-source plugin for the Napari image viewer.
The tool quantifies MPS periodicity using autocorrelation and assesses periodic
co-distribution between targets using cross-correlation. Performance was
evaluated using both simulated datasets and STED microscopy images of
periodic and non-periodic axonal proteins.

Results: Napari-WaveBreaker output parameters accurately reflected the
visually observed periodicity and detected spatial shifts between two periodic
targets. The approach was robust across varying image qualities and reliably
distinguished periodic from non-periodic protein distributions.

Discussion: Napari-WaveBreaker provides an unbiased, quantitative framework
for analyzing MPS-associated periodicity and co-distribution enabling new
insights into the molecular organization and modulation of the MPS.

KEYWORDS

membrane-associated periodic skeleton, super-resolution microscopy, autocorrelation,
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1 Introduction

The spectrin-actin membrane skeleton, initially unveiled in the context of erythrocyte
biology, stands as an integral structure in cellular research. Early research exploring
the composition of the structure laid the foundation for understanding its evolutionary
importance and its role in cell polarization, adhesion, stress resistance, and general
structural integrity (Baines, 2010). First imaged by Byers and Branton (1985) using electron
microscopy, the structure consists of 200 nm long spectrin tetramers crosslinked by actin
filaments, of which the binding depends on the presence of protein 4.1 (Ungewickell et al.,
1979; Fowler and Taylor, 1980; Tyler et al., 1980) and adducin (Gardner and Bennett, 1987).
Another key player, ankyrin, is required for the membrane association of the complex
(Bennett and Stenbuck, 1979, 1980).

While neurons were known to express a spectrin-actin membrane skeleton (Bennett
et al, 1982), it was the development of advanced superresolution light microscopy
techniques such as stimulated emission depletion microscopy (STED) and stochastic
optical reconstruction microscopy (STORM) that facilitated a surge in the studies on
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the organization of the neuronal cytoskeletal complex. Using
STORM, Xu et al. (2013) reported the periodic distribution of
actin in ring-like structures along neuronal axons, the rings being
interconnected by spectrin tetramers. The structure has since
gained the name membrane-associated periodic skeleton (MPS,
He et al, 2016). Since its original discovery, similar structures
have been described in subregions of dendrites, in glial cells,
and in various species (He et al., 2016). Furthermore, in line
with the inherent periodicity of the axonal cytoskeletal structure,
numerous axonal ion channels have been shown to exhibit similar
periodic localization patterns, either co-localizing with the actin
rings or localizing in-between them (D’Este et al.,, 2015, 2016).
When Xu et al. (2013) revealed the axonal MPS, they showed
that voltage-gated sodium channels (Navs) in the axon initial
segment (AIS) exhibited a periodic localization corresponding to
that of ankyrin G (ankG), corroborating the known interaction
between the two proteins (Zhou et al., 1998; Lemaillet et al,
2003). More recently, the mechanosensitive potassium channel
TRAAK was shown to display a similar ankG-dependent periodic
localization (Luque-Ferndndez et al., 2024). In contrast, the voltage-
gated potassium channel Kv1.2 was shown to be periodically co-
localized with the actin rings of the AIS, as was the voltage-gated
potassium channel Kv7.2 in nodes of Ranvier (ID’Este et al., 2017).
Intriguingly, it is not only ion channels that exhibit such periodic
organizations as a number of cell adhesion molecules, motor
proteins, and signaling molecules have also been demonstrated to
display periodic localizations that appear to follow the structure of
the MPS (D’Este et al., 2015; Berger et al., 2018; Abouelezz et al.,
2020; Zhang et al., 2023).

The discovery of the MPS and its associated proteins has
created a demand for reliable quantification of the relative level
of periodicity. This would allow quantitative comparisons of
the periodic localization of, for instance, wildtype and mutant
proteins (Hefting et al., 2020; Luque-Ferndndez et al., 2024) or
determining whether the periodicity of a protein is affected by a
treatment or experimental setup like genetic knockout or shRNA
knockdown of MPS proteins (Zhou et al., 2022). Demonstrating
periodic localization is conventionally done by showing the
fluorescence intensity profile of a drawn line or selected image
region perpendicular to the periodicity (Berger et al, 2018),
sometimes accompanied by a fitted sinusoidal curve (Leterrier et al.,
2015) or the autocorrelation profile (Albrecht et al., 2016; D’Este
et al., 2017; Hauser et al., 2018; Abouelezz et al., 2020; Fréal et al.,
2023). In addition, a value that indicates the periodicity level is
often extracted, for example, using the goodness of fit for the
fitted sinusoidal curve (Leterrier et al., 2015) or using local minima
and maxima of the autocorrelation profile (Zhong et al., 2014;
He et al,, 2016; Han et al,, 2017; Wang et al., 2019; Vassilopoulos
et al,, 2019; Zhou et al,, 2022). However, one key issue with the
mentioned approaches is that they are based on a manually selected
region, which unavoidably introduces bias. A method by Barabas
et al. (2017) addressed this issue by splitting super-resolution
images into multiple segments that were analyzed individually, then
comparing the image with a generated periodic pattern with a
frequency of 190 nm using two-dimensional Pearson correlation.
Correlation surpassing a pre-determined threshold was deemed
periodic in the segment. Notably, the technique was built with user
experience and accessibility in mind. While this method was less
biased, it introduced other issues like a limiting pattern frequency
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of precisely 190 nm and the use of Pearson correlation, which
is sensitive to background noise. Furthermore, a pre-determined
correlation threshold may not be universally applicable, as it
does not provide much flexibility for periodic variability between
samples or in the same sample where periodic patterns are only
partially present. More recently, the Structural Repetition Detector
(SReD) was introduced as a general framework for detecting
structural repetitions in microscopy images, including ring-like
patterns such as those seen in axonal spectrin arrangements.
SReD compares local blocks within an image to identify repeated
structures, operating without prior assumptions about pattern
scale or orientation (Mendes et al., 2025). While SReD offers
high sensitivity and broad applicability, it relies on correlation
with reference blocks and generates structural repetition maps. An
associated pattern prominence metric reflects the relative strength
of detected repetition. However, because this metric is derived
from block-wise similarity rather than directly from signal intensity
profiles, it may be less intuitive to interpret in the context of
conventional periodicity analysis. Additionally, none of the above-
mentioned tools allow for the analysis of two periodic protein
co-distribution, essential to unravel the organization of the MPS.
In this
publicly analysis  tool, = Napari-WaveBreaker
(https://github.com/SamKVs/napari-k2-WaveBreaker), that
takes advantage of the unbiased and accessible approach of Barabas

paper, we introduce a newly developed,

available

et al. (2017) and the flexibility and accuracy of autocorrelation.
Furthermore, we apply cross-correlation analysis to determine
the spatial shift between two periodic patterns, allowing for
estimations of whether two proteins co-distribute or alternate in
their periodic localizations.

2 Methods

The following workflow aims to quantify super-resolution
images containing MPS-like structures in an unbiased manner.
It consists of several steps, including preprocessing, extraction
of intensity profiles, correlation, and finally, data extraction
and post-processing (schematically summarized in Figure 1).
The analysis can be done on single-channel and two-channel
images. For single-channel images, the sequence of computations
provides the autocorrelation amplitude at a specific frequency,
which represents the level of periodicity. In the case of dual-
channel images, the frequencies and autocorrelation amplitudes
are extracted from both channels in addition to the periodic shift
between the channels as provided by cross-correlation. The method
will be described assuming full correlation analysis, meaning
autocorrelation analysis on two channels and cross-correlation
analysis between the channels.

2.1 Algorithm

2.1.1 Preprocessing

Raw images were first preprocessed to define the region of
interest and prepare the image for further processing (Figure 1A).
Discrimination from the background was done by manual
thresholding and smoothing on the channel with the best contrast
between signal and background. In the case of unwanted artifacts,
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FIGURE 1

cross-correlation shift was extracted.

Method Overview. (A) Super-resolution images were masked by automatic thresholding, manual roi selection by drawing, or a combination of the
two. Then, the images were separated into multiple grids (grid size and split method determined by the user). When using two-channel images, the
same mask and separation were applied to both. If a grid contained no masked area, it was discarded. (B) For each channel and grid, intensity profiles
were extracted over multiple angles. (C) Autocorrelation was performed on each extracted intensity profile. Cross-correlation was performed using
the intensity profiles of both channels for each respective degree. (D) Frequency and amplitude were extracted from the autocorrelation profile. The
frequency was defined as the lag of the second maximum of the profile and amplitude was quantified as the difference between the autocorrelation
values at the second maximum and the first minimum. The cross-correlation shift was determined as the lag of the maximum with the highest
correlation value among the two maxima that were closest to lag zero. (E) Datapoints outside of a predefined angle and frequency range were
discarded. For autocorrelation, the data point with the highest amplitude value was kept, and the autocorrelation amplitude and frequency were
extracted. For cross-correlation, the data point with the highest average autocorrelation amplitude of both channels was kept, and the

the binary mask was manually adjusted by drawing or erasing
certain areas. To avoid selection bias, the final mask encompassed
the full axon present in the image. In our experimental setup,
elements that justified the exclusion of certain regions were
partially out-of-focus areas or other neurites running over or
under the axon of interest. Hereafter, the image was divided
into multiple grids of a user-defined width and height. For our
experiments, the grid width was set to match the width of the
masked image, as the captured axons were relatively straight
and linear. Furthermore, consistent with Barabas et al. (2017),
we found that a height of 1 pm was most appropriate due to
the 190 nm periodic interdistance of the MPS, the non-linear
nature of axons, and possible variations in periodicity along the
axon. Grids containing only background were excluded from
further processing.

2.1.2 Intensity profile extraction

To find the angle at which an individual grid exhibits the
best periodicity, analysis of intensity profiles at multiple angles
is required. Additionally, the analysis can be defined to be
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unrestricted or restricted to a user-defined angle range. To extract
intensity profiles from a grid at multiple angles, gradient-like label
layers were generated for each angle (Figure 1B). These label layers
were created by drawing lines perpendicular to the angle of interest,
using Bresenham’s line algorithm (Bresenham, 1965), with each
line assigned a unique integer label. The lines were then shifted
across the entire image, each with a subsequent label, ensuring
full coverage and forming a gradient-like structure. For each label,
the corresponding pixels’ intensity values were averaged, and the
resulting intensity profile was plotted as a function of the label
values across the image.

2.1.3 Correlation

Before autocorrelation analysis, intensity profiles were
normalized to center the autocorrelation profile around a
correlation value of 0. This normalization was achieved by
subtracting the mean value of the profile from each data point,
resulting in a normalized profile n’. The autocorrelation profile
was then computed for each normalized profile to evaluate the

self-similarity across different lag values k.
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The autocorrelation function A(k) was defined as follows:

N—k
Ay =Y nj-n, fork=0to(N—1), 1)
i=1

where 7] represents the normalized intensity at position i, and N is
the total number of points in the profile.

The autocorrelation profile A(k) was then further normalized
to ensure the autocorrelation at lag value 0 is 1, which
facilitates comparisons between different profiles. The normalized
autocorrelation for each lag k was obtained by:

A(k)
A k) = 2
orm(K) = = @)
In this equation, Aporm(k) denotes the normalized

autocorrelation at lag k, A(k) represents the raw autocorrelation
value obtained previously, N is the total number of points in the
normalized intensity profile, and o is the standard deviation of the
normalized intensity values.

Finally, cross-correlation was performed using the
corresponding intensity profiles from both channels.

The cross-correlation function C(k) was defined as follows:

N—k
C(k) =

1

i nyix fork=0to (N —1), (3)

i
1

where n} ; and n) ; represent the normalized intensity at position i
of channels 1 and 2 respectively. N is the total number of points in
the profile.

The cross-correlation profile C(k) was then further normalized.
The normalized cross-correlation for each lag k was obtained by:

k)
_N-UI-O’Z

In this equation, Cyorm(k)
autocorrelation at lag k, C(k) represents the raw cross-correlation

Cnorm (k) (4)

denotes the normalized
value obtained previously, N is the total number of points in
the normalized intensity profile, and o7 and o, are the standard
deviations of the normalized intensity values for channel 1 and
channel 2 respectively.

2.1.4 Data extraction

From the autocorrelation profiles, two parameters were
extracted: amplitude and frequency (Figure 1D). Local minima
and maxima were defined by evaluating the discrete derivative of
the autocorrelation profile. The frequency of the autocorrelation
was defined as the lag of the second maximum of the profile.
Conversely, amplitude was quantified as the difference between
the autocorrelation values at the second maximum and the
first minimum.

In the case of cross-correlation, analogous to the procedure
in autocorrelation, the discrete derivative of the cross-correlation
profile was first computed. The derivative was utilized to locate
the local maxima. Subsequently, the cross-correlation shift was
determined as the lag of the maximum with the highest correlation
value among the two maxima that are closest to lag zero.
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2.1.5 Post-processing

Following the autocorrelation analysis, each grid yielded
frequency and amplitude values for all considered angles. The
analysis can be defined by the user to be unrestricted or restricted to
an angle range and/or frequency range during the post-processing.

For autocorrelation, the data was further filtered by retaining
only the data point corresponding to the highest autocorrelation
amplitude per grid, resulting in a single autocorrelation amplitude
and corresponding frequency per analyzed grid. If all data points
for a grid were discarded due to angle and frequency filtering, that
grid was assigned a NaN frequency value and an autocorrelation
amplitude of 0.

For cross-correlation analysis, only the angle with the highest
average autocorrelation amplitude between both channels was
retained for each grid, and the cross-correlation shift corresponding
to this angle was used as the resulting cross-correlation shift.
Optionally, the data can be subjected to an autocorrelation
amplitude threshold on both channels. In this case, grids for which
all angles were discarded would be excluded from further analysis.

To further investigate relative positioning between targets, the
cross-correlation shift for each remaining grid and angle was
normalized by first calculating:

_ F+F
T4

L

()

where L is defined as the midway point between the average
of the autocorrelation frequencies from two channels, F, and
F, respectively.

The normalized cross-correlation shift was then calculated by:

§=L-|(S mod (2L)) — L (6)
where S and S refer to the cross-correlation shift and normalized

cross-correlation shift, respectively. Furthermore, each normalized
shift was classified as overlapping or alternating via:

if § <
if ' >

"Overlapping”,

Call(§) = (7)

ISl BN

"Alternating’",

2.2 Napari plugin

The methodology was designed with a focus on accessibility.
Therefore, the method was packaged as a user-friendly plugin
for Napari (RRID:SCR_022765), a Python-based image analysis
tool that has gained substantial popularity in recent years
(Sofroniew et al., 2022). The tool was named Napari-WaveBreaker
(RRID:SCR_027179). The plugin enables control over the desired
analysis angles and grid dimensions. Additionally, it allows
automated masking and manual mask editing. Image processing
is automated in the plugin up to the data extraction phase. Post-
processing was not included in the plugin to facilitate various
approaches for data handling. However, the described approach
is available in the form of Excel templates and Python scripts.
This plugin is publicly available on GitHub (https://github.com/
SamKVs/napari-k2- WaveBreaker) and Napari Hub. All analyses in
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this study were performed using Napari-WaveBreaker version 0.2.2
(Vanspauwen, 2023).

2.3 Validation

The method was validated in two ways. It was first applied
to simulated images, which allowed control over parameters that
can potentially influence the results. It was subsequently applied to
STED microscopy images of AIS localized targets.

2.3.1 Image simulation

To validate the methodology and maintain full control over
the parameters influencing the resulting autocorrelation amplitude
and cross-correlation shift, we simulated images resembling STED
images of the MPS. Simulated images were generated with all
possible values from the parameters listed in Table 1. For each
parameter, all possible values were simulated, while the remaining
parameters were held constant at their default values (highlighted
in bold in Table 1). The default values were chosen based on
resemblance to the STED images being mimicked. The RED kernel
simulates the Abberior STAR RED fluorophore, which offers a
higher resolution than the STAR ORANGE fluorophore, so it was
preferentially used when imaging single-channel immunolabelings.
The STED images were acquired at a resolution of 100 pixels/pm,
and deconvolution of the images (see more below) resulted in
noise-free images with low signal variance. Thus, no noise and
100% signal variance were the chosen default parameters. Finally,
100 points/ium? was the average point density obtained in STED
images under our experimental conditions.

Simulations were performed on ten masks from randomly
selected AIS STED images of cultured rat hippocampal neurons.
These images were captured at 50 or 100 pixels/jum according to the
pixel size simulation parameter. For each image, the backbone of the
mask was extracted using the skeletonization methodology of Lee
et al. (1994) and filtering out the longest path. Points were spread
on the backbone with an interpoint distance of 200 nm. Lines were
generated using the Bresenham (1965) algorithm perpendicular to
the angle between each point and its three bidirectional neighbors.
These lines were subsequently enlarged using dilation within the
mask boundaries. The image was then divided into three zones:
background, on-line, and off-line (Figure 2A). Points were spawned
in the on-line and off-line zones at various periodic localization
percentages to create a range of images with different levels of

TABLE 1 Simulation parameters and their respective possible values.

Parameters Possible values

Kernel RED, ORANGE

Noise None, 5%, 10%, 20%, 30%

Pixel size 50, 100 (pixels/pm)

Point density 25, 50, 100, 200, 300 (points/jLm?)
Signal variance 30-100%, 100%

Values highlighted in bold are referred to as default.
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periodicity. At a periodic localization percentage of 50%, points
were scattered randomly across the entire mask, regardless of
zone distinctions. In contrast, at a periodic localization percentage
of 100%, points were exclusively distributed within the on-line
zones, creating a perfectly periodic pattern (Figure 2B). Images
were generated at percentage intervals of 5%, ranging from 50%
to 100%.

The total number of points (Py,1) spawned in the image was
determined by a predefined point density simulation parameter (D).
Piotal was calculated as follows:

Aon-line T Aoff-line

P, =D-
total PPM2

®)
where A represents the pixel count of each respective zone, and
PPM? stands for pixels per um? and represents the pixel density
of the image. D represents the predefined simulated point density
in points per wm?.

The number of points spawned in each zone was calculated
as follows:

Aon-line - F
Ponline = P . 9
online ol Aon-ine - F + Aoffline - (100 - F) ©)
Aoffline * (100 - F)

Aon-line * F + Aoffline * (100 - F)

(10)

Poftine = Protal -

Here, P denotes the number of points spawned within the
respective zones, A represents the area or pixel count of each zone,
and F signifies the predefined periodic localization percentage.

Hereafter, in an empty image, a number of random pixels
according to Pyyjine and Pogine were given a value in their
respective zones. This value was either 1 or a random value between
0.3 and 1, depending on the signal variance simulation parameter.
This intermediate image was then convolved with a RED or
ORANGE kernel, depending on the kernel simulation parameter.
RED and ORANGE kernels were created by manually isolating 22
to 27 freestanding fluorescent signal dots from real STED images
using Abberior STAR RED and Abberior STAR ORANGE coupled
secondary antibodies captured at 50 or 100 pixels/pm. A Gaussian
curve was fitted for each isolate and averaged to create a RED
and ORANGE kernel for both 50 and 100 pixels/pm. Finally, a
Gaussian noise layer was added to the simulated image, with a mean
of zero and a standard deviation proportional to the maximum
intensity of the signal kernel. Specifically, the standard deviation
was set to 5%, 10%, 20%, or 30% of the kernel’s maximum intensity,
corresponding to the defined noise simulation parameter. This
noise was applied uniformly across the entire image to simulate
background intensity variation.

All generated images were analyzed using the workflow
described above, with a grid height of 1 pm and a grid width equal
to the image width, a frequency range of 170 nm to 230 nm, and an
angle range of -20° to +20°.

For cross-correlation simulation experiments, images were
generated using default simulation parameters. At various periodic
localization percentages, overlapping channels were created by re-
spawning points in the different zones using the same mask and
zone map. In contrast, alternating channels were generated by
shifting points along the skeleton backbone by 100 nm to create an
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* All comparisons significant with p < 0.001 unless indicated

Autocorrelation analysis of simulated images. (A) Simulated images were based on masks of STED AlS images of cultured rat hippocampal neurons,
with the black area representing the background. The remaining region was divided into zones: white, which depicts the on-line zones spaced 200
nm apart, and gray, which depicts the off-line zones. (B) Points were generated in both the on-line and off-line zones with varying periodic
localization percentages. In this case, the generated periodic localization percentage is 100%, as all points are located in the on-line zones. The
green square indicates an example of an analyzed grid. (C) Examples of grids with the indicated periodic localization percentages and the resulting
autocorrelation amplitudes for all analyzed grids (n = 195 per periodic localization percentage). Statistical significance was determined using pairwise
Mann-Whitney U tests (***for p-value < 0.001, **for p-value < 0.01, *for p-value < 0.05, and "ns" for non-significant). All non-indicated comparisons

75 80 85

e

alternating zone map, allowing points to be spawned in alternating
zones. Analysis of all simulated images was done with an automated
version of Napari-WaveBreaker v0.2.2 (Vanspauwen, 2023).

2.3.2 STED microscopy of cultured hippocampal
neurons

All animals were used according to the guidelines of the
Danish Veterinary and Food Administration and the Ministry
of Food, Agriculture and Fisheries of Denmark. No specific
authorization was required for the euthanization of the animals
for subsequent tissue preparation, and the procedure was
approved by the Department of Experimental Medicine at
the University of Copenhagen. Hippocampal neuronal cultures
were prepared as previously reported (Luque-Ferndndez et al,
2024). Shortly, hippocampi from E18 Wistar rat (Charles River,
RRID: RGD_737929) embryos of unknown sex were dissected.

Frontiersin Neuroinformatics

For each experimental replicate, all embryos from a single
pregnant dam were dissected (12-20 embryos), and all hippocampi
were pooled before dissociation. The tissue was enzymatically
dissociated in 0.25% trypsin (ThermoFisher Scientific, 15090046),
and the neurons were plated on 25 mm diameter glass coverslips
(Marienfeld Superior, 0117650), precoated with 50 pg/ml poly-
D-lysine (ThermoFisher Scientific, A3890401). The neurons were
cultured in dishes containing an astroglial feeder layer in 2%
B27, 0.5 mM glutamax, and 10 IU/ml penicillin-streptomycin-
supplemented Neurobasal medium (all from ThermoFisher
Scientific: 17504001, 35050038, 15140122, 21103049). At 3 DIV,
3 uM cytosine arabinoside (Sigma-Aldrich, C6645) was added to
stop the proliferation of non-neuronal cells.

At 22 days in vitro (DIV), neurons were fixed in 2%
paraformaldehyde in PBS (ThermoFischer Scientific, 15434389)
for 2 minutes at room temperature, followed by 10 minutes in
methanol (VWR, 20846) at -20 °C. For Triton X-100 extracted
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samples, neurons were exposed to 0.5% Triton X-100 (Sigma-
Aldrich, X100) in PBS for 5 minutes at -4 °C prior to fixation.
Then, neurons were blocked for 30 min at room temperature in
0.2% fish skin gelatin (Sigma-Aldrich, G7765) and 0.1% Triton
X-100 containing PBS. Hereafter, neurons were immunolabeled
with mouse anti-betalV spectrin (1:100, RRID:AB_2315818,
UC Davis/NIH neuroMab Facility, Antibodies Incorporated,
75-377), mouse anti-Kv1.1 (1:100, RRID:AB_2128566, UC
Davis/NIH neuroMab Facility, Antibodies Incorporated, 75-105)
or mouse anti-Kv2.1 (1:100, RRID:AB_10673392, UC Davis/NIH
neuroMab Facility, Antibodies Incorporated, 75-014) antibodies
in combination with rabbit anti-ankG antibodies (1:2000,
RRID:AB_2661876, SYSY, 386 003). Detection was carried out with
secondary antibodies coupled to Abberior STAR ORANGE (1:200,
RRID:AB_2847853, Abberior, STORANGE-1001-500UG) or
Abberior STAR RED (1:200, RRID:RRID:AB_2833015, Abberior,
STRED-1002-500UG). Primary and secondary antibodies were
applied at room temperature in blocking solution for 1 h.
Coverslips were mounted on microscope slides using ProLong
Diamond Antifade mountant (ThermoFisher Scientific, P36970).

Images were acquired with a Zeiss Axio Imager Z1 microscope
attached to a STEDYCON STED system (Abberior). A 100x,
1.46 numerical aperture, oil-immersion objective was used. The
pixel size was set to 10 nm. For each experiment, 5-10 neurons
from 3 different neuronal cultures were imaged, adding to a
total number of 15-30 neurons imaged per condition. AnkG
immunolabeling was used to identify the AIS and images that
covered the full AIS were acquired. The images were deconvolved
using Huygens Professional version 22.04 (Scientific Volume
Imaging, The Netherlands, http://svi.nl). Hereafter, images were
analyzed using the workflow described above, with a grid height of 1
pm and a grid width corresponding to the image width, a frequency
range of 170 nm to 230 nm, and an angle range of -20° to +20°. For
cross-correlation analysis, an autocorrelation amplitude threshold
of 0.6 was applied. Analysis was done with Napari-WaveBreaker
v0.2.2 (Vanspauwen, 2023).

2.3.3 Data visualization

Data is represented as either boxplots or violin plots. Within
each violin plot, a boxplot is embedded to summarize key statistical
metrics. For boxplots, the central line represents the median, the
edges of the box correspond to the interquartile range (IQR), and
the whiskers extend to 1.5x IQR. For figures that only contain
boxplots, outliers, if present, are shown as individual data points
outside the whiskers. Information on statistics is included in each
figure’s caption.

3 Results

3.1 Simulated periodicity is accurately
reflected by autocorrelation amplitude

To evaluate how well autocorrelation amplitude analysis could
estimate periodicity, we generated images with varying periodic
localization percentages (percentage of generated points placed
within on-line zones, Figures 2A, B). As shown in Figure 2C,
the autocorrelation amplitude parameter successfully distinguished
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between different levels of simulated periodicity, although the
sensitivity depended on the periodic localization percentage.

As we aimed to use Napari-WaveBreaker to analyze subtle
differences in periodicity in a biological context, we assessed the
method’s ability to detect small changes by performing statistical
comparisons between periodic localization levels differing by
only 5%. At periodic localization percentages above 60%, such
small increments yielded statistically significant changes in
autocorrelation amplitudes (p < 0.05). In contrast, at periodic
localization percentages below 60%, distinguishing between groups
became more difficult, requiring differences of 10%-15% to achieve
statistical significance. These results demonstrate that Napari-
WaveBreaker is capable of detecting subtle periodicity changes and
is most sensitive when periodic localization exceeds 60%.

3.2 Autocorrelation amplitude is mainly
influenced by point density

To investigate how image-related parameters influence
autocorrelation amplitude, images were generated with variations
in point density, kernel size, intensity variation, background
noise and pixel size (Table I, Supplementary Figure SIA). Our
analysis revealed that the most impactful parameter was point
density, which significantly influenced autocorrelation amplitude
in generated images with periodic localization percentages > 60%.
In contrast, intensity variation had no noticeable effect. Kernel and
pixel size occasionally influenced mean autocorrelation amplitude,
but their impact was more pronounced on the IQR (Table 2,
Supplementary Figure S1). As expected, the smaller RED kernel,
ultimately responsible for creating a sharper image, resulted in
a significantly lower autocorrelation amplitude IQR compared
to the larger ORANGE kernel (p < 0.01). Similarly, images
with 100 pixels/um showed significantly lower autocorrelation
IQR than those with 50 pixels/um (p < 0.01). While images
with more intensity variation had a slightly higher IQR than
those with consistent signal intensities (p < 0.05), this had no
effect on the average autocorrelation amplitude. Background
noise also influenced autocorrelation amplitude, with the most
substantial effects observed at noise levels exceeding 10%
(Supplementary Figure S1B).

3.3 Cross-correlation analysis accurately
distinguishes between alternating and
overlapping patterns

To validate cross-correlation analysis, two-channel images
were generated, both with overlapping and alternating periodicity
between the channels (Figure 3C). The analysis then determined
the cross-correlation shift, which could classify a grid into either
an overlapping or alternating category. The ability to predict
whether a generated pattern was overlapping or alternating will
henceforth be referred to as accuracy. As expected, for both
overlapping and alternating generated patterns, the accuracy
increased gradually as the periodic localization percentage of the
individual channels rose, and the calculated cross-correlation shift
was more likely to fall into the correct pattern zone (Figure 3A).
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TABLE 2 Statistical significance of simulation parameters on autocorrelation amplitude and its interquartile range across periodic localization
percentages (PLP).

Analytical metric Point density = Kernelsize  Intensity variation Background noise  Pixel size
Impact on autocorrelation amplitude

PLP: 50% ns ns ns b ns
PLP: 55% ns ns ns bl ns
PLP: 60% il ns ns * ns
PLP: 65% bl o ns * ns
PLP: 70% bl ns ns * ns
PLP: 75% il ns ns ns ns
PLP: 80% b ns ns * *
PLP: 85% b ns ns > h
PLP: 90% el ns ns * ns
PLP: 95% bl ns ns ns b
PLP: 100% bl ns ns ns ns
Interquartile range ns b * * b

ns, not significant, *p < 0.05, **p < 0.01, *** p < 0.001.

For both overlapping and alternating generated patterns, accuracy
exceeded 70% at a periodic localization fraction of only 65%.
Interestingly, when comparing the methods accuracy between
periodic localization percentages, the analysis of overlapping
patterns often resulted in slightly higher accuracy than that of
alternating patterns (Figure 3B). Furthermore, when comparing the
accuracy of the cross-correlation approach when analyzing two-
channel images where the channels were generated with different
periodic localization percentages, it was evident that the accuracy
was largely dependent on the channel with the lowest percentage
(Figure 3D).

While the cross-correlation analysis displayed good accuracy,
it could be further improved by considering the calculated
autocorrelation amplitude for both channels. When plotting
accuracy for various periodic localization percentages and
splitting the data points based on the minimum autocorrelation
amplitude of both channels, it became clear that much of the
poor cross-correlation accuracy originated from data points
with low autocorrelation amplitude (Supplementary Figure S2).
Additionally, the remaining bins with low accuracy often had a
limited number of values on which the accuracy was based (bins
with fewer than 10 data points highlighted with red-bordered
boxes in Supplementary Figure S2). The analysis suggested that
implementing a minimum autocorrelation amplitude threshold of
0.6 and a minimum data point criterion of 10 could dramatically
improve the achieved accuracy, which was confirmed by applying
these two considerations to the complete analysis of simulated
images (Figure 3E).

3.4 Autocorrelation amplitude reflects the
visual periodicity level of STED images

After validating the method on simulated data, we applied
the analysis to STED images of known periodic and non-periodic

AlS-localized targets in cultured rat hippocampal neurons
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(Figure 4). Autocorrelation amplitude accurately reflected the
mild periodicity of ankG and beta-IV spectrin (C-terminus)
achieved in our experimental setup with an average autocorrelation
amplitude of 0.33 (IQR: 0.09-0.51) and 0.35 (IQR: 0.13-
0.50) respectively (Figures 4A, B). In addition, the voltage-gated
potassium channel Kv2.1, which is localized in unique AIS clusters
without any apparent periodicity (King et al, 2014), displayed
a much lower average autocorrelation amplitude of 0.20 (IQR
0.02-0.32). In contrast, the voltage-gated potassium channel
Kvl.1, like its paralog Kvl1.2 (ID’Este et al., 2017), exhibited a
remarkable periodic localization pattern, which was reflected by
an average autocorrelation amplitude of 0.66 (IQR: 0.36-0.98)
(Figures 4A, B).

To further investigate whether autocorrelation amplitude
could determine slight alterations in periodicity, hippocampal
neurons were treated with 0.5% Triton X-100 before fixation and
immunolabeled with antibodies directed against the C-terminus of
beta-IV spectrin. The goal was to investigate whether Triton X-
100 detergent extraction would improve the periodicity, as the AIS
MPS core and its associated proteins are resistant to this treatment
(Torii et al., 2020). Visual inspection of acquired STED images
suggested that the beta-IV spectrin immunolabeling displayed a
stronger periodic pattern after Triton X-100 extraction (Figure 4C).
Indeed, this observation was reflected by a significant increase in
the calculated autocorrelation amplitude of TX-100 extracted cells
(autocorrelation amplitude: 0.44, IQR: 0.17-0.66) as compared to
control cells (autocorrelation amplitude: 0.36, IQR: 0.13-0.54, **p
< 0.01) (Figure 4C).

3.5 Cross-correlation analysis reliably
detects periodic co- and alternating
distribution of AlS localized proteins

To determine whether the cross-correlation-based workflow
could reliably identify relative shifts between periodically
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Cross-correlation analysis of simulated images. (A) Cross-correlation shifts calculated for generated two-channel images with the indicated periodic
localization percentages. Both channels were generated with the same periodic localization percentage. The analysis was performed for both
overlapping and alternating simulated patterns. White and gray zones indicate whether the cross-correlation shift was classified as overlapping or
alternating. (B) Cross-correlation accuracies for the indicated periodic localization percentages in (A). (C) Examples of grids with an alternating
interdistance between channels for the indicated periodic localization percentages. (D) Cross-correlation accuracy achieved for all possible periodic
localization percentage combinations in the two-channel simulated images. (E) Data from D subjected to a 0.6 autocorrelation amplitude threshold
and a minimum data point criterion of 10. Besides a variable periodic localization percentage, simulations were performed with default parameters.

distributed AIS targets, we captured STED images of cultured
hippocampal neurons co-immunolabeled for ankG and beta-
IV spectrin (C-terminus). Visual inspection of the images
suggested an overlap between the beta-IV spectrin and ankG
immunolabelings, which was further supported by the fluorescence
intensity profiles (Figure4E). In line with this observation,
the cross-correlation shift values were all located in the zone
considered overlapping (100% of points, Figure 4D), which
is in accordance with previous literature (Leterrier et al,
2015).

Frontiersin Neuroinformatics 09

We then applied the same analysis to STED images of neurons
co-immunolabeled for Kv1.1 and ankG. The Kvl complex has been
reported to co-localize with the actin rings and would be expected
to alternate with the localization of ankG (D’Este et al., 2017).
Indeed, visual inspection of the images suggested an alternating
localization pattern between the two AIS proteins, which was
supported by the fluorescence intensity profiles (Figure 4E).
Furthermore, cross-correlation analysis confirmed this observation
as 97% of the cross-correlation shift values revealed an alternating
localization pattern (Figure 4D).
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FIGURE 4

Auto- and cross-correlation analysis validation on STED images. (A) Deconvolved STED images of AlSs of 22 DIV cultured rat hippocampal neurons
immunolabeled for ankG, beta-1V spectrin, Kv1.1, and Kv2.1. (B) Autocorrelation amplitudes for the indicated AIS proteins. Number of grids analyzed:
ankG = 1,045, beta-IV spectrin = 437, Kvl.1 = 333, Kv2.1 = 275. (C) Deconvolved STED images and autocorrelation amplitudes of AlSs
immunolabeled for beta-IV spectrin in neurons with and without 0.5% Triton X-100 extraction prior to fixation. Number of grids analyzed: control =
344, Triton X-100 = 474. Statistical analysis was performed using the Mann-Whitney U test (**p-value < 0.01). (D) Normalized cross-correlation shifts
obtained from two-channel images of ankG in combination with beta-IV spectrin or Kv1.1 as shown in (E). The alternating (gray) and overlapping
(white) zones are indicated. Data were subjected to a 0.6 minimum autocorrelation amplitude threshold. Number of grids included after
thresholding: beta-1V spectrin = 15, Kv1.1 = 30. (E) Two-channel images of beta-IV spectrin and Kv1.1 in combination with ankG. Normalized
fluorescence intensity profiles for both channels along the 1 um yellow lines are plotted to the right. Scale bars: 1 um.

4 Discussion microscopy images. We furthermore show that the embedded

cross-correlation analysis can accurately determine whether two

In this paper, we present an automated method for quantifying  periodically localized targets display an overlapping or alternating
MPS-associated periodicity and evaluating the spatial shift between  localization pattern, even at low periodicity levels.

two MPS-associated periodic targets. We show that the method can The strength of the method lies in the combination of a

detect small changes in periodicity in both simulated and STED  non-biased region of interest selection and the flexibility of the
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correlation functions used. It allows for the analysis of whole
images, thereby applying non-selective criteria for defining the
regions to be analyzed. The implementation of the analysis of
periodicity in all angles was a key feature in fulfilling this goal. This
unselective approach improves on previous strategies which did
rely on correlation-based analysis, however, applied to manually
selected regions (Zhong et al., 2014; Albrecht et al., 2016; D’Este
et al., 2017; Wang et al., 2019; Fréal et al, 2023). We decided
to use autocorrelation since the output values are less affected by
interpeak intensity variation and background noise compared to
sinusoidal curve fitting (Leterrier et al., 2015). We furthermore
decided that treating periodicity like a range was more appropriate
than the binary choice often applied. This facilitates the evaluation
of changes in periodicity between, for example, wild type and
mutated targets or treated and non-treated samples. Indeed, the
Napari-WaveBreaker plugin has already been used to quantify
the periodic localization of the AIS ion channel TRAAK and
to determine its nanoscale co-localization with ankG (Luque-
Fernandez et al, 2024). In addition, the analysis is not bound
to one exact frequency value as it is in the Pearson correlation
approach of Barabas et al. (2017), but rather a frequency range of
choice or a completely unrestricted range if required. This feature
facilitates analysis in samples with variations in MPS frequency as
well as the study of disrupted periodic patterns. Among others,
this could benefit the analysis of periodic patterns in samples that
have been immunolabeled in expansion microscopy techniques
(Martinez et al., 2020), where the case-to-case expansion factor
proportionally affects the inter-peak distance.

We also examined which image parameters should be
considered in the analysis. While it is better established that
experimental conditions should be the same (e.g., same fluorophore
and microscope settings for comparisons), we observed that
other factors that are inherent to the samples and/or the
staining procedure should also be considered. Our simulations
demonstrated that the point density of the samples is the
most important parameter (Table 2), which should be considered
if it varies greatly between experimental groups. Along the
same lines, we do not recommend direct statistical comparisons
of autocorrelation amplitudes for targets immunolabeled with
different antibodies.

We finally demonstrated the tool’s ability to determine whether
two periodically localized targets overlap or alternate in their
distributions. By calculating their spatial shift by cross-correlation,
we were able to demonstrate that while the beta-IV spectrin C-
terminus overlaps with the localization of ankG, Kv1.1 alternates
with it, which aligns with previously observed Kv1.2 colocalization
with actin rings (D’Este et al., 2017). While cross-correlation has
been utilized to show that two periodically localized targets overlap
or alternate (Xu et al., 2013; Albrecht et al., 2016; D’Este et al., 2017;
Zhou et al., 2022), it was never used to calculate the interdistance
between targets in unbiasedly selected regions. Our simulations
show that applying an autocorrelation amplitude threshold in the
analysis improves cross-correlation shift accuracy. In our case, the
applied threshold was 0.6, as suggested by our simulated data
analysis. Nonetheless, when choosing the size of the threshold, it
should be considered how many data points are lost in the process,
as too few data points can generate misleading results.
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In conclusion, we here developed a method to quantify
target periodicity and two target interdistances in superresolution
microscopy images. The developed method is available as a tool,
Napari-WaveBreaker, an open-source plugin for the interactive
image viewer Napari. It thus represents a widely accessible method
for unbiased quantifications of MPS-associated periodicity and
its changes. While this study validates the method using STED
images, its design makes it well-suited for broader use, including
with STORM and emerging super-resolution techniques such
as expansion microscopy, highlighting its potential for wide
applicability in the field.
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